
Dielectric matrix of band electrons with allowance for 
exchange-correlation effects 

V. D. Gorobchenko 

P. N. Lebedeu Physics Institute, USSR Academy of Sciences 

E. G. Maksimov 

I. Y: Kurchatov Institute ofAtomic Energy 
(Submitted 24 April 1981) 
Zh. Eksp. Teor. Fi. 81,1847-1859 (November 1981) 

The dielectric constant of electrons in a crystal is calculated in the form of a matrix in reciprocal-lattice vector 
space. A generalized self-consistent-field method is used, which reduces the problem to the solution of the 
single-particle problem of the behavior of an electron in an external field and in the crystal field of unscreened 
ions, as well as in the self-consistent field of other electrons, consisting of a Hartree potential and an 
exchange-correlation potential. A method is proposed for constructing the exchange-correlation potential and 
leads in the case of a homogeneous electron gas to the well known Toigo-Woodruff dielectric function. The 
equations obtained are used to determine the electron contribution to the dynamic oscillation matrix in simple 
metals, accurate to third order in the pseudopotential. It is shown that the obtained expressions obey some 
rules that connect the nonlinear polarizabilities of the electrons with their linear response. 

PACS numbers: 71.45.Gm 

INTRODUCTION 

It is known1" that the dielectric constant of the elec- 
trons in a crystal is a matrix c(k + G, k + G', w) in the 
space of the reciprocal-lattice vectors {G} (here and 
elsewhere k is  the wave vector located within the first  
Brillouin zone). Knowledge of this matrix is necessary 
for a microscopic description of a great variety of 
phenomena in solids. Thus, e.g., the reciprocal di- 
electric matrix C-'(k + G, k + G' ,w) determines in the 
static limit w = O  the adiabatic contribution of the elec- 
trons to the dynamic lattice-oscillation matrix, and 
exact calculations of c"(k + G, k + G', 0) a r e  extremely 
important for the understanding of the nature of vari- 
ous anomalies observed in phonon spectra of crystals. 
The quantity &"(k,k,w) describes the long-wave limit 
k- 0 the optical properties of the crystal electrons, 
while Im c"(k + G, k + G', w) describes the cross  section 
for inelastic scattering for charged particles in a crys- 
tal and the resonances that appear in such spectra and 
a re  connected with excitation of plasmons, excitons, 
and others. 

At the present status of the many-body theory, cal- 
culation of the dielectric matrix c(q,qf , a )  and of its 
inverse c"(q,q',w) is  an extremely complicated prob- 
lem. Practical success in its solution can be reached 
only by using very simple variants of the self-consis- 
tent-field approximation, which reduce it to a single- 
particle problem. In most papers c(q,q',w) is actually 
calculated by using a generalized random-phase ap- 
proximation, that takes into account only the band char- 
acter of the wave functions and of the energies of the 
electron in the crystal, but neglects completely the 
exchange and correlation effects (see the  review^^'^). 
It is  well known, however, that in the case of a homo- 
geneous electron gas the indicated approximation de- 
scribes the properties of the system quite poorly a t  
densities corresponding to the conduction-electron den- 
sities in real  metals. The problem of correct  allow- 
ance for exchange-correlation effects in a homogene- 
ous electron gas is at present one of the most vital 

ones in solid-state physics (see our recent review6). 
It is important here that it is precisely the exchange 
and the correlation (customarily called also the local- 
field effects) which give rise to many interesting phe- 
nomena in a system of interacting e l e ~ t r o n s . ~  These 
include phase transitions in a state with a spin- o r  
charge -density wave, the appearance of a negative 
static dielectric constant, and others. Allowance for 
local-field effects, a s  is well known, i s  most impor- 
tant also when it comes to describing the electromag- 
netic properties of crystals. '  

In many studies of the dielectric matrix of band 
 electron^,^ by local-field effects a r e  mean effects con- 
nected with the existence of off-diagonal elements of 
the matrix c(k + G, k + G', w) with G #GI. As shown by 
Maksimov and ~ a z i n , '  allowance for the off-diagonal 
elements of the dielectric matrix does not constitute 
allowance for the local-field effects in the sense used, 
e .g., in classical electrodynamics, meaning the dif- 
ference between the microscopic field acting on the 
particles of the system and the average macroscopic 
field in the given medium. From the physical point of 
view, allowance for the local-field effect must of ne- 
cessity include a contribution from the exchange-cor- 
relation interaction. And only a joint analysis of the 
off-diagonal elements of the dielectric matrix and of 
the exchange-correlation effects can lead to a correct  
description of the local-field effects in crystal  systems. 

