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It is shown that metals near the electron topological transition point (phase transition of order 2 1/2) are a 
principally new type of acoustic medium with a nonanalytic dependence of its elasticity characteristics on the 
strain. Elasticity-theory equations are derived for such media and it is shown that when the strain is small the 
nonlinear corrections due to the closeness to the transition point are always large compared with those due to 
the cubic anharmonicity. Exact solutions of the equations are found in the form of simple waves. Nonlinear 
distortions of these waves during propagation are investigated. The role of quantum effects, which may be 
pronounced in the immediate vicinity of the transition point, where the de Broglie wavelength of the "slow" 
Fermi electrons becomes comparable with the characteristic macroscopic scales, is investigated. These effects 
lead to nonlocal equations in elasticity theory. 

PACS numbers: 62.20.Fe, 03.40.D~. 62.65. + k, 43.25.Ba 

INTRODUCTION are  valid near the ETT point in the "classical" region. 
~ - 

In Secs. 2 and 3 we discussed the influence of quantum 
According to the established terminology, an elec- 

effects in the region where the de Broglie wavelength of tron-topological transition (ETT), o r  a phase transition 
the slow electrons becomes large compared with the o r  order 2-2, i s  the name now given to the phase tran- 

sition that takes place in metals following a change in 
characteristic scales. In Sec . 4 we obtain exact solu- 

the topology of the Fermi surface (formation of a cavity, tions for the equations obtained in Sec. 1 for the propa- 
gation of the elastic waves in a metal near the'ETT point. 

the breaking of a bridge, etc.). ETT were first investi- 
gated in Ref. 1, where i t  was noted that at sufficiently 
low temperatures the thermodynamic potentials of the 
metal acquire near the transition point peculiar incre- 
ments such that the second derivative of these quantities 
with respect to the variables connected with the ETT 
(for example, the derivative of the free energy with re- 
spect to pressure) remain finite at the transition point, 
whereas the third derivatives diverge. 

The solutions take the form of simple (Riemann) waves 
We investigate the nonlinear evolution of such waves. 
We find the toppling length and the law of the damping of 
the wave after it topples and the shock wave i s  produced. 
Section 5 i s  devoted to a discussion of the results. For 
simplicity, all the rigorous results were obtained for 
the case T=O. The influence of a finite metal tempera- 
ture on the considered effects i s  discussed in Sec. 5. 

These properties of the metal are  due to the appear- 
ance near the ETT on the Fermi surface of such sheets '- "CLASSICAL" OF 

(formation of new cavities) o r  such sections (breaking THEORY NEAR THE 
of a neck, etc.), to which anomalously small values of 
the electron quasimomentum correspond. Electrons 
with such a value of the Fermi momenta will be called 
hereafter slow, to distinguish them from fast electrons 
whose Fermi momentum i s  of the order of E/u, where a 
i s  the characteristic distance between the atoms. Sin- 
gular increments to the thermodynamic potential cor- 
respond to the contribution made by the slow electrons, 
so that such increments exist only on one side of the 
ETT point, namely in the region where the Fermi sur- 
face has the smaller connectivity. 

The foregoing gives grounds for assuming that when 
elastic waves propagate in a single crystal of a metal 
near the ETT point, nonlinear effects should be observ- 
ed, much stronger than the nonlinearities due to the 
usual cubic anharmonicity. The present paper i s  devot- 
ed to the investigation of such effects. We shall neglect 
terms that have the same (or higher) order of small- 
ness than the cubic anharmonicities, and i t  is this which 
determine the accuracy of the analysis. 

The exposition follows the following sequence. In Sec. 
1 we derived nonlinear elasticity-theory equations that 

Before we proceed to writing down the equations of 
elasticity theory near the ERR point, we must find how 
the main parameter of the transition z =&,- E,, ( E ,  i s  
the critical value of the electron energy corresponding 
to the change of the topology of the Fermi surface and 
cp i s  the Fermi energy) depends on the strain tensor 
u i j  of the crystal. For good metals, the characteristic 
time in which a restructuring of the Fermi surface 
takes place i s  of the order of 10-16-10-15 sec. This i s  
much less than the characteristic time of variation of 
ui ,  on account of the propagation of an elastic wave in 
the metal. It can therefore be assumed in the consider- 
ed problem that the electron subsystem responds with- 
out delay to the change of the strain field, so that when 
the contribution introduced by the free electrons to the 
elastic characteristics of the metal i s  determined, the 
instantaneous distribution of the strains can be regard- 
ed as  a static field. 

