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The effective exchange field produced by localized magnetic moments is taken into account in processes of 
exchange scattering of photocarriers by localized magnetic moments. The exchange field leads to giant spin 
splitting of the energy bands in magnetically doped semiconductors. Expressions for the probabilities of spin 
relaxations are obtained. The effect of exchange scattering on the spin relaxation and on the spin polarization 
of impurity centers under conditions of giant band splitting is studied theoretically. Situations are considered 
in which spin heating of the photocarriers or selective interband irradiation polarize the spins of the impurity 
centers irrespective of the intensity of the magnetic field. The conditions required for realization of maximum 
spin polarization are determined. Numerical estimates are presented for A1'BV1:Mn. 

PACS numbers: 71.70.Gm, 75.30.Hx, 71.55. - i 

1. INTRODUCTION able by their  different projections p of the total angular 
momentum J (J= 4 for  the electron and hole bands I', From among the numerous manifestations of car r ie r -  
and r,, J= $ for  the hole band r,) and different wave 

impurity exchange interaction in magnetically doped 
vectors k, takes in the important case  of strong ex- 

semiconductors, the exchange scattering of ca r r i e r s  
change fields and low temperatures,  

by impurity centers  (IC) and the spin splitting of the 
ca r r i e r  bands by the exchange field of polarized IC a r e  gpII, kBT<G, (1) 
the most intensively studied. The f i r s t  of these effects near the band extremum the form (S is the spin of the 
was revealed in experiment by the shortening of the ,'PI \ 

paramagnetic-relaxation time,12 and the second by the IL' 

giant spin splitting of the excition optical ~ p e c t r a . ~ - ~  2 N I  
Epr=e,r+(GJ)pp, G = - -  (S), 

Even though the exchange scattering and the giant spin Vo 
splitting a r e  due respectively to the off-diagonal and 
diagonal parts  of one and the s ame  carrier-impurity ex- 
change interaction, these phenomena were  studied in- 
dependently of each other. Such an approach was jus- 
tified in the f i r s t  case1" because the IC density was in- 
sufficient to produce an  effective exchange fields 
stronger than the acting magnetic field, and in the 
second case3-= i t  was justified by the low photocarrier 
density, insufficient for monitoring the IC polarization. 
Yet the indicated conditions a r e  not satisfied in the case 
of sufficiently intense pumping of the photocarriers and 
sufficiently high density of the IC, when the relaxation 
cannot be considered independently of polarization and 
vice versa. 

This paper deals with effects due to the joint mani- 
festation of the diagonal a t  off-diagonal parts  of the 
carrier-impurity exchange interaction, namely, the 
spin splitting of the bands and exchange scattering of 
the car r ie rs .  

2. PROBABILITY OF EXCHANGE SCATTERING OF 
CARRIERS BY IC 

We consider a semiconductor with a cubic lattice, 
doped with paramagnetic centers. At sufficiently high 
density of the lat ter ,  the ca r r i e r s  behave a s  if their 
spins were acted upon by an effective magnetic field 
G/gp due to exchange interaction with N impurity 
centers3-' polarized by an  external magnetic field H. 
As a result,  the spectrum of the ca r r i e r s ,  distinguish- 

where I is the exchange constant and has the sign of the 
ferromagnetism (I,> 0) for  the bands I?, and r, and of the 
antiferromagnetism (I,< 0) for  the 37, band,6 while V, is 
the volume of the crystal. The averaging over the en- 
semble in (2) takes into account both the actual form of 
the spin Hamiltonian and the pair interactions of the 
IC spins with one another; sPk describes the quadratic 
dispersion law near the extremum of the nondegen- 
e ra te  bands.') According to (1) and (2) the quantization 
axis  of the spins of the electrons (holes) i s  e = -(S)/) (S) I. 
I t  is convenient to choose this direction to be  the Z 
axis of the coordinate f rame,  s ince G ,  > 0 corresponds 
to ferromagnetic and G,< 0 to antiferromagnetic ca r -  
rier-impurity exchange interaction. 