Among the immense number of papers devoted to the 
calculation of the dielectric matrix of band electrons, 
one can find only a few in which attempts were made 
to take a consistent account of exchange-correlation 
effects. Mention should be made in this connection of 
the paper by Singhal and callaway ,9 who obtained the 
dielectric matrix within the framework of the single- 
particle self-consistent field method by using an ex- 
change-correlation potential in the form 
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where n ( r ,  t )  =n( r )  + n,,,(r, t )  i s  the average density of 
the Bloch electrons in the presence of an external per-  
turbing potential, and cu is an  empirical  parameter .  
Equation (1.1) i s  a generalization, of the known Slater  
Xcu potention'' to include the nonstationary case .  A 
more consistent approach to the allowance for the con- 
tribution of the exchange-correlation effects to the di- 
electric matrix was developed by Stoddart and ~ a n k s "  
within the framework of the density-functional method, 
but this method can be used only to calculate the stat ic  
dielectric matrix at  w = O .  Both these studies will be 
discussed in detail in la te r  sect ions,  and a t  present we 
wish to point out also a paper by Hanke andsham,12 in 
which exchange and correlation effects were  taken into 
account in the calculation of the inverse dielectric ma- 
trix E-'(k, k ,  w) of covalent semiconductors in the long- 
wave limit a s  k -0. The methods used in that paper 
a r e  valid, however, only in the case  of crystals  with 
strongly localized electrons and with negligibly smal l  
overlap integrals. 

We have previously6 proposed a method of construct- 
ing a self-consistent exchange correlation potential 
V,,(r,t), which in the case  of a homogeneous electron 
gas leads to the well known dielectric function of Toigo 
and woodruff,13 at  present one of the best approximate 
dielectric functions with dynamic correction for  the 
local field. In the present paper we generalize this 
method to include the case  of Bloch electrons and ob- 
tain for ~ ( k  + G, k  + G', w) an expression that goes over 
in the limit of a homogeneous electron gas  into the 
equation of Toigo and Woodruff. This expression i s  
then used to calculate the electron contribution to the 
dynamic lattice vibration matrix in metals  with almost 
f r ee  electrons. 

2. DERIVATION OF EQUATION FOR THE 
DIELECTRIC MATRIX 

We consider the l inear response of a model system of 
interacting electrons moving in a rigid ion lattice, to a 
test  charge introduced from the outside. We use for  
this purpose a self-consistent field approximation and 
seek the perturbed single-electron wave functions by 
starting from the Schradinger equation 

a 
ih- $,(r, t ) =  [ H , + ~ . I I ( ~ ,  t) l$*(r, t ) .  

at (2.1 

Here H, is the Hamiltonian that determines the elec-  
tron band structure and includes the periodic potentials 
V,,(r) and V,(r), respectively, of the interactions of 
the electron with the ion lattice and with the average 
self-consistent field due to the remaining electrons in 
the unperturbed system. [The potential V,(r) is a ce r -  
tain functional of the eigenstates +iO'(r) of the Hamil- 
tonian H,, and is responsible for the effective screen-  
ing of the electron-ion interaction.] Next, 

i s  the total perturbation experienced by a Bloch elec-  
tron when an external charge i s  introduced into the 
system. The effective potential (2.2) consists of the 
external potential V..,,(r,t) and of the correction 6V,(r, 
t )  to the self-consistent field. This correction is a 

result of the distortion of the electron density by the 
external perturbation, and ensures  screening of the 
external potential. F o r  the solutions +,(r,t) of Eq. 
(2.1) we retain the quantum numbers A of those Bloch 
s t a t e s  $i0'(r) into which these solutions go over a s  
t --.o, when the external perturbation is turned on 
adiabatically with a t ime constant 6 -+0. 