In addition, it i s  assumed throughout this section that 
the micro- and macro-scales of the problem do not over- 
lap, i.e., the de Broglie wavelength of the Fermi elec- 
trons i s  small enough even for small particles. In this 
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case the strain field can be regarded as locally homo- 
geneous relative to the electron system. The change of 
the Fermi-electron energy following application of the 
strain field and following a simultaneous change of the 
electron momentum i s  

where v,=a&,/ap, Aij  i s  the tensor of the deformation 
potential (A, ,= A,,, I Xi,! -&,), 6p, i s  the projection of 6p 
on v,,. The zero label here and below denotes the char- 
acteristics of the metal at u,,=O. 

From the condition for the conservation of the electron 
neutrality of the metal when the strain field i s  applied, 
i t  follows that the change of the Fermi surface must not 
lead to a change in the value of the phase volume bound- 
ed by this surface, i.e., 

$ 8p,dup=0. (2 ) 
=Po 

From this, using relation (I), we easily obtain that 

If the surface &,, i s  multiply connected, then the integra- 
tion in (3) does not extend over all its sheets. It i s  im- 
portant, however, that if such a multiply connected 
Fermi surface consists of a cavity containing a large 
number of electronic states, and a small cavity') whose 
volume i s  proportional to " 1 ~ 1 ~ ,  then the integration 
over the small cavity introduces into the fundamental 
equation corrections -lz11/2ui ,, which can be disregard- 
ed in the considered approximation. A similar result is 
easily obtained also in the case when a neck i s  broken. 
We arrive at the following important conclusion: slow 
electrons make no contribution to the Fermi-energy cor- 
rection due to the crystal deformation. 

Since 6 ,  i s  determined from the condition (a&/ap),=O, 
it follows that 6&, = A,?ui upon deformation of the cryst- 
al. We find thus that in a deformed crystal 

- 
where z,=E,, - E,, and A,,= Xi: - A,:. The transition 
point i s  then determined by the condition z=0. 

Assume for simplicity that the ETT corresponds to 
formation in the elementary Brillouin cell of g new 
spherical electron surfaces at &, > E ,  (i.e., at z < 0). 
Then the Fermi momentum pFs of the slow electrons i s  
connected with z by the obvious relation 

where m* i s  the effective mass of the electron in a 
small zone. The singular free-energy increment due 
to the slow electrons i s  equal to' 

C~ 

2gV (2rn') " i z lSM(-z), (6) 6F= f f (8-eF)6v(8)dVde= - - 
15x'tr3 

" 4 

where ~ v ( E )  i s  the change of the state density on account 
of the ETT, B(z) i s  the Heaviside unit function [B(z) = 0 
at 6 0  and Q(z)=l at z >0] and its presence reflects the 
fact that 6 y +  0 on only one side of the transition point. 

The variational derivative 63/6u, ,, which reduces in 

this case to ordinary differentiation with account taken 
of (4), determines the nonlinear increment to the stress 
tensor o f j ,  after which we obtain the elasticity-theory 
equations in standard fashion. In the general case, at 
an arbitrary form of the ETT, these equations take the 
form 

p a = ~ ~ / a t ~ = a ~ ~ ~ a ~ ~ ,  ('7 ) 

here Aij,, is  elastic-moduli tensor (not to be confused 
with the tensor hi, of the strain potential). The constant 
B i s  of the order of IBI -a-3&,&; the exact value of B, 
its sign, as  well as the sign of the argument of the 0 
function are  determined by the specific form of the ETT. 
Thus, in the example considered above, 

Let us note some important properties of Eqs. (7)- (10). 
First, we found that the value of the nonlinear increment 
to the s t ress  tensor at a given point i s  expressed in 
terms of the value of the strain tensor at the same point. 
This locality of the equations of motion i s  a direct con- 
sequence of the assumption that the slow electrons are  
classical and, as  will be shown below, it  takes place 
only at not too small values of 121. In addition, certain 
important conclusions can be drawn from the very form 
of the function 4j(uij)  (10). A distinction must be made 
here between two cases: 

A. The metal i s  above the transition point, i.e., the 
transition has already occurred and the values of uij are 
such that the condition IAi,ui,l<<zo i s  satisfied. It i s  pos- 
sible then to expand in (10) in terms of the small parame- 
t e r  IAijuijl/lzol. Confining ourselves to terms of second 
order of smallness and including the terms linear in 
a:,, which leads to a correction of the order of '' 
( ~ z , l / & ~ ) ~ ~ u ~ ~ ,  we find that in the case considered the 
tensor a:, turns out to be quadratic in the strain, i.e., 
i t  coincides in form with the nonlinear increments due 
to the cubic anharmonicity. It i s  important, however, 
that the contribution made to a{, by the cubic anharmoni- 
city turns out to be smaller by a factor (&,/lz,l~" than 
the contribution due to the proximity to the ETT point, 
i.e., it i s  precisely the latter which determines all the 
nonlinear phenomena. Formally, our case can be treat- 
ed as a considerable increase [by (&F/lzol~h times] of 
the anharmonic constants near the point of the ETT. 

