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The production of positrons by the Coulomb field of heavy nuclei in a superstrong magnetic field is
considered. It is shown that in fields B > B, = m*c’e ~'%~'G (B/B,> Z*a?) Z positrons with polarization

along the vector B are produced in the field of a nucleus with charge Z > Z,, (Z

.- is the critical charge of the

nucleus) as well as a vacuum electron shell having a small magnetic moment. The vacuum charge distribution
in superheavy nuclei (Za » 1) located in a superstrong magnetic field Z *a?>B/B > 1 is found.

PACS numbers: 21.90. + f

In superstrong magnetic fields with induction B ~10'?
G or higher, existence of which on the surface of neu-
tron stars has been proved in practice, electrons move
in the plane transverse to B in a region with charac-
teristic linear dimensions AR, ~y™'/2=)(B,/B)'’?,
where x,= h’/mc is the electron Compton wavelength
and By=m’% "' *! is the strength of the so-called
critical field.!

As a consequence of this, in a strong magnetic tield
the effective interaction of electrons with heavy nuclei
becomes, as it were, stronger than in the absence of
the tield, since the electrons are more strongly at-
tracted to the nucleus. If B/B})> Z, where B} =B,a*
=2.35-10° G, solutions of the Dirac equation in mag-
netic and Coulomb fields can be found by using the
approximation of a strong magnetic field,? i.e., for mo-
tion in the plane transverse to B the Coulomb field can
be taken into account by perturbation theory, assum-
ing that the nature of the energy spectrum of the elec-
tron does not change by any substantial amount in the
magnetic field.

1. CREATION OF POSITRONS BY THE COULOMB
FIELD OF HEAVY NUCLEI IN A SUPERSTRONG
MAGNETIC FIELD (SINGLE-PARTICLE
APPROXIMATION)

Let us consider the creation of positrons by the Cou-
lomb field of a heavy nucleus in a superstrong mag-
netic field. This phenomenon has been the subject of
many studies (see for example Refs. 3-8), where, in
particular, the situation in a strong magnetic field has
been discussed.’

Consider the Dirac equation in a field

Ay=—Zelr, A,=A,=0, A,=Bp/2, (1)

assuming that B > B;. Since in this case the motion of
the electron in a plane perpendicular to the vector B is
determined by the magnetic field, and the Coulomb
field can be considered as a perturbation, a solution
of the Dirac equation in the field (1) will be sought in

the form . )
(‘1171—1, < (1’) %1 (Z) ez

— | Y\ [ iCdp,  (x) %2 (2) €92
P=exp {—l = ill _7) (p} ( ) P ((x));:((z))e-"vﬂ
iCaly. s (2)Xa (2) €19/
(2)
i.e., the radial functions describing the motion of the
electron in a plane transverse to B will be taken from
the problem of motion of an electron in a magnetic

1035 Sov. Phys. JETP 54(6), Dec. 1981

0038-5646/81/121035-06$02.40

field.! In Eq. (2) I, (%) is a generalized Laguerre poly-
nomial with argument x =yp® =eHp?/2ch:
L.(a)= (nis}) " exp (o) 20~ (2),

, §=0,1,2,.... (3)

Qs (z)=e"z! ‘;;. (z**te~®); l+s=n, n=0,1,2,...
Here E is the energy of the electron and the quantum
numbers n, s, and ! have the following meaning: =
numbers the electron energy levels in a magnetic field
(Landau levels), s determines the distance from the
origin of the coordinate system to the “center of orbit”

of the electron motion in the magnetic field, and ! is
the eigenvalue of the operator of projection of the orbi-

tal angular momentum onto the direction of the field.
Any level with a fixed value of n is degenerate with in-
finite multiplicity if the electron moves only in a uni-
form and constant magnetic field. We note that accord-
ing to Eq. (3) we have I ==s in the state with n=0.

Let us consider the state corresponding to the low-
est energy level of the electron in a magnetic field,
i.e., the state with n=0. We also set s=0. Then
Iy 4(x)=0, and for C,x,(z) =g(z) and C 4x,(z) =f (2) we
obtain, after substituting ¢ into the Dirac equation in
the field (1),

dg
[ o= (eK kY (1) /] Lo (2) =0,

(4)
[—‘” +(eK—ko—V (1) g Loa (2) =0,
0z

where K =E(ch)™, ky=mchi™, e=+1, V=-Za/r. Mul-
tiplying these equations by I 4(x) and integrating them
over x with inclusion of the normalization

[ 100(2)dz=1,
we obtain the following system:

dg/dz—(eK+k—V(2))f=0,  df/dz+(eK—ko—V(z))g=0, (5)

Zae™®
V()= J. (p/7+z‘)" e (6)

In this way we have obtained the one-dimensional Di-
rac equation for an electron in a field V(z), and the
constant E has the meaning of the particle energy.
Thus, according to our assumption, the motion of the
electron in the direction of B is described by the sys-
tem (5) with V(z) determined by Eq. (6).