In the principal approximation in V,,,, the solutions 
of (2.1) a r e  

where E ,  a r e  the energy eigenvalues of the Hamiltonian 
H,, and 

Here V,,,(q,w) i s  the Four ier  component of the effec- 
tive potential (2.2) and has  the property V:,,(q,w) 
= V,,,(-q, - w),  and the abbreviated notation ( A )  =+io '(r)  
has been introduced for  the Bluch states.  

Using (2.3) and (2.4) we can  determine the average 
induced density 

where n, a r e  the F e r m i  occupation numbers of the 
band states.  Fo r  the Fourier  component n,,,(q, w) we 
obtain 

where the linear-response tensor is defined by 

The value of (2.6) differs from ze ro  only if the differ- 
ence q -ql  is equal to one of the reciprocal-lattice 
vec tors ,  and constitutes in fact a matrix X'O'(k + G, k 
+G1,w) with indices G and G'. In the intermediate 
calculations, to simplify the equations, we shall  not 
use this circumstance explicitly. 

To make the problem self-consistent it is  necessary 
a lso  to determine the potentials V,(r) and BV,(r,t). 
We use for this purpose the method proposed by us6 
for  the construction of the self-consistent field. This 
method leads to the following expression for the gra-  
dient of the sum of these two quantities: 

Eqv (q) etqrz aInIv$A'(r, t )  Q~. (r, t ) J  d3rr*Ar'(r', t )  e-iqr'$i(r', t ) .  
n(r,t) II' 

Here v(q) = 4ne2/q252 i s  the Fourier  component of the 
Coulomb potential, n ( r , t )  i s  the average electron den- 
sity in the presence of the perturbation, and n(q, t) is 
i t s  Fourier  component with respect to the coordinate: 

The first te rm in the righc-hand side of (2.7) is the 
Hartree self-consistent field, while the second de- 
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sc r ibes  the exchange-correlation potential of the elec-  
trons. Using (2.3) and (2.4) it is easy to separa te  from 
(2.7) in explicit form an  equation for the potential V;(r), 
which should be used in the self-consistent calculation 
of the electron band structure,  a s  well a s  an  equation 
fo r  the perturbed potential BV,(r,t), which is needed to 
obtain the dielectric matrix of the system. 

In accordance with the s t ruc ture  of (2.7), the poten- 
t ial  6V,(r,t) breaks up naturally into a sum of Har t ree  
and exchange-correlation contributions 

8V. (r, t )  -8V8 (r, t )  +8V.,(r, t ) .  (2.8) 

Using (2.5), we obtain for the Fourier  component of 
the Hartree potential simply 

8 V ~ ( q ,  o)=v(q)nt .dq,  o ) = v ( q )  z x ' ' ' ( q , q r ,  o )Ve , , (qr ,  o ) .  (2.9) 
q' 

Substituting next (2.3) and (2.4) in the second t e rm of 
(2.7) and separating the contributions l inear in V,,,, 
we obtain after  s imple algebraic transformations the 
following Fourier  component of the exchange-correla- 
tion potential 

where the matrix P(q ,q l ,  w) is given by 

It i s  easy to verify that this matrix also differs from 
ze ro  only if the difference q -q l  coincides with one of 
the reciprocal-lattice vectors. 

We can now express  the components of the effective 
potential V,,,(q,w) in t e rms  of Vex, ( q ,  w). The co r r e -  
sponding relation i s  obtained from the definition (2.2) 
with account taken of (2.8)-(2.10), and takes the form 

where t"(q,qr,w) i s  the inverse of the so-called effec- 
tive dielectric matrix 

Substituting next (2.12) in (2.5), we obtain the induced 
electron density, and consequently also the l inear-  
polarizability tensor x(q,ql ,  w), defined by the expres-  
sion 

and connected with the inverse dielectric matrix by the 
well known relation 

By simple algebraic transformations we a r r ive  a t  
the following expression for the dielectric matrix of a 
system of Bloch electrons 

&(q,qr ,  o)=bqq.-v(q)  E x ' ~ ' ( q ,  q", o ) A ( q n ,  q', o ) ,  (2.16) ." 

where A(q,qf , o )  is a vertex matrix defined by the 
equation 

A-'(q, q', o)=Sqq.+P(q,  q', 0 ) .  (2.17) 

Here P(q ,  q' , w) is the exchange-correlation matrix 
(2.11). 