B. Greatest interest, however, attaches to the case 
when lAijuijl i s  comparable with o r  large compared to 
lz,l. In this case, as seen from (lo), the value of o;, 
due to the proximity to the transition point turns out to 
be large compared with the corrections due to the cubic 
anharmonicity not because of the numerical factor, but 
because it contains the strain raised to a smaller power. 
It i s  precisely this case which will be investigated by us 
hereafter. We emphasize the non-analytic dependence 
of crij  on the strain (the presence of the 0 function and 
of the fractional power). This non-analiticity i s  not 
washed out by the dispersion, owing to the already noted 
"instantaneous"character of the ETT, and has a real 
physical meaning. 
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I t  follows from (10) that the phenomena connected with 
the non-analiticity of the function oi j (u i j )  should mani- 
fest themselves most strongly a t  z=0, i.e., when the 
propagating elastic wave takes the metal through the 
transition point. It turns out, however, that in the 
vicinity of the point z = 0  expression (10) itself i s  no long- 
e r  valid. An important role i s  assumed in this region 
by quantum effects, allowance for which leads to a non- 
local connection between the tensor ail and the strain 
field. We proceed now to investigate these effects. 

2. QUANTUM EFFECTS. GENERAL CASE 

In the derivation of (7)-(10) we made use in effect of 
the quasiclassical character of the motion of the Fermi 
electrons, since p ,  in (5) was regarded simply a s  a 
number, and the electron system a s  a whole was regard- 
ed a s  located in a uniformly deformed crystal. In other 
words, i t  was assumed that the de Broglie wavelength 
of the slow electrons is small compared with the charac- 
teristic scale of variation of the tensor uij, viz., pFS& 
>>E. But pps-lzPh, and a t  sufficiently small lzl the mo- 
tion of the slow electrons i s  no longer quasiclassical. 
Therefore Eqs. (7)-(10) cannot be used in the region 
PFS b S E ,  where the slow electrons a re  in essence quan- 
tum particles. The characteristic dimension of the 
"quantum" regions with respect to each of the spatial co- 
ordinates can be easily estimated from the condition 

Here P = l ,  2,3, no summation i s  carried out over P, and 
rnt are  the principal values of the effective-mass tensor 
in the vicinity of the transition point. In a number of 
cases (breaking of a neck) certain o r  even all  (forma- 
tion of a hole cavity) values of rn; can be negative. The 
origin in Eq. (11) coincides with the ETT point, so that 
z (O)= 0. 

In typical cases, when z ( x )  takes the form of a suffi- 
ciently deep potential well, we obtain from (11) 

where L8 is the width of the well along a given coordi- 
nate axis. 

We derive now elasticity-theory equations that a re  val- 
id in the quantum region. We discuss first  the influence 
of the quantum effects on the value of 6&,. Just a s  be- 
fore, BEF i s  determined from the condition that the elec- 
troneutrality of the metal be conserved when the metal 
is strained; this condition now takes the quantum form 

<orp 10)=const, (14) 

where 6 i s  the particle-number density operator and 10) 
i s  the multiparticle wave function that describes the 
ground state of all the electrons of the metal and is a 
complicated functional of the strain field. It is clear 
that this approach leads us to a dead end and makes the 
problem practically unsolvable. It was shown in the pre- 
ceding section, however, that slow Fermi electron make 

no contribution to the change of E, on account of the de- 
formation of the crystal even if their motion i s  quasi- 
classical. This i s  all the more true in the quantum 
case, since the statistical weight of the slow electrons 
is smaller the smaller 1 zl , i.e., the more "quantum" 
the problem. The faster electrons, on the other hand, 
a r e  quasiclassical, so that the quantum condition (14) 
can be replaced by the classical (2), and 6&, i s  then de- 
termined a s  before by condition (3). 