We shall show that in a strong magnetic field the
“effective Coulomb potential” V(z) is cut off at dis-
tances z of the order y~!/%. Calculating the integral (6)
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for V(z), we find V(z) =-Za(my)'/%e ™ (1 - &[(y2)'/?)),
where ®(y) is the error function. Using the represen-
tation of ®(y) in the form

2R 2h+1

O (y)=2n""exp(—y?) 2 BT

we find that for z =0 we have V(0)=—Za(my)!’?. We
note also that for (yz%)!/2>1 the “effective potential”
can be approximated by a one-dimensional Coulomb
potential, since for z >>'y-1 /2

L(k+/,) e‘"’

1—0 1)) = gy =1 o123 x
(19" =n~te- 2( D

k=0
Since the magnetic field effectively cuts off the inter-
action of the electron with the Coulomb field at distan-
ces z~y~1/%, is convenient from the very beginning to
choose the effective potential in the form®

V(2)=—Za/(|z| +au), (7
where a, ~y™/2,
The system (5) with V(z) chosen in the form (7) can
be solved exactly.’ In the region z > 0 these solutions
have the form

_ 4 [__§
8= R T T e (0 e
_ 4 3
1O= T ks Ve O Wen® } ()
C.=tctgex'/s, E=Za, K=K/ks; t=2(au+tz)(ks—K?)"

ctg e=eKo(1—K,?) ~".

From the condition of matching of the solutions at
the point z=0 [we note that V(z) is an even function of
z] it follows that two classes of solution are possible:
1) even g and odd f, and 2) the opposite case. There
are no solutions of the first class in an ordinary three-
dimensional Coulomb field.?

Let us consider solutions of the first class, among
which there is a solution corresponding to the ground
state. The energy spectrum in this case is found from
the condition f(z=0)=0 or

3

mwl-,ii(to)'—_wz..iz(to), (9)

where the argument of the Whittaker function W, , at
the point z =0 satisfies the inequality

to=2(1-K:?) "an/A<1.
Using the well known expansion for W, , near zero

T'(2p)
T (*/,+p—2)

. I'(—2
Wh,ul A-ou=t"'{ 4 ( u) t"} ,

T(*/;—p—2)

where I'(y) is the gamma function, it is easy to obtain
from Eq. (9) the equation for determination of the en-
ergy spectrum of electron states (e =+1) in implicit
form:

A K
1 _ oflo o
Eln(2Aag/A.) + arctg K, +argI‘( = +L§)
—-argl‘(1+2i§)=%+nm, m=—1,0,1..., (10)
where the lowest state corresponds to m =-1. Here

A=(1-K)% A=KEA-'—"/..
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The value of the nuclear charge Z (&) at which the en-
ergy level of the electronic ground state K crosses
the boundary of the lower energy continuum (i.e., K, is
equal to -1) is usually called the critical charge. Dif-
ferentiating Eq. (10), it is easy to show that the two
derivatives are

K, <0 0K, <0,
65 >t d1n B/B, Ko—+—140

i.e., with increase of the charge and of the magnetic
field strength the ground-state energy level drops and
crosses the limit of the lower energy continuum.

Taking the limit {~¢.., K,~ -1 in Eq. (10), we find
the value of the magnetic field at which the intersection
of the lower continuum with the energy level K ==k,
occurs, as a function of £ :

n—2arg I'(1+2iE,)
ECI’

)

B=4E*B, exp[

which agrees with the conclusions of Ref. 7. The
threshold probability of pair production by the Coulomb
field of a superheavy nucleus in a strong magnetic field
w(&,£,,) can be found analytically, continuing K(£) into
the region £> £, as was done, for example, in Ref. 7.
As a result we obtain

_ SCkoEchh(ZﬂEt:r) ZREC,
w(Ey Ecr) = 1+2§u2 X (; 5 ) ,
_ t‘ns('@v Ecr) 2
6~2E°'(7 1+28 ) ' (11)
1/1 1 1 . 1
$(8 8er) = “7(3,—?)1“* ! gf— (1 2iga) - g—r<1+2ig>].

Thus, the threshold probability of pair production
by the Coulomb field of a nucleus in superstrong mag-
netic field depends only weakly on the choice of V(z)
near the point z=0. This is confirmed by comparison
of Eq. (11) with the result obtained by Oraevskii et al.,’
in which the function V(z) near z~0 was different.