In the limiting case  of f r ee  electrons,  Eq. (2.11) for 
the exchange-correlation matrix takes the form 

where z,=fi2p2/2m, and f,=f (&,) is the F e r m i  distr i-  
bution function. Formula (2.18) corresponds exactly 
to the correction for the local field 

in the theory of Toigo and woodruff .I3 Here x,(q, o) is 
the known Lindhard function. In concluding this s ec -  
tion, we compare ou r  expression (2.16) for the dielec- 
t r ix  matrix with the already mentioned results  for  
&(q,qr , w) that follow from the generalized random- 
phase approximation and from Refs. 9 and 11. If ex-  
change-correlation effects a r e  neglected, i.e., the 
matrix P (q ,q f  , W) i s  s e t  equal to ze ro ,  then Eq. (2.16) 
takes the form 

which coincides exactly with the widely used random- 
phase 

Next, the equation obtained for  &(q,ql ,w) by Singhal 
and callaways has formally the s ame  form a s  Eq. 
(2.16), but their  vertex matrix A(q,qf ,w) i s  defined by 
the relation 

where G(q,ql)  i s  the result  of allowance for  the local- 
field effects, and i s  given by 

In our  recent paper6 we have shown that i f  account is 
taken of exchange-correlation effects with the aid of a 
potential of the form (1.1) in the case  of a homogeneous 
electron gas ,  a dielectric function c(q, w) i s  obtained 
with a stat ic  correction for the local field G(q) = 3aq2/ 
8k2, [this result  is obtained from (2.22) by putting in it 
q = q r  andn( r )=N/n ] .  Such a dielectric function dis- 
tor t s  greatly the description of the correlat ions be- 
tween the electrons a t  shor t  distances. In addition, di- 
electr ic  functions with stat ic  correction for the local 
field account poorly for  the dynamic features of the 
sys tem,  particularly for  the plasmon dispersion law. 
It i s  therefore quite c lear  that the approximation for 
&(q,ql ,w) with a vertex matrix of the type (2.21) has a 
much more  restr icted applicability than the approxi- 
mation obtained in the present paper. 

Finally, Stoddart and ~ a n k s "  obtained for the stat ic  
dielectric matrix an expression that reduces to (2.16) 
and (2.21) a t  w = 0 ,  but the matrix of the corrections of 
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the local field has in their  ca se  the form 

1 
~ ( q ,  q') =- - d3rd3r' 

v (P) Q2 
61E'c('n(r)}) eap(i(qr-qrr')), (2.23) 

6n (r) 6n (r') 

where E xc({n(r)}) i s  the exchange-correlation energy of 
the system and i s  a functional of the electron density. 
To use (2.23) it i s  necessary to make some assumption 
concerning the functional dependence of E,, on n ( r ) ,  
s ince the exact form of the exchange-correlation func- 
tional i s  unknown. In part icular ,  this functional can 
be chosen such that a t  least  a t  sma l l  q and qf  the equa- 
tions for the stat ic  dielectric matrix,  obtained here  
and in Ref. 11, turn out to be identical. 

3. THE CASE OF A METAL WITH ALMOST FREE 
ELECTRONS 

The quantitative calculation of the dielectric matrix 
of band electrons in accord with the equations obtained 
in the preceding section i s  in the general  case  a ra ther  
complicated problem both from the point of view of ob- 
taining the self-consistent Bloch wave functions $,(r) 
and the corresponding energy eigenvalues E ,, and dur-  
ing the stage of direct calculation of the l inear-re-  
sponse tensor X'o'(q,qf,w), the exchange-correlation 
matrix P(q ,qf  , w), and the subsequent inversion of the 
matrices ~ " ( q , q ' ,  w) and E(q,qf , w). This problem be- 
comes much s impler  in two limiting situations: in the 
case  of simple metals with almost f r ee  conduction 
electrons, where the pseudopotential of the electron- 
ion interaction i s  relatively weak and the off-diagonal 
elements of the indicated matr ices  a r e  correspondingly 
smal l ,  a s  well a s  in the ca se  of dielectrics with weakly 
overlapping electron shells. 