We assume that the energy of N spins in the external 
magnetic field H, in the ca r r i e r  polarization field h 
(which will be defined below), and in the crystal  field 
exceeds the energy of the spin-spin interactions of the 
IC. To  determine the spin density matrix of the IC i t  
suffices then to use a single-particle kinetic equation., 
The equations for  the diagonal components of the den- 
sity matrix in the case  of a nondegenerate IC spectrum 
a r e  equivalent to the fundamental kinetic equation and 
contain a s  the kinetic coefficients the probabilities of 
the relaxation transitions between the IC spin states M 
and M' (with energies E ,  and E,.): 
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We shall calculate the correlation function in (3) for  the 
case  J =  by the method of equal-time temperature 
Green's function, using the equilibrium stat is t ical  op- 
e ra tor  of the system of ca r r i e r s  and of the localized 
moments that interact with them. Fo r  the Green's func- 
tions ( p  =X, Y, Z) 

we shall s e t  up the equations of motion and obtain, af ter  
the usual procedure of splittingg the chain of equations 
for  the higher Green's functions, a closed equation for  
Gpk,p,k,. Assuming a random distribution of the N spins 
over the volume of the sample and the absence of 
ca r r i e r  degeneracy, we represent  the Green's function 
in the form (v =+I) 

npt-np'k. 
Gpt.P.L, (m+iO)  = 

2nlW+E,t-E,,k.+ir~~ ( a ) ]  ' 

where m is the effective mass of the s ta te  density npk 
=(aikaPk), ck  and &k, a r e  the kinetic energies of the car-  
r i e r  before and after  the exchange scat tering,  B =w + h  
is the IC resonant frequency renormalized by the polar- 
ization field of the ca r r i e r s  

h=-2e1x  pn,. n, = n,k. 
P k 

In the case of simple bands r, and r, we have 2x,Pnp 
=n+-n-. The mean values (S,S,) a r e  calculated under 
the same assumptions a s  (S,,) in (2). In the spin-tem- 
perature approximation for an equidistant IC spectrum, 
when z J JH and w, = w,,,-, does not depend on M, we 
have 

where (S3 is expressed in the usual manner in te rms 
of the Brillouin function Bs(j3wo). To  estimate rg: we 
note that ck0(  a G for  interband transitions (P+P'). 
We therefore replace the sum of the radicals in the 
right-hand side of (5) by c;'" and leave out the lower 
pair of indices, on which G{, no longer depends. Using 
this circumstance and ~ u b s t i t u t i n g f , ~ ~ , ~ ( w ) ,  which is 
uniquely connecteds with Gpkgrv(w), in (3), we integrate 
over the final s tates d: 

where g, =G,/~,T,, y,, = PP'/kB~,,  and we used a 
Maxwellian distribution function (with temperature T,) 
fo r  the nondegenerate car r ie rs .  

Since the spin splittings of the bands a r e  meaningful 
if 

r,SP:<c, (8) 

we can simplify expression (7) by taking the limit a s  

Fl(g)=F(g), 

where the function F(g)  was investigated in Ref. 10. 
Thus, the expressions for W,,,, obtained without allow- 
ance for  the damping g$ of the states (pk) and Ip'd), 
remain valid also a t  finite values of rPP: rovided that I*, p 
Eq. (a), which is  equivalent t o  the condition of good 
resolution of the ca r r i e r  spin states split by the ex- 
change field G ,  is satisfied. Hereafter, on the basis of 
(a), we shall  use (6) and (7) in the l imit  a s  y -  0. 

The generalization of (6) for  a rb i t ra ry  J leads to the 
expression 

2 " 
M = ) M M ( )  (P/fi')(kBT.)'i"~npm~h(~T)~PP~(-Ax) (9) 

k ~ T x  
PP' 

Here APg = Epo - E,,, + w ,,, and Epo = GZp; n, and m, a r e  
the c a r r i e r  density and the effective mass  of the state 
density in the spin subband P. 