We find now the free-energy increment due to the con- 
tribution made by the slow electrons. It i s  clear from 
the foregoing that to take this contribution into account 
i t  suffices to solve the single-particle quantum-mechan- 
ical problem of the motion of a slow electron in an ef- 
fective potential produced by the strain field. It i s  im- 
portant that in the approximation considered this effec- 
tive potential i s  independent of the quantum state of the 
slow electrons. 

In the quasiclassical case, the energy (i.e., the Ham- 
iltonian) of the slow electron can be represented in the 
form 

e  (p) - E ~ = = E ~ - E ~ +  (p-p..) ?/2rni.--z+ (Ap) ,'/2m,', 

where z b )  and (hp);/2m: play respectively the roles of 
the potential and kinetic energy. Going to the quantum 
limit, we should replace the Hamiltonian by the corre- 
sponding operator, and the classical equation of motion 
of the slow electron by the ~chrodinger  equation 

Next, if a change in the topology of the electron Fermi 
surface takes place at the ETT, then the singular incre- 
ment to the free energy of the metal, just a s  in Eq. (6), 
is determined from 

where E, a re  the eigenvalues of the effective Hamiltonian 
introduced above and a re  certain functionals of the 
strain field: E,=E,(x, {uij)). The summation in (15) is 
over all the states that lie below the Fermi level, i.e., 
over c, < 0, since the energy in the effective Hamiltonian 
is reckoned from &,. On the other hand, if the transi- 
tion point corresponds to a change in the topology of the 
hole Fermi surface, then i t  i s  necessary to place a 
minus sign in front of the right-hand side of (15), and 
carry out the summation over states with E, > 0. For 
the sake of argument we shall consider below the ETT 
connected with the change of the electron Fermi surface. 

Calculating the variational derivative of the free ener- 
gy with respect to u i j ,  we obtain the nonlinear incre- 
ment to the s t ress  tensor: 

But 6&,= jll,*6z+&~, therefore a&,/az= +,*+,=I +,I2. We 
thus obtain 

The equations for the elastic waves have formally, a s  
before, the form (7)-(9), but in place of the simple ex- 
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pre::,kiaa ;TO) 8 ~ 3 .  r ;, we obtain (16), making the equa- 
ticrlca of mottors n:~docal, since I z)Az in (16) i s  a compli- 
ts:5kd fwctiand s" ui j .  

9. QU4NWM EF =ECTS. PLANAR STRAINS 

En the ge~efrd case of an arbitrary three-dimensional 
stxdn held, hsrtl;c?r simplification of the expression for 
n;, is; i m ~ s s i b l e  2nd relation (16) i s  the end result. In 
the imprta:~t pisrticular case of planar strains and rela- 
ti:-elg deep per*etn~tion into the region beyond the ETT 
paint, when the tmsor  u, depends on a single spatial co- 
oaa9ipske 5, and th! effective potential z(x) forms a well 
~ontakaing a 1a.rgt-J number of levels with E ,  < 0 (Fig. 1 ), 
Ithe grotaka beconles much simpler, so that an explicit 
eXp1Ft4SE1Bn hli~n be obtained for q\ as  a function of the 
stran BsLd, ale  transition from the quantum expres- 
$Ion to chusical furmula (10) can be tracked. 

Let us consider #his case in greater detail. The quan- 
tom raic,nrs a= accated near the turning points of the 
Fermi electron, a ~ d  the characteristic dimension of 
tbwe regio~e is d~termined by relations (12) and (13), 
woere ].=a - :". Tlte distance between two neighboring 
deermn enercy f ~ r e l s  i s  A&, --E2/2m: L2, SO that the 
r.oAnk rmm5~r c! !w.els that land in the quantum region N 
Z o -  *, -.. .- 

7% rB:e - p' i ,P, (he motion of the electron i s  free and 
: kc. s.":na! t s  wave function i s  of the form 

! > - b -  7 ,J + T ~ / ~ ) $ ~ * ( X ) ,  

r:,~'r , J  +* fife t.r; :? r?:r:.9 ber and not an operator. Substituting 
thl j mi.:, .: : I ,  ro (16) and going over from summation 
rtr ~.tl t~rratt l ; i .  1.: liew of the large congestion of the 
I~=i-eib,  .;? a - !3*  1 