In this section we use the equations derived by u s  to 
estimate the electronic contribution to the dynamic lat- 
tice-vibration matrix in simple metals. On the one 
hand, this enables us to demonstrate that these equa- 
tions, notwithstanding their  complexity, can be used 
in actual calculations, and in this sense they a r e  per-  
fectly usable, and on the other hand the problem of 
calculating the electronic contribution to the lattice dy- 
namics by a consistent account of the exchange-cor- 
relation effects is also of independent interest and has 
not been solved to this day. 

The electronic contribution to the dynamic matrix of 
the lattice vibrations is  described by the expression 

(for simplicity we consider the case  of a monatomic 
crystal) where M is the ion mass ,  V(q) is the Fourier  
component of the electron-ion pseudopotential, and 
x(q,qf ,  0) i s  the matrix of the l inear polarizability of 
the electrons in the stat ic  limit w = 0 ,  and i s  given by 

We estimate the dynamic matrix (3.1) accurate to 
t e rms  of third o rde r  in V(q). To this end we rewrite 
f irst  the matrices X'o'(q,qf , 0 )  and P ( q , q f ,  0) and sepa- 
ra te  in them the smal l  off-diagonal matrix elements 

that a r e  linear in V(q): 

Here x,(q) is the usual Lindhard function, which repre-  
s en t s  the stat ic  polarizability of a homogeneous non- 
interacting electron gas ,  and P(q)  is the correction for 
the local field and is given by (2.18) a t  w=O. Fo r  the 
effective dielectric matrix E(q,qf,O) in (3.2) we have 
approximately, in accordance with (2.13), (3.3), and 
(3.4). 

where C(q) is the effective dielectric function of a ho- 
mogeneous interacting electron gas ,  for which the 
following equation holds 

Fo r  the approximate inversion of the matrix (3.5) 
we can use the matrix identity 

Accurate to t e rms  of f i r s t  order  in the electron-ion 
pseudopotential, we then obtain 

Substituting (3.3) and (3.7) in (3.2) we a r r ive  a t  the 
following approximate expression for the linear elec- 
tron-polarizability matrix 

It remains now only to calculate the matrices x l (q ,qf )  
and Pl (q ,qf )  in the approximation linear in V(q). At 
the indicated accuracy we have for the Bloch wave 
functions 

V (G) eZor  I 
The single-electron energies a r e  E ,= & , = ~ ' 9 ~ / 2 m ,  the 
corresponding occupation numbers a r e  n,=f(&,) ,  and 
the summation over 1 in (2.6) and (2.11) reduces to 
summation over the wave vector p in momentum space. 

Substituting (3.9) in (2.6) we a r r ive  after  simple 
transformations to the following expression for the 
matrix x,(q,ql): 

Here ~ ( ~ ) ( q , ~ ' )  i s  the so-called "three-pole," the con- 
c r e t e  expression for which is 

To find the matrix P l (q ,q f )  we substitute the approxi- 
mate Bloch functions (3.9) il. :2.11). Recognizing that 
in the case  of a weak electron-ion pseudopotential we 
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have 

we obtain after  ra ther  cumbersome but essentially 
straight-forward calculations 

Here  G(q, 0) is the stat ic  correction for  the local field, 
defined by (2.19) in which we must put w = 0,  while 
Q(q,ql) i s  given by 

-+ (3.13) 

Taking (3.1), (3.8), (3.10), and (3.12) into account, 
we a r r ive  a t  the following expression for  the electronic 
contribution to the dynamic lattice-vibration matrix of 
a metal with almost free conduction electrons: 

V (k+G) V (G-G') V (k+G') 
X - ------ - . (3.14) 

E(k+G) @(G-G') E ( ~ + G  ) 

~ 7 ' ~ ' ( ~ , ~ ' )  denotes here  the effective "three-pole" r e -  
normalized on account of the exchange-correlation 
effects: 

The f irst  t e rm in (3.14) i s  of second o rde r  of smal l -  
ness  in the pseudopotential and describes the contribu- 
tion of the free electrons to the paired inter-ion inter- 
action. The second te rm is of third order  in V(q). It 
is usually referred to a s  the electron contribution, 
corresponding to unpaired three-particle interaction 
forces between the ions, to the lattice dynamics. As  
f i r s t  shown by Brovman and ~ a ~ a n , "  allowance for 
t e rms  of this kind in the dynamic matrix is extremely 
important for a cor rec t  description of the entire lattice 
dynamics of simple metals. Even if we disregard the 
fact that in the polyvalent s imple metals the contribu- 
tion of the three-particle forces to the dynamics of 
the lattice turns out to be not smal l  from the purely 
quantitative viewpoint, allowance for these forces is 
of fundamental importance in the analysis of the Cau- 
chy relations for the elastic moduli, a s  well a s  for a 
consistent description of the stat ic  and the dynamic 
compressibility moduli even in the case  of alkali met- 
als .  