We note that (6) and (9) describe the relaxation also 
when the c a r r i e r  spin temperature ,9, - 1 differs from 
the lattice temperature T (or, generally speaking, when 
the populations n, of the spin subbands differ from the 
nonequilibrium values ni) .  

3. SPIN RELAXATION OF IC 

We consider now the influence of the ca r r i e r s  on the 
paramagnetic relaxation in a magnetically doped semi- 
conductor. Under the conditions 

which a r e  usually realized in experiment1-4 in the case 
of saturation of a sma l l  group LN<< N of spins (con- 
stituting, for  example, a spin packet in an  inhomogen- 
eously broadened EPR line), the relaxation is  deter-  
mined2 by the exchange-scattering probability (9). In 
the temperature region ( o,,, I <  k,T < G that is vital for  
the experiment, when the IC polarization is linearly 
connected with the reciprocal  spin temperature and 

the contribution of the f r ee  electrons (holes) to the 
relaxation of AN impurity centers  in the case  of the 
band re (I",) is determined by the time T,  where 

The expression for the r a t e  of the relaxation of the IC 
in  t e rms  of the f r ee  holes in the case  of the r, band 
(J=$) differs from (11) by a factor 3. 

Thus, in the case  of giant spin splittings of the band 
one can expect an anomalously strong temperature de- 
pendence of the rate of relaxation of the spin packet 
(xT-''~ exd-cons t /p) ) .  The concentration dependence 
of T also differs qualitatively from those known, leading 
to a prolongation of the relaxation with increasing N (so 
that T-' X N ' ~  exd-N const}). We note that experiment- 
a l  observation of the temperature dependence of (11) 
makes i t  possible to determine independently the width 
of the exchange-interaction constant and the IC density, 
something usually difficult to do by spectroscopic 
 method^.^ .4 
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4. IC SPIN POLARIZATION IN  EXCHANGE 
SCATTERING OF PHOTOCARRIERS OF THE 
SAME SIGN 

An important distinguishing feature of optically gen- 
erated ca r r i e r s ,  compared with thermal electrons and 
holes, is  that their  spin temperature is generally speak- 
ing not equal to the lattice temperature. Let  us examine 
the influence of this optical heating (or cooling) of the 
ca r r i e r s  on the IC polarization (S,) in the ca se  when the 
relaxation of the lat ter  is determined by Eq. (9). This 
takes also into account the reaction of the polarization 
of the IC on the ca r r i e r  spins. We start with the case 
when the IC interact effectively with c a r r i e r  of the s ame  
sign, say with electrons ( J = $ ) ,  and assume for the sake  
of simplicity that  the quadrupole transitions of the IC 
a r e  negligible o r  can be taken into account together with 
the dipole transitions by means of a single spin-lattice 
relaxation time 7,. The basic kinetic equations for  the 
IC spin-state populations N, (M = -S, . . . , S) and for the 
populations np of the conduction-electron spin subbands 
(P =i$)  take in this case  the form 

Nu--NM(WM, m-,+Wx, x+l)+Nx-,Wx-t, x+NN+tWx+,, x, (12) iP=-z [ N ~ W ~ , ~ + ~ - N ~ W ~ . ~ - ~ ] - ~ ~ W ~ + ~ - ~ W _ ~ - ~ ~ / T , + ~ ~ ,  (13) 
Y 

where W,,,, = W:,r+~i ,d ,  wiSy describes the spin 
lattice relaxation of the IC, Wb,,,, is defined by expres- 
s ion (9), and WIllz is the probability of the relaxation 
transition p =*$-PI =T and is connected with the 
conduction-electron spin-lattice interaction that e s -  
tablishes the populations 

and S,*, 7, a r e  the rates of generation and recombina- 
tion of the car r ie rs .  In (12) and (13), a s  well a s  here-  
after ,  we put Vo = 1, In the case  S = $ Eq. (12) is exact. 

