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The three-velocity magnetohydrodynamic equations for a two-condensate solution are established by specified 
thermodynamic functions and condensate densities, and are supplemented by Maxwell's equations. In 
particular, these equations yield the drag current and the magnetic vortex lattice of the neutral component. 
The magnetic-field flux through a neutral vortex is greater than the usual flux, the excess being due to the 
drag. The velocities of sound waves in the system are calculated. 

PACS numbers: 67.90. + z, 47.65. + a 

Systems in which there simultaneously exist conden- 
sates of two types, and therefore superfluid motions of 
two types, a re  of interest for both their thermodynamic 
properties. A good example of such a system i s  a solu- 
tion of He3 atoms in liquid He4 at a temperature below 
the point a t  which the Fermi component undergoes a 
phase transition to the superfluid state. The properties 
of such a solution a r e  described by the three-velocity 
hydrodynamic equations for the case of two superfluid 
velocities and one normal one. These equations have 
been derived by Andreev and Bashkin' with allowance 
for dragging of the He3 component by the He4 atoms. 
Starting from Khalatnikov's analysis of the conserva- 
tion laws,' these authors showed that each of the super- 
fluid motions is accompanied by transport of both the 
other components of the solution. G a l a s i e ~ i c z , ~  and 
Volovik, Mineev, and Khalatnikov4 have investigated 
certain properties of such a solution. 

The "prephase" of neutron stars5 i s  another example 
of a system having two superfluid condensates that has 
recently attracted the interest of investigators. In this 
phase of the star,  the proton density i s  about one per- 
cent of the neutron density (N,= lo3' ~ m - ~ ) ,  the protons' 
charge being neutralized by electrons (N,=N,).  Cooper 
pairs of neutrons and protons a re  formed a s  a result 
of the strong nuclear in te ra~ t ion . "~  We note that there 
a r e  no neutron-proton pairs because of the large dif- 
ference between their chemical potentials. The inter- 
action of the protons with the neutrons, however, con- 
verts them into quasiparticles with an effective mass 
m *, so the proton and neutron condensates a re  actually 
coupled. The authors, generalizing Gor'kov's tech- 
niques for a two-component superconducting Fermi 
liquid, have previously shown that there i s  a current 
due to dragging of the protons by the 

Let us look a t  one more example of such a system: a 
solution of protons and neutrons in a heavy-metal ma- 
trix.'' It is  known that such a solution manifests the 
properties of a quantum crystal, owing to the large 
mass difference between the impurity particles and the 
matrix atoms" Under quite definite conditions, the 
neutron-proton liquid can undergo a phase transition to 
a superconducting state." 

In this paper we propose a set  of magnetohydrodynam- 
ic equations for the two-condensate superconductive 
systems mentioned above. The present work differs 

from that of Andreev and  ashk kin,' who derived equa- 
tions for three-velocity hydrodynamics, in that here we 
allow the impurity component to be charged and include 
a third, normal, component that ensures the local neu- 
trality of the system. Study of the resuIting equations 
will make it possible, in particular, to obtain the form 
of the drag current due to the coupling of the conden- 
sates and to investigate the properties of the neutron 
and proton vortex filaments. These equations will also 
make it possible to determine the propagation velocity 
of excitations in a superconductive solution. 

1. It follows from the analysis of the conservation 
laws carried through in Refs. 1 and 2 that the complete 
se t  of three-velocity magnetohydrodynamic equations 
in the absence of dissipation has the form 

i , ,tv (p,-'/~v,,'tv,v,)=O. 
n R nR 

rotv, = -i6 (r-ra) - e H ,  rot v, = -i6(r-ri). 
m mc m 

Here PI, P,, and p, are  the mass densities of the solute, 
the solvent, and the electrons, v,, v,, and v, a re  the 
velocities of the two superfluid motions and the normal 
motion; me and v, a re  the electron mass and velocity 
(ve=vn under certain quite definite conditions-see be- 
low); S and j a re  the entropy and momentum per unit 
volume; and pl, p,, PI, and p, are  the chemical poten- 
tials and relative momenta of the superfluid solvent and 
the solution. The fact that m,* -me << m (m: i s  the ef- 
fective electron mass) is  taken into account in Eqs. (1). 

The momentum flux tensor has the form 

where P= - E+~1P1+F2p,+ pepe+TS i s  the pressure. The 
electric and magnetic fields a re  determined by Max- 
well's equations, which supplement Eqs. (1): 

div H=O, div E=4npc, 
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where p, and j, are  the electric charge and current den- 
sities. 

By employing the method proposed in Ref. 1, making 
use of the fundamental conservation laws, and taking 
account of the magnetic field and the laws of thermo- 
dynamics, one can easily show that the quantities pg), 

(s) plB, and pg), which characterize the superconducting 
condensates, remain in force: 

w-m2 m(m'-m) 
p t ~  - - N., pix -p2? = m ' ma N., 

(3 ) 
m (m'--m) 

p$)=p2- (m'-m)N, - N..  
m ' 

Here Ns and Nn are the densities of the superfluid and 
normal particles of the impurity component of the sys- 
tem, and m and m* are the "bare" and effective mass- 
es, respectively, of an impurity particle. 