To compare the expression obtained by us for  the 
dynamic matrix with those already given in the l i ter-  
ature,  we rewrite f i r s t  Eq. (3.14) and neglect in it al l  
the exchange-correlation corrections: 

Here co(q) is the stat ic  dielectric function of the homo- 
geneous electron gas  in the random-phase approxima- 
tion, 

We note immediately that Eq. (3.16) for  the dynamic 
matrix is  not suitable for  an  exact description of the 
phonon spect ra  of a s imple metal  is played, besides 
the Coulomb repulsion between the ions, by their  in- 
direct attraction, quadratic in the pseudopotential, to 
one another via the conduction electrons.  The co r r e -  
sponding electronic contribution to the dynamic matrix 
is represented by the f i r s t  t e rm of (3.16), and such an 
approximation for this t e r m ,  with no account taken of 
the exchange-correlation effects, turns out to be too 
rough.'"16 Fortunately, these effects can be easi ly 
included in the contribution, quadratic in the pseudo- 
potential, to the dynamic matrix.  To this end it suf-  
fices only to replace in the f i r s t  t e rm in expression 
(3.16) for D,o'(~) the quantity xo(q)/co(q) by the exact 
value of the polarizability of the homogeneous inter- 
acting electron gas  

where the function z(q) is defined by (3.6). Generally 
speaking, it i s  necessary he re  to use the exact value of 
P(q). Since this is of course ,  unknown, in the actual 
calculations for P(q) one used various approximate for- 
mulas, including Eq. (2.18) of Toigo and Woodruff. 

As  for  the contribution made to the dynamic matrix 
by the t e r m s  of third o rde r  in V(q), in most papers 
in which such a contribution was taken into account i ts  
calculation was ca r r i ed  out in the random-phase ap- 
proximation, i.e., in accord with Eq. (3.16) (see the 
reviewi5). In certain papers the function co(q) in the 
second t e rm of (3.16), just a s  in the contribution quad- 
ra t ic  in the V(q), was simply replaced by E(q). In a 
recent paper, Paasch and ~ e i n r i c h ' ~  have attempted to 
justify precisely such a procedure for  taking into ac-  
count exchange-correlation effects in the calculation 
of the contribution of three-particle forces to the lat- 
t ice dynamics. However, a s  s e e  from (3.14), such an 
approach is in fact not self-consistent. The influence 
of the exchange and correlat ion effects does not reduce 
nearly to replacement of co(q) by the effective dielec- 
t r ic  function C(q), but leads also to a renormalization 
of the three-pole. 

As shown by Brovman and ~ a ~ a n , ' ~  and also by Pe-  
thick,18 the response functions in the expression for 
the electronic part of the dynamic matrix should sa t i s -  
fy definite sum rules that actually connect the nonlin- 
e a r  polarizabilities of the homogeneous electron gas  
with the derivatives of the l inear polarizability (3.18) 
with respect to the density n = N / Q .  In the notation of 
the present paper, the corresponding sum rule for  
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3'3'(q,q') i s  written a s  follows: 

In accord with (3.15), we represent  the function 
5'3'(0,q') in the form 

J"' (0,  q') =IcS' (0,  q') - ' / ~ x o  ( 0 )  x o 2  (4)  (p (0,  Q'), (3.20) 

where p(O,ql) denotes the quantity 

- 2Jco (0, q')  
lim 0 (n) G ( q )  . 

xoZ(q') s-0 

Recognizing that the renormalized function ~ ' ~ ' ( 0 , ~ ' )  
satisfiesi4 a sum rule of the form 

where &&q) is given by (3.17), it can be shown that the 
quantity p(O,ql) should satisfy the following sum rule: 