The stationary solutions of Eqs. (12) and (13) cor res-  
pond to mu=& =O. If we neglect the non-equidistant IC 
spectrum due to the crystal field, the ratio 

is independent of M, and =@,w0, where 8, is  the 
reciprocal spin temperature of the IC. Substituting in 
(14) W,,. from (9) for  S = $, we obtain after  the neces- 
s a ry  transformations 

x y-th(A/2kBT.) +th(oo/2kBT) T;: IT,: 
th- = 

2 I-y th(A/2kBT.) + T ~ / T ; ~ ~  

where we put f o r  brevity A =  A+-; y = (n- - n+)/(n- +n,) 
is the spin polarization of the conduction electrons 

is  the ra te  of relaxation in exchange scattering of n, 
and n, =n,= ($In of the electrons by the IC; U =m2Z25/nP; 
8 = (8kB~/r rn) ln  is the average thermal velocity of the 
ca r r i e r s  in the band. Analogously, s tart ing from (9) 
and (13), we obtain an  equation for  the polarization of 
the ca r r i e r s  

th (x/2) +th (A/2kBT.) +yr.:/ks ( x )  T.-,' 

= I+th(x/2) th(A/2kBT.) +T;:, /ks(x) 7;: ' (16) 

ij= (y"t,'+y'r,-'1 /re;:, T,~=T.L'+T,-~. (17) 
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Here ~ ~ ; f  is the ra te  of the spin-lattice relaxation of 
the car r ie r ;  yo is the ca r r i e r  spin polarization corres-  
ponding to the equilibrium population n j  of the subbands 
p; y * =(ST - s$)/(sT +S$) is  the polarization of the ca r -  
r i e r s  a t  the instant of their production. Obviously yo< ji 
< y *  if y*>yO,  o r  y * < J < y O  if y*<yO. The IC spin-tem- 
perature function k,(x) = -2(Sz) coth(n/2) takes into ac-  
count the difference between the contributions of the 
components of the multilevel spectrum of the IC to the 
c a r r i e r  relaxation. At S = $ we have k,(u) = 1, and fo r  
a n  arb i t ra ry  S the function k,(u) describes a continuous 
dependence on u and can be replaced in est imates by 
the constant k, =2S(2(S+1)/3)lD. The r a t e  of the spin 
relaxation of the electrons through the IC is defined in 
analogy with 7 : 

The system (15) and (16) of the equations linear in the 
spin temperatures of the IC and of the electrons is com- 
plete, Yet i t  can be  shown that the polarizations y and 
x = tanh(x/2) a r e  connected by a l inear [accurate to 
within the replacement of k,(x) by ks] equation (xo =wo/ 
2k,T is the IC equilibrium polarization) 

which expresses the condition that the total angular 
momentum of the system is stationary. Since the ex- 
change scattering does not change the total angular 
momentum of the electrons and of the IC, the expres- 
s ion (18) remains valid a t  a l l  exchange-interaction con- 
stants. Substituting y from (18) in (15) we obtain a 
closed equation for  the spin temperature of the IC, In 
the case of sufficiently strong pumping S* +S$ = n / ~ ,  
we have 

when the relaxation of the LC is  determined by the ex- 
change scattering of the nonequilibrium ca r r i e r s ,  we 
obtain for  the polarization x 

th (Arth s-2K(Sz)) =y-a.(z-2,) ; 

We analyze the solutions of (20) for  the case where S 
=$, when the equation takes the s impler  form 

th ( ~ r t h  Z+KZ) =ij-a. (x-so) . (21) 

The left-hand side of (21) is a single-parameter family 
of curves that fill  densely the square -1c x, y < 1 on the 
coordinate plane (Fig. 1) a t  -a< K< a. The solutions 
(21) a r e  the ordinates of the points of intersection of 
these curves with a line drawn through the point (xo,ji) 
with a slope -a, (in this case  the dependences of and 
of a, on x turn out to be inessential if 7, < T~~ and a, < 1). 