First let us assume that v,=vn=O. Then, according to 
the BCS theory, the mass flux density of the first com- 
ponent will be 

while the total mass flux density of the system will be 

Hence the mass flux density of the principal component 
of the system will be 

If we introduce the notation 
h 

v,=- V q , - L A ,  
2m mc 

we can write 
(81 m(m'-m) 

j2=p12 VZ, p , ~  - --- 
m ' .% 

Next, let us assume that v,=vn=O. Then, in the linear 
approximation in v,, the energy of a quasiparticle of 
the impurity component takes the form 

1 e 
.5=- ( p - y ~ ' )  . 

2m' 

A'=A- C(rn--m)v,. 
e 

Then the flux is determined from the London formula 

by substituting m for e: 

The operator for the total mass flux has the form 

On converting this mass flux operator to the form 

and making use of the expression 

for the current operator, we obtain the following ex- 
pression for the total mass flux: 

where N,=N - Ns. Then from Eqs. (7) and (6) we can ob- 
tain 

j,=p::' vl - ~5 p!:'~, 
me 

(*)  - m (ma-m) pzl -p2-(m.-m)Nn- --- ."i,. 
me (8 ) 

Finally, let us assume that v,=v,=A=O. Then the 
problem reduces to the case treated in Ref. 1. In this 
case the mass flux has the form 

jl= (P~-P,?)-P,Y))v, =PY')v,, 
I (*) 

Iz- (PI-pzz -p21 )v"=p:":.. 

According to formulas (4)-(9) we can write 

2. Let us  consider the rotation of the solution at a 
constant angular velocity a. In the approximation in 
which the system may be regarded as locally neutral, 
the electric field vanishes in the solution and the mag- 
netic field is determined by the equation 

4n 
rot H= - j,, (11) 

e 

in which 

Taking the curl of both sides of Eq. (11) and using the 
last two of Eqs. (I), we obtain 

We have actually derived the London equations for a 
superfluid solution. It is evident that, because of the 
electric drag current, there appears not only the usual 
vortex lattice system of the charged component of the 
solution, but also a magnetic vortex lattice that coin- 
cides with the quantum lattice of the neutral component. 
We note that the conditions for the appearance of a lat- 
tice of the neutral component (when the solution i s  only 
rotated!) a re  not so stringent as  those for the appear- 
ance of a lattice of the charged component of the solu- 
tion. h i s  means that under certain quite definite con- 
ditions there can exist only a lattice of the neutral com- 
ponent, which, however, will have a magnetic struc- 
ture. The presence of such a structure facilitates the 
problem of detecting the lattice experimentally. We also 
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note that the magnetic field flux through the neutral vor- gate only when wG wp(p,/pl)1'2. Thus, neither of these 
tex will be larger by a factor of (m * - m)/m than the waves can propagate a t  frequencies w such that 
usual flux, which amounts to %,=2 x10-7G. cm2. w ~ ( P ~ / P ~ ) ~ / ~ c w  wp. 

In the absence of vortex filaments, the rotation of the 
superfluid charged component gives r ise  to a static 
magnetic field of strength 2m*~CJ/lel.'~ 

3. Let us consider what sor t  of low-amplitude waves 
can propagate in a superfluid solution. The linearized 
magnetohydrodynamic equations with the magnetic field 
neglected have the form 

where jn= (e/m)p~"'(v,-v,). In the last  of Eqs. (13), 
which expresses Ohm's law for a superfluid plasma, we 
have omitted terms in p,/pl -me/m, since this ratio is  
always very small. The first  of Eqs. (13) represents 
longitudinal waves that propagate with the velocity 

a s  a result of oscillations of the density of the solution. 
The last two of Eqs. (13) represent oscillations of the 
solute and the electrons. As in the case of a normal 
plasma, one obtains two longitudinal waves: a plasma 
wave in which the ions a r e  stationary but the electrons 
oscillate, and ionic waves (second sound), in which the 
ions and electrons move almost together, i.e. what 
propagate a r e  fluctuations of the concentration of the 
solution. 

To find the propagation velocities of these waves we 
write down the last two of Eqs. (13) with allowance for 
violation of the local neutrality of the solution: 

d2 
(15) 

--(n,'-n.') -oPZ(n,'-IL,') i-pAn,'=O, 
dt' 

where 

and n; and n; a r e  the solute-ion and electron densities. 
The compatibility condition for these equations yields a 
dispersion oquation that has two roots. When a/P << 1, 
the first  root, 

represents oscillations of the electrons alone, while the 
second root, 

represents oscillations of the solute concentration along 
with the electrons. Here k is  the wave vector of the 
propagating waves. It is  evident from (16) that the elec- 
tron oscillations can propagate only when w > w,, where- 
a s  according to (17) the concentration waves can propa- 

We shall show that other disturbances-the so-called 
fourth sound-can propagate in precisely this frequency 
interval. The equations resulting from linearizing Eqs. 
(1 ) with v,=O have wave solutions, and the dispersion 
equation for these longitudinal waves takes the form 

where 

4ne2 4nez 
,I-%= mZeZp!:' =-Ms. 

m ' 

When pi:' is very small  a s  compared with both pi:) and 
P$' the waves of the superfluid solvent and those of the 
solute become independent. The propagation velocity i s  

for disturbances of the neutral component, and 
apt C= 

a'(i)=p::'-+- 
ap, kZh2 (20 ) 

for  disturbances of the charged component. As i s  evi- 
dent from (201, the waves of the charged component can 
propagate only when w> ~,(P, /P , )~/~.  We also note that 
the waves of the charged component a r e  always accom- 
panied by the propagation of longitudinal components of 
the electric field. 

In conclusion we thank A. F. Andreev and L. P. 
~ i t a e v s k i i  for valuable discussions. 
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