2. WAVE FUNCTION OF THE GROUND STATE OF
THE DISCRETE SPECTRUM AS £~ &, AND AT

Ko =-1+0

The wave function of the ground state of the discrete
spectrum for {~£ and Kyj=-1+0, i.e., in the sub-
critical region of values of £, in the field configura-
tion considered can be written in terms of a MacDon-
ald function. For this purpose we shall use the well
known relation (see page 257 of Ref. 10)

Wiu(z) == a2+ (‘—Atp, 2utl, 2), (12)

where i is the confluent hypergeometric function and
the formula for the limiting transition (page 253 of
Ref. 10) is

lim | (a, ¢, z) T (a) |=(2za) K,,((8za) ™). (13)

a+o

We note that @ -, since a~—)\ ==,

To find the explicit form of the normalized wave
function of the ground state it is convenient to repre-
sent the solution (8) in the following approximate form:

A E A 1-iE
S Wi (D), t=jr—

Here x =&/A —3 and £ =2A(z +ay)/A..

g=a —EW,a (D). (14)

The normaliza-
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tion coefficient A is found from the condition
[ (sl+iglydz=1. (15)
Recognizing (see page 872 of Ref. 11) that

- Ldtn (/) —p(fa—p—h)
.[ W Y = o T/ e T oty

and using the well known representation for the differ-
ence of the y functions (see page 958 of Ref. 11)

v 2iy

Y(z+iy) —p(z—iy) = ‘_'m

and also calculating this sum by means of the Euler
summation formula
2iy

. 2y
P (z+k)*+y*

~ ,
zrm T

from Eq. (15) for determination of |A|2 we obtain

n 28,1 Eor )
Al — 2=, I‘(—+ + )I =
MAr e & |r (e s !

or

With inclusion of Egs. (12)-(15) and also (16) for the
normalized wave function of the ground state for £~ £,
and K, ~-1 we obtain

g=DE K. (z), f=D(1+E,*) "K.(z),

z+a,,

sh 27§ or
[nx (1+28¢)

3. MANY-ELECTRON CASE

]/’, V=20t z=8"Ec %))

Quantitative estimates of the production of positrons
by the field of a superheavy nucleus in the presence of
a strong magnetic field, obtained in Ref. 7, showed that
the effect of the magnetic field on the energy spectrum
of an electron in the field of a heavy nucleus leads to a
substantial lowering of the energy of the ground state
of the electron for a given nuclear charge Z(£). This
means that in superstrong magnetic fields the critical
charge of the nucleus decreases in comparison with the
case B=0. A second important difference of the effect
considered by us from the creation of positrons by the
Coulomb field of nuclei in the absence of a magnetic
field is the following. In a Coulomb field for Z > Z
but Z< z%, where Z{ is the charge of the nucleus
for which the 2s level crosses the boundary of the low-
er continuum, two positrons with antiparallel spins
are created. If the effect is studied in the framework
of second quantization, then from the point of view of
this theory as Z goes through Z ., there is a decay of
the neutral vacuum, as a result of which two positrons
are formed (if the ground-state level for Z < Z,, was
not filled with electrons) and a charged vacuum arises,
the total charge of which is —2¢ (see for example Refs.
4, 5, and 8). In a superstrong magnetic field the spin
of an electron located in the L.andau level n=0 can be
oriented only opposite to the vector B. Therefore, if
the ground state was not filled with electrons before
the transition through Z, (from Z< Z . to Z>Z_), pos-
itrons should be created with polarization along the
vector B, and in the case when this state is filled with
electrons, no positrons will be created, but both in
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that case and in the other case there is a rearrange-
ment of the vacuum, as a result of which the charged
vacuum arises. Here the charge density of the new
vacuum for 0<Z -Z < Z, as a function of the coor-
dinates has approximately the same distribution as the
probability density of various values of the coordinates
of the electron located in the ground state for Z< Z ..

The distribution of the vacuum charge near super-
critical nuclei (Za > 1) was found in Ref. 5, where it
was shown in particular that for Z > Z . the total
charge of the vacuum shell becomes equal to -Ze. For
Z>» a™/? (supercharged nuclei) the vacuum electrons,
penetrating inside the nucleus, compensate its charge
practically completely. According to Ref. 5, super-
charged nuclei consist of an electrically neutral plasma
with equal concentrations of electrons, protons, and
neutrons (it is assumed that the mass number A is
equal to 2Z). The question of the vacuum shell of a
heavy nucleus in the presence of a superstrong mag-
netic field, and also several other aspects of this prob-
lem, will be discussed below.