Thus, if the exchange scattering controls the IC r e -  
laxation, and the spin relaxation of the ca r r i e r s  is due 
to recombination o r  interaction with phonons, then the 
stationary polarization x of the IC a t  high T coincides 
with the stationary polarization 7 of the car r ie rs .  With 
decreasing T, the polarization x becomes stronger if 
I <  0 o r  weaker if I >  0. The weakening of the polarization 
with increase of K >  0 is physically due to the fact that 
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FIG. 1. Plo ts  of the family of curves  determined by the left- 
hand s ide  of Eq. (21 ) .  The corresponding values of K a r e  
shown in the f igure.  

when the spin splitting of the bands is  increased a la r -  
ger  role is  assumed by the relaxation transitions P = + $ 
-p' = -$, which a r e  accompanied by an IC spin flip M 
-1 - M and decrease by the s ame  token the polarization 
of the system. If K< 0, transitions p = -$-p' = + $ ac-  
companied by enhancement of the IC polarization pre-  
dominate. 

In the case  -1< K<  .o the solution of Eq. (21) is unique; 
in the case K< -1 there appears a region of multiply 
valued solutions xi (i = 1,2 ,3) ,  and if x, goes over con- 
tinuously into the unique solution into K >  -1, then the 
signs of x, and x3 coincide and a r e  opposite to the sign 
of x,, 

The family of solutions xi  = xi(K) obtained with the aid 
of the diagrams of Fig. 1 for  different values of jj in the 
important case a,<< 1 is shown in Fig. 2. It i s  seen that 
a t  ( K  I>>1 and K i  0 i t  is possible to obtain almost  com- 
plete polarization, both along the external field (x, - 1) 
and in a direction opposite to the field (x,- -1). One 
more solution x, (x,- 0 a s  K- -a) is  not stable to smal l  
fluctuations of x and can therefore not be realized in ex- 
periment. An asymptotically exact solution of Eq. (21) 
is obtained in the limit a s  IKI-a: 

z=x, ,  ,=max (-1, (y+a,x,--I)lu,}, 6+>0; 
x=x,=(yf a,s,) / ( K +  I+ a,) ,  6+6->0; 

z=x,,  ,=min { I ,  (~+a ,xo+I ) /u . ) ,  6->0; (22) 
L=(K/IKl) { * [ ~ - u ~ ( + I / ( K + l ) - x o )  I-I}, 

x,, 3 = 5 9 ,  6+>6-, x,. 3 ~ x 3 ,  6+<6-; 

x3,, differs from x , ,  in that x, is  replaced by x,. In 
essence, expressions (22) approximate with sufficient 
accuracy the solutions of Eqs. (21) if I K I  2 4. The mul- 
tiple roots in (22) appear under the condition K<- l  
-ae  and I j - J + a e x o ( - a e / ( ~ + l ) < 1 .  In theother  cases,  
expression (22) describes the only solution that coinci- 
des formally with one of the roots x,, x,, o r  x,, depend- 

ing on the signs of 6, and 6-. The maximum polariza- 
tion of the IC spins is  reached in the l imit  I K I > >  1 at  
K <  0, if j-J+a,(l +xo)< 1 (x--1) o r  L=cr,(l - x,)> -1 
(x- 1). We note that these conditions can be satisfied 
also in a vanishingly smal l  external field H (xo<< I), 
particularly a t  H=O (when xo is  determined by the field 
h of the polarized car r ie rs ) .  An interesting aspect of 
the theory may be the situation in which H is  adiabatic- 
ally slowly turned off after  a maximum polarization of 
the IC is attained by unpolarized interband illumination 
(y * =O). The polarization of the IC preserves here  i ts  
direction and i s  almost  unchanged in magnitude. Simi- 
lar ly,  the polarization IC i s  preserved in the adiabatic 
flow reversa l  H- -H, s o  that the polarized spins ac-  
quire a negative temperature. The las t  case  can be r e -  
garded a s  a method of obtaining a polarization corres-  
ponding to the second root of the stable equations (22). 

5. POLARIZATION OF IC SPINS IN  EXCHANGE 
SCATTERING OF NONEQUlLlBRlUM ELECTRONS 
AND HOLES 

In magnetically doped 11-VI semiconductors, the 
contributions of the electrons and holes to the exchange 
scattering have commensurate exchange constants but 
of opposite ~ i g n . ~ - ~  Since the kinetics of the spins de- 
pends substantially on the sign of I, this case  cal ls  for  a 
special  analysis, Qualitative tracking of the change of 
the effective polarization because of the presence of 
two types of c a r r i e r  is  convenient fo r  simple bands, 
s ince allowance for  the angular momentum 2 of the hole 
complicates the situation. 