X4&a o : ~  %c: sl:+til renormalize C and include in it  all the 
~ r m s t ; s * r t  f2t-tctp.' diat arise in the course of the calcula- 
t r i x L ,  t i  iP tkre.f.>~-e more convenient for us not to speci- 
f :  , t f  t-d:.~e- .ft nrwent. The correct value of the multi- 
pIzcati:"e er?r,ct3?d in the expression for o:, i s  easy to 
Q&.tr,tz;.iii;.c? hy c#,\.-))aring the quantum expression with 
Eq. {ID) hu the region of the classical motion of the 
Pea%: a?wtm::, 

&crt tbr~t ~ x c  F o special reasons why the state den- 
sity vkr;, ) P ~ C E U ~ ?  -7:mish at &,=O, and we are  interested 
:n mail values c;P E,, we can put in (18) v(&,)= v(0) and 
WC ~ ( 0 :  outsi(?r- Qie integral sign and include i t  in C. 

Wt! K*a&i%er fo:. simplicity the situation m; =mz=mT 
2 3, fn fkia case 

di$~, pdittXCj . - ': 1-2 dpI=2nmL'deL, 

&~lcri * e 1 e 2 ~ -  not depend on &,, the integral with 
rcs~acr  i ..J as-, $-in easily be evaluated. Recognizing 
'??at 'd s L .  * - f  "iZ? obtain ultimately 

The convergence of the integral on the lower limit i s  en- 
sured by the rapid damping of the wave functions in the 
region of the classically possible values of the energy 
(&,<z at m,< 0-formation of a cavity;&,>z at m*,<O- 
breaking of a neck). 

It i s  easily seen that in the region of the classical mo- 
tion of the Fermi electron Eq. (19) coincides with Eq. 
(10). Indeed, using the quasiclassical expression for 
the wave function, we obtain from (19) 

We now investigate in greater detail the influence of the 
quantum effects on the elastic properties of the metal 
near the turning points of the Fermi electrons. We 
choose for the sake of argument mf > 0 and consider the 
vicinity of the point a (see Fig. I ) ,  so that z(x)  can be 
represented in the form 

z ( x )  =z.Ix, zar= (dzldx),<O, (21) 

and the Schriidinger equation for the s b w  electrons i s  
written as  

A solution of (22) satisfying the condition z)(x)'O as x - - - i s  expressed in terms of the Airy function @ (Ref. 
2). Assuming the normalization constant to be equal to 
unity, we obtain 

where Ax, i s  given by (12) in which the order-of-magni- 
tude symbol should be replaced by an equal sign. 

Substituting (23) in (19), we arrive at the relation 
*/AX0 

oi,'=CA,lz.'A~la j O a ( - i )  ( i - z / A z . ) G .  
-- 

(24 ) 

From the form of (24) follows directly an important re- 
sult: in the case of planar strains the nonlinear correc- 
tions to the stress tensor can be represented, even when 
quantum effects are  taken into account, by the tensor 
components Aij, which do not depend on the proximity 
of the state of the metal to the ETT point, all multiplied 
by the same scalar factor, i.e., all the tensor compo- 

FIG. 1 .  Potential of slow electrons (schematic): a and b- 
turning points for an electron with E = E,. ?he regions of the 
influence of the quantum effects are shown shaded. 1 and 2- 
wave functions for two closely lying levels. 
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FIG. 2. Influence of quantum effects on the dependence of the 
components of the nonlinear increment to the strain tensor on 
the strain at a certain fixed nonnzero value of 8 z/8x; z = zo 
+Ai1 uij. The transition regions correspond to the half-space 
z <  0; the dashed line shows the "classical " curve mi, 
" ~ x ~ ~ e ( - z )  1z13/2. 

nents u;, vary in the same manner on moving away from 
the transition point. 

Using next the asymptotic representations of the Airy 
function at large positive and large negative values of 
i t s  argument, and using the correspondence principle 
in the form (20), we obtain after simple transformations 

where q=x/&,. Alternately, expressing x in terms of 
z and z: in accordance with (21), and taking (4) and (12) 
into account, we obtain 

In terms of our  variables, the ETT point corresponds 
to q=0. As seen from (25) and (26), Ax, i s  actually that 
characteristic scale which determines the width of the 
quantum region. Allowance for the quantum effects, 
leads first, to a nonzero nonlinear increment to  the 
s t ress  tensor below the transition point (as 17 - - a) ,  
this being due to the finite depth of penetration of the 
Fermi electrons into the classically accessible region 
0 0 .  Second, on advancing into the region of classical 
motion (q-a),  the quantum oscillations of the quantity 
uij not only increase in frequency but decrease in am- 
plitude. 