Using (3.13) and (2.29) we can verify by direct cal- 
culation that the function p(O,qt), defined by Eq. (3.21), 
actually sat isf ies the sum rule (3.23). Thus, the meth- 
od proposed in the present paper for  taking into ac-  
count the exchange-correlation effects does not violate 
the sum rule for  the nonlinear polarizabilities, and by 
the s ame  token does not introduce additional e r r o r s  in 
the calculations of the phonon spectra.  On the other 
hand, a s  seen from (3.23), any approximation that 
takes into account exchange-correlation effects by in- 
troducing corrections for  the local field G(q) in the 
function c(q), but ignores the renormalization of the 
effective three-pole (when p = 0) certainly violates the 
sum rule (3.19). A s imi lar  conclusion that it is neces- 
s a ry  to renormalize the three-pole on account of the 
exchange in correlation was recently a r r ived  at  by 
Zarochentsev and ~ e p 1 o v . l ~  They used in fact relation 
(3.23) to determine the renormalization of the three-  
pole by replacing the function p(q,q ')  a t  al l  q by i ts  
value p(O,ql). As is c lear  f rom our present results ,  
such a replacement is generally speaking not valid, 
since p(q,ql)  with nonzero wave vectors q ,  in no way 
coincides with p(O,ql). 

The renormalization of the three-pole may turn out 
to be significant in the analysis of the anomalies of 
phonon spectra.  It i s  known15 that the singularities of 
the function ~ ' ~ ' ( q , q ' )  lead to the appearance of addi- 
tional anomalies in the phonon spect ra ,  which differ 
from the ordinary Kohn singularities. The lat ter  a r e  
connected with the singularity of the effective dielec- 
t r ic  function of Z(q) and appear already in the contri- 
bution of second o rde r  in the potential to the dynamic 
matrix. It is not excluded that cor rec t  allowance for  
the renormalization of the three-pole can substantially 
modify these additional anomalies in the phonon spec- 
t ra .  This question, however, cal ls  for a special in- 
vestigation. 

Thus, from the fundamental point of view, the need 
for  taking into account the renormalization of the 
three-pole i s  subject to no doubt. The question is :  

what i s  the quantitative contribution of this renormali- 
zation ? To  answer this question we est imate f irst  the 
unrenormalized function ~" ' (0 ,q ' ) .  Using (3.22), we 
obtain 

nm' q'+2kF I(') (0, q') = - ln - 
h a q f  1 qf-2kFl ' 

Next, in the limit of sma l l  wave numbers, we have for 
the correction for  the local field (2.19) (Ref. 6) 

G (q') = (qr/2kp) '. (3.25) 

Using (3.25), we obtain from the sum rule (3.23) the 
following estimate for  ~ ( 0 ,  q'): 

2nea 
cp(0.q') I,.,o=--. 

3nk.,aP2 (3.26) 

Taking (3.24), (3.26), and (3.20) into account, we a r -  
r ive a t  the following expression, valid a t  qt<< 2k,, for 
the total renormalized function P ' ( 0 ,  q'): 

Pml 
?(" (0, q') = - (f-a). 

2n'k, 

Here a is the effective Coulomb-interaction constant, 

which i s  precisely a measure  of the renormalization of 
the three-pole. In simple metals ,  a ranges from 0.37 
for tin to 0.83 for potassium. It i s  c l ea r  therefore that 
a t  sma l l  q' allowance for  the renormalization of the 
three-pole is very important also from the quantitative 
viewpoint. If we use the est imate (3.25) for the cor-  
rection for the local field also at  large wave numbers 
(qt > Zk,), then we obtain for the function 3 '3 ' (~ ,q ' )  

The second te rm in the square  brackets ,  which char-  
acterizes the renormalization of the three-pole, turns 
out to be smal l  in this case.  

In the calculation of physical quantities, the function 
3 'S ' (~ ,q ' )  appears only for  a wave vectors q' that coin- 
cide with one of the reciprocal-lattice vectors. It i s  
c lear  therefore that allowance for  i t s  renormalization 
is particularly important for  polyvalent metals, where 
there a r e  reciprocal-lattice vectors sma l l e r  than 2kF. 
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