We s t a r t  from the kinetic equation (12) with W,,, 
= WiM, + w;,, + w:,,, where WiM, , wiM, a r e  determined 
by Eq, (9) and a r e  proportional to the densities of the 
electrons and holes, respectively. In the equations for 
the populations n; and n: of the spin subbands i t  is 
necessary to take into account, generally speaking, the 
exchange scat tering of the electrons by the holes with 
mutual spin flipsO1l Yet these processes a r e  proportion- 
a l  to the product nenh and by vir tue of (10) a r e  negligibly 
smal l  compared with the exchange scattering by the IC. 
In addition, since the mutual spin flips of the ca r r i e r s  
a r e  accompanied by exchange of an  energy quantum 
equal to the sum of the exchange fields Ge and G ~ ,  their 
probabilities a r e  smal l  if (1) is  satisfied, and a r e  pro- 
portional to exp[-(ce +Gh)/k,~,]. A procedure s imi lar  
to that in the preceding section leads to an  equation that 
generalizes (15) to the case  of exchange scattering of 
two species of car r ie r :  

7:; [ y-th (AS/2kBTr) ] +T;; [z-th (Ah/2kgT.) I +Z,T;; 
5 =  

~ : ~ [ l - y  th(A./2kg.)]+~;i [I-z th(AV2kfl.)]f 7;: ' 
(23) 

We obtain a closed system of equations for  the spin 
polarizations x of the IC, y of the electrons, and z 
=(n! - nl) /nh  of the holes, by supplementing (23) with 
Eq. (16) and with an analogous equation for z with the 
parameters of the hole band hh ,  7,,, and 7,, whose 
meaning is the s ame  a s  for the conduction electrons. 

FIG. 2 .  Dependence of the  polarizat ionx of the IC spin sys tem The requirement that the Of 

on K =  ~ 1 / 2 k ~ T ~  a t  a = 0 and different values of j7 : 1) 3: 0;  2) the spins be stationary i s  derived from the aforemen- 
j i - 0 . 1 ;  3)9=0.75. tioned system of equations for  x,  y ,  and z and takes the 
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form 

This equation, just a s  (18), is valid for  a l l  exchange- 
scattering parameters and establishes the flux balance 
of the spin moments connected with the spin-lattice 
relaxation and with the c a r r i e r  recombination. Since 
x - xo, y =y, and z - Z  do not exceed 2 in absolute value, 
the condition (24) imposes the following limitations on 
the possible values of the polarizations: 

Similar est imates can be obtained for  ( y  =B ( and ( z -Z  1. 
It follows a lso  from (24) that the system cannot be sta- 
tionary if the signs of the deviations of the polarizations 
x = x,, y - 7, and z =Z a r e  equal. 

The general solution for  x, y,  and z depends on a 
la rge  number of parameters and can be obtained by 
numerical methods with a computer. A qualitative 
analysis will be carried out for  a model system that is 
completely symmetrical  in i ts  kinetic properties for the 
electrons and holes, but with opposite signs of the ex- 
change constants: I ,  = -Ih. Putting ne =nh, T,,, =T~,,, 

T . ~  =T&,  and a, =ah  we obtain an  equation for  the IC 
polarization with the aid of (16), (23), and (24). In the 
case  T;;<<T~, S = ( $ ) ,  and when (19) is satisfied, 

where the coefficients a and K were determined in the 
preceding section. The single-parameter family of 
curves in the left-hand side of (26) fills solidly f of the 
a r e a  of the unit square of the coordinate plane between 
the abscissa axis and the line y = x  when I K I  is varied 
from 0 to m. In the case of low temperatures ( I K ~ >  3) 
the only solution of Eq. (26) is approximated by 

. . 