The nonlocality of the interaction in the quantum region 
causes olj to depend not only on the strain but also on 
higher derivatives of the displacement vector [in the 
case considered, oil = u; j(ui ,, au,,/ax)]. The dependence 
of uij on the strain at a fixed value of auij/ax, with al- 
lowance for quantum effects, i s  shown in Fig. 2. 

4. SIMPLE WAVES 

In this section we investigate the propagation of elas- 
tic waves in a metal, neglecting the influence of the 
above-discussed quantum effects and using Eqs. (7)- 
(10). This approach remains correct so long a s  the 
characteristic values of lzl (for the considered wave) 
remain large compared with hz,, a s  will in fact be as- 
sumed hereafter. 

In addition, we confine ourselves to a study of cases 
wherein the wave produces in the crystal a planar 

single-component strain field, i.e., the displacement vec- 
to r  depends not only on a single spatial coordinate x ,  
but i s  directed along one of the coordinate ,axes. This 
situation arises,  for example, when elastic waves of a 
definite polarization propagate along a crystal symme- 
t ry  axis. 

It i s  convenient to represent the value of z in this case 
in the form 

where (au/ax), has the meaning of the critical strain, 
and in our formulation of the problem it i s  defined uni- 
quely by (28), while A denotes the only independent com- 
ponent of the tensor Ai ,, remaining now after convolu- 
tion of Aij with u,,. 

In our notation, Eqs. (7)- (10) take the form 

s(f)=s~{l+ae(+t) 151'"), (30) 

where so=const i s  the "linear" speed of sound for the 
given type of elastic waves; 

Equation (29) i s  the standard equation of elastic waves 
in a medium in which the speed of sound depends on the 
strain.= In a number of cases such an equation can be 
integrated in general form without specifying the s(5) 
dependence. In particular, if we replace u by a new in- 
dependent variable v =  au/at, connected with 5 by the ob- 
vious relation 

and seek for Eq. (29) singular solutions that satisfy the 
additional condition 

a(c, v ) I ~ ( z ,  t) =o, 

then (29) i s  easily reduced to the form 

whose general solution i s  

S=F(E), b=x*s(S)t, 

o r  to another equivalent form 

x=f (5)*s(~)t, (32 

where F and f a re  arbitrary functions. Solutions of type 
(31) and (32) a re  called in fluid mechanics simple o r  Rie- 
mann waves. 

We investigate now the nonlinear distortions produced 
in a simple propagating wave by a concrete s(5) depen- 
dence in the form (30). For the sake of argument, we 
confine ourselves to a C +  wave propagating along the 
positive x axis, for which 5 =x-  s(g) t ,  and choose posi- 
tive values of a and of the argument of the 0 function. 
It follows from (30) and (31) that in the region 5 <  0 a 
simple wave goes over into an ordinary traveling wave, 
so that the sections of the wave lying in the region 1; < 0 
propagate without distortion a t  a velocity so up to the on- 
set  of nonlinear damping due to the toppling of the wave 
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in the region g>0. The evolution of the wave after i t s  
toppling will be investigated below. We consider now 
the region 5>0. We choose for the sake of argument 
F(5) in the form (see Fig. 3) 

Solving Eq. (33) with respect to 5, taking (30) and (31) 
into account, we obtain 

c = A { [ L -  (2-sot)]  /[L-asotA"] 

L- (x-sot) 
at  LLZ-u { L + u I ~ ~ ~ - _ ~ ~ ~ , , ,  )PO; 

The length and time x* and t* of the toppling a r e  obtain- 
ed from the conditions 

( a z / a c ) ,  ,.=o, ( a 2 ~ / a c y ) , ,  ,.=o, 

which must be satisfied simultaneously. For expression 
(34) these conditions lead to the formulas 

It i s  easily seen that in the considered example the wave 
cres t  becomes aligned with the forward base of the 
through at x=x* and t=t* .  

We shall show that Eqs. (35), which determine the 
toppling length and time, a re  universal and a re  not con- 
nected with the specific choice of F(5), provided the 
propagating wave i s  such that at the initial instant i t s  
shape i s  completely described by specifying a single 
scale with dimension of length. To this end we write 
down the solution (31) in the form 

or ,  equivalently 

x=s, t ( l+at")+Lg( ( t / A ) " ) ,  (36 

where L i s  the characteristic "length" of the wave, G i s  
an arbitrary function, g i s  a function inverse to G, and 
both satisfy the condition G(1) -g(l) - 1. Applying to (36) 
the toppling criterion ( a ~ / a C ) , ~  L*= 0 and recognizing that 
g'((f;*/~~'2)-1, we obtain 

Substituting this value of t* in (36) and discarding small 
corrections, we find that 

FIG. 3.  Profile of the wave (33) at various instants of time 
(a>O): 1) t = 0 ;  2) 0 < t < t * ;  3) t = t * .  An opposite changeof 
the shape of the wave, namely stretching of the leading edge 
and shortening of the trailing one, takes place at CY < 0. 