I t  follows f rom (27), in particular, that the most fav- 
orable situation for  the IC polarization is  realized 
when the signs of the polarization of the optically 
produced electrons and holes a r e  identical. Conversely, 
a t  J +Z = O  the polarization of the IC remains a t  equilib- 
rium, in contrast to the case  of exchange scattering of 
ca r r i e r s  of the s ame  sign, when an arbitrari ly large 
polarization of the IC might be reached a t  7 = O  (Fig. 2). 

Another particular case  in which analytical solutions 
can be obtained fo r  x, y ,  and z does not require equi- 
valence of the electron and hole bands, and is realized 
when the IC polarization deviates little from equilibrium: 

I X  - xo I<< 1. The right-hand side of (16) can then be ex- 
panded in powers of x -  xo and, with the f i r s t  two te rms 
retained, substituted in (24). After s imi lar  substitutions 
of the expansions of z ,  a,, and ah  in (24) we obtain a 
linear algebraic equation for  x=xo. In the case a,, ah 
>> 1 (which automatically leads to I x - xo 1 << 1), the 
equation for x - xo coincides formally with (24) if the 
substitutions y =y(x,) and z =z(x,) a r e  made. The con- 
tributions of the electrons and holes in this case a r e  
additive and can differ in magnitude and in sign. 

6. CONCLUSION 

The results  of this paper a r e  applicable not only to 
cubic crystals ,  provided that the exchange scat tering 
remains isotropic. This pertains, for  example, to the 
electrons in hexagonal5 11-VI crystals. We note that the 
holes in uniaxial semiconductors in the r, band do not 
take part  in the exchange scattering with spin flip if H 
is parallel to a crystal  axis ,  and consequently can be 
excluded from consideration. Our results  a r e  a l so  ap- 
plicable to exchange scattering of electrons, if the ex- 
change fields Ge and G~ exceed the intra-exciton elec- 
tron-hole exchange interaction. The contribution to the 
LC relaxation from c a r r i e r s  bound into excitons is addi- 
tive, and the polarization of the IC i s  the s ame  a s  in 
exchange scattering of f r e e  electrons and holes in the 
case  ne =nh. 

If we use for  A" B": Mn crystals  the values N/V, 
=lPo ~ m - ~ ,  NI/V, = 100 cm-', T,,,= 10" s ec ,  and T, - sec ,  then the case  a,,  a,>> 1 i s  realized a t  
helium temperatures and a t  photocarrier densities 
n = 1015 ~ m - ~ ,  s o  that the change of the spin polarization 
fo r  ~ n "  does not exceed several  percent. At a lower 
density N / ~ , s 1 0 ' ~  cm-3 and a t  T=1.5'K (IK(>> 1 a s  be- 
fore) one can expect a lengthening to T, - loe4 sec ,  a s  
a result  of a S 0.1, and a high degree o f  spin polariza- 
tion of ~ n "  is possible. By lowering N in proportion to 
T (so a s  to preserve the condition IK(>> I ) ,  we can 
lengthen T, to the spin-lattice relaxation time TO, of 
isolated centers ,  a t  which i t  suffices to use the minimum 
pump level S:,, =n,,,/~, needed to polarize the ~ n ' +  
spins. Putting ~O,,=10-' s e c  a t  N/V, = 10'' cm-3 we get 
n,,,= 10"-1OU ~ m - ~ .  

For more  accurate estimates of the experimental con- 
ditions fo r  the observation of polarization effects, 
additional measurements of T, in A I 1  B'": Mn a r e  
needed in a wide interval of IC densities, 1018-1020 
~ m - ~ .  

The author thanks S. M. Ryabchenko for helpful dis-  
cussion and a number of suggestions. 

 he corresponding effective-mass tensor depends on the mag- 
nitude and the direct ion of H, and is de te rmined  b y  the  secul-  
a r  m a t r i x  for the band electron in the ideal  ~ r y s t a l , ~  supple- 
mented by the  m a t r i x  element of the opera tor  G. J, which 
lifts the  band degeneracy completely. 
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