We note that the toppling length due to the cubic anhar- 
monicity is x$ - L/A >> L / A ' ~ ,  i.e., in accordance with 
the statements made in the introduction, the nonlinear- 
ities due to the proximity to the ETT point manifest 
themselves much earlier than the "classical" forms of 
nonlinearity. 

We consider now a simple wave localized in a finite 
region of space, i.e., 

o r ,  equivalently, the function P in (31) satisfies the con- 
ditions 

We shall show that such a wave has an integral of mo- 
tion namely, the displacement vector behind its trailing 
edge, i.e., u(x, t )  a s  x-- for a C+ wave and as  x-.o 
f o r a C - w a v e .  Wehave 

where the upper sign pertains to the C+ wave and the 
lower to the C- wave [we have evaluated the first  inte- 
gral  by parts and use expression (32)]. 

But ~ ( 5 )  i s  a single-valued function, and 

5 (-w) =c (m) =- (auiax) ., 

therefore I,=O. We fo r  I,, for  a wave occupying a finite 
region of space the functionf (g) i s  multiply valued (see 
Fig. 3), therefore I, must be broken up into a sum of in- 
tegrals from ~,=rnin{l;([)} to gM=max(t(5)} and into in- 
tegrals that a r e  evaluated in the opposite direction. One 
branch of f(c) i s  substituted in the integrals from S, to 
gM, and the other in the integrals from gM to 5,. The 
net result i s  a constant I, equal numerically to the area  
bounded by the f (S) curve and by the 5 axis, and general- 
ly speaking different from zero. It i s  important, how- 
ever, that I, does not depend on t ,  i.e., i t  i s  an integral 
of the motion. 

At x > x *  the continuous solution (31), (32) ceases to 
satisfy the uniqueness condition, therefore at x > x* the 
solution becomes discontinuous, i.e., a shock wave i s  
produced. The location of the break i s  easily determin- 
ed by stipulating that the displacement vector behind the 
wave front remain an integral of the motion also after 
the toppling. This requirement leads to the well-known 
law of equal areas: the break i s  located in such a way 
that the total area  under the g(x) curve remains unchang- 
ed. We note that from the equal-area law it follows that 
after the toppling the profile of the wave begins to be 
distorted also at C < 0 (see Fig. 4). The physical reason 
for this distortion i s  that the formation of the discontin- 
uity leads to a strong damping of the wave, which affects 
also the linear part  of its profile. 

The law governing the damping of the wave after the 
formation of the break depends on the shape of the wave. 
Thus, for example, for  a wave specified by expressions 
(33) and (34) and having no linear part in the region 5 
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FIG. 4. Damping of the wave after the toppling: 1-initial 
shape of the wave at  t = 0; 2-non-single-valued solution at 
t >  t*; the thick line shows the true discontinuous solution. 
?he areas of the shaded sections a re  equal. 

<0, the coordinate x* of the break point i s  displaced in 
accordance with the law 

and its  amplitude decreases like 

" ) 'I3, tat.. U>O.  i. ($1  =f (5) = A  (L+as fA" 

For a wave in the form of a right triangle a t  t=O, with 
one side lying on the 5=0 axis and equal to L, and the 
other the leading front with t,= [lEzL=A, we have 

etc. 

5. DISCUSSION OF RESULTS 

We discuss first  those assumptions on which the re- 
sults of the preceding sections a re  implicitly o r  explic- 
itly based. First ,  we have neglected all the linear dis- 
sipative effects. This neglect i s  inessential in the elas- 
ticity-theory equations, since the dissipative terms can 
be easily separated in these equations in standard fash- 
ion.4 The resultant equations, however, no longer have 
solutions of the type (31), (32), since none of the results 
concerning this aspect of the problem can be trivially 
generalized to the case of a dissipative medium. This 
means physically that the conclusions concerning the 
evolution of simple waves remain valid if the toppling 
length turns out to be small compared with the charac- 
teristic dissipative length: rx*Gl ,  where I' i s  the log- 
arithmic damping decrement. It might seem that this 
condition contradicts the other initial assumption, that 
the temperature of the metal be low, inasmuch a s  sound 
i s  strongly damped in metals at low  temperature^.^ 
Actually there a re  no contradictions, but a condition i s  
imposed on the characteristic value of \zl that is reach- 
ed in the elastic wave3: T << Izl<< &=, where T is deter- 
mined from the condition (T)x* << 1. 

In addition, in the derivation of (31) and (32) we used 
essentially the fact that the sound velocity can be repre- 
sented a s  a function of a single dynamic variable, name- 
ly the strain: s = ~ ( [ ) .  From the results of Sec. 3 it fol- 
lows, however, that in the region Izl"Az, the s(5) de- 
pendence goes over into a dependence on two dynamic 
variables, ~ ( 5 ) -  s([, a[/ax). Therefore (31) and (32) a re  
likewise inapplicable in the region where quantum effects 
have an influence. The conditions for the applicability of 
(31) and (32) take thus ultimately the form 

Two cases must be distinguished here. If the wave i s  
such that z(x) does not vanish anywhere, so that the con- 
dition (38) i s  satisfied at all points of the wave, then the 
results of the preceding section a re  perfectly rigorous. 
If, however, (38) i s  satisfied only for a characteristic 
values of z and there exist in the wave regions for which 
lz 1s m a x ( ~ ,  u,), then the structure of the wave in these 
regions becomes smeared out either by temperature 
(T >> M , )  o r  by quantum (Az, >> T) effects. This smear- 
ing, however, does not influence the evolution of the 
basic part of the wave, so that the results of Sec. 4 turn 
out to be applicable in this case, too. 

We present now some estimates. Since the proximity 
to the ETT point does not change the order of magnitude 
of r in typical cases,6 i t  follows that a t  T << OD, where 
0, is  the Debye temperature, the damping decrement of 
the long-wave sound in pure metals i s  determined, for 
scattering of electrons by phonons, by the expression5 

where w,,, i s  the characteristic frequency of the sound 
o r  of the Debye phonon. In this case the condition r x *  
<< 1 with allowance for (37) leads to the limitation 

In particular, a t  T =0.28,, L-lO-' cm, a=10-' cm, and 
A - lom3, which corresponds to a pressure jump - 100 
atm in the elastic-wave front, we get from (35) and (39) 
x*-0.3 cm and rx*-0.1. We note that in order to ob- 
tain under these conditions the same toppling length a s  
a result of cubic anharrnonicity, the strains required 
would be A, - 3 .  lom2, i.e., the jumps of the pressure in 
the wave front would have to be of the order of several 
thousand atmospheres. 

Next, since 8D-10-3&, for good metals, a t A  -lo-, we 
obtain z-A&,- 8,. Finally, the width of the quantum re- 
gion i s  

i.e., z >> T >>Az, in the case considered. 

In conclusion i t  must be emphasized that metals near 
the ETT points are,  from the viewpoint of nonlinear 
acoustics, a principally new medium with a very peculi- 
a r  dependence of i t s  elastic properties on the strain. In 
the present paper we investigated only the simplest non- 
linear phenomena that take place in such a medium, but 
these obviously a re  not the only problems. In particular, 
interesting effects can be expected in nonlinear interac- 
tion of waves, in propagation of low-amplitude waves 
when quantum effects become substantial, etc. 

l ) ~ s u a l l y  there exists not one such cavity but several identical 
cavities located at  symmetrical points of the Brillouin cell. 

''on going to infinitesimal strains, we verify that this correc- 
tion corresponds to a renormalization of the dispersion law 
of the long-wave phonons (i.e., in fact to a change in the speed 
of sound) because of their interaction with slow electrons. 
The change of the dispersion law of a phonon of arbitrary 
wavelength. due to such an interaction, can be easily obtained 
in second-order perturbation theory from Eq. (19) below. 
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We, however, solve a more difficult problem, namely we 
a r e  interested in allowance for nonlinear phenomena due to 
the propagation of elastic waves of finite ra ther  than infin- 
itesimal amplitude. 

 he restriction It 1 << &I, follows from the very formulation 
of the problem, since the ratio [ z I /eF is that dimensionless 
parameter which determines the proximity to the ETT point. 
On the other hand, it follows from (4) that I ui j  I - I z !/cF, SO 

that smallness of this parameter guarantees also smallness 
of the crystal  strain,  i.e., applicability of elasticity theory. 
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