Let us consider qualitatively the question of filling
of electron shells of an atom located in a strong mag-
netic field B> ByZ. We shall take into account that
the state with n =0 in a magnetic field is degenerate
in s, and the wave function of an electron in this level
is proportional to I, (yp?), where s =0,1,2,.... We
recall that in the absence of a Coulomb field the level
n=0 is degenerate with an infinite multiplicity. How-
ever, if the electron is in magnetic and Coulomb fields
the value of s ,, can be found by using physical pre-
requisites. For this we will take into account that in
the state n=0,s #0 the probability density of various
values of the coordinates of an electron in the plane
transverse to B has the form

16 (z)=z"e~/sl, z=1p%,

It (x) has a maximum for x =s, and the spatial width
of the distribution for each s is approximately the same
and is determined by the function I3 ,(x)=e™. There-
fore in a crude approximation we can modify the ex-
pression for the average potential energy of the elec-
tron in the state s, introducing into this expression an
explicit dependence on s. Then assuming that Z>1,
let us consider qualitatively how the electron shells
are filled for Z< Z ... We shall take it into account
that in each state characterized by numbers m and s
there can be only one electron. As was shown above,
the area of the region of motion of an electron in a
strong magnetic field is equal in order of magnitude to
the quantity AR?~(Bj/B)a%. The quantity AR? must be
compared with 74 =a%Z%, where 7, is the radius of the
Bohr orbit of a hydrogen-like atom of charge Z. Thus,
if B/Bj <« Z3, then

ZAR,*>T15". (18)

Here ZAR? is the area of the region in which Z elec-
trons could be located. Therefore it is evident that for
B/B} <« Z?3 the electrons will fill only the lowest s-
states, and in each s -state there can be several elec-
trons, i.e., the electrons will be distributed over the
m-levels.
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It is evident that the inequality (18) is satisfied if
the bulk of the electrons are concentrated in a region
with linear dimension

l~(Z"'Bo'/B)'/'a3. (1 9)

This qualitative conclusion agrees with the result ob-
tained in Ref. 2. Hence we can also obtain an estimate
of the value of s ,,:

Smaa~Y0'=(BZ*/By')"s,
ie., S <K Z.

However, if B/By> Z3, then ZAR? < 7%, i.e., in
this case all electrons can be located in the ground-
state m-level, and in each s -state there will be onl
one electron. ‘

For B/Bj <« Z* the distribution of the vacuum charge
near superheavy nuclei located in a superstrong mag-
netic field, like the charge distribution in a neutral
atom in which both the vacuum and external electron
shells are completely filled, can be found from the
relativistic Thomas-Fermi equation (see Sec. 4).
However, this equation is not suitable for analysis of
the situation with B/B§> Z3. As a complete trial func-
tion describing the distribution of vacuum charge, in
the latter case we can choose a function in the form of
the product of single-particle functions

wi=e (1) 1@ Wa )

[W)o,“(z) is a function corresponding to the ground
state of longitudinal motion for a given s], which is
antisymmetrized in s. A trial function is constructed
similarly for the ground state of a neutral heavy atom
located in a strong magnetic field (see Ref. 12).

We note that for B > B, the lowest energy level K
crosses the lower continuum boundary for such Z,
that B/B}> Z%.. Therefore in the approximation con-
sidered here if Z > Z . the neutral vacuum should de-
cay into a supercharged vacuum having a total charge
-Ze, and Z positrons should be formed, which pene-
trate through the potential barrier and go off to infi-
nity. The vacuum charge in this case will be localized
in a region

B, Ae
AR *~nZ—\2 Az ~—,
AR *~n 3 z Za

and the number of electrons located in a sphere with a
radius equal to the radius of the nucleus is
4 . (M\*B
N.~?Za(—):c—) B
where \,=7%/m« is the pion Compton wavelength. The
vacuum shell has a small magnetic moment which for
Z~2Z. is equal to

in which py, < p Z=_Zel/2mc. We note that our dis-
cussion is applicable for the condition B < B,=m2%%/
|e Ih', since in the fields B, it is necessary to take into
account the influence of the field B on the structure of
the nucleus, although probably in weaker fields B
~127a™'B, the contributions of characteristic nonlinear
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quantum effects may become important: vacuum pol-
arization and other effects which must be taken into
account. Therefore the value of B most likely must
be restricted to a value 121a7'B,.

If Z> Z ., the entire discussion can be carried out
for very large Z such that B/Bj < Z3 in the framework
of a spherically symmetric relativistic model of the
Thomas-Fermi type.

4. DISTRIBUTION OF VACUUM CHARGE IN
SUPERHEAVY NUCLEI ACCORDING TO THE
THOMAS-FERMI MODEL

The distribution of vacuum charge in superheavy nu-
clei located in a strong magnetic field for B/Bj> Z% can
be discussed qualitatively, proceeding from a modified
relativistic Thomas-Fermi equation. We shall give the
derivation of this equation, using the method set forth
in Ref. 5. For this purpose it is necessary to find a
solution of the system (5) in the quasiclassical approx-
imation. Setting in (5)

g=a(z) exp[is(z)], f=b(z) exp[lis(z)],

where x =kyz, and assuming that a(x) and b(x) are

slowly varying functions of x, i.e., neglecting the
derivatives a’(x) and b’(x), we obtain®

K—V+1 K—V—1

g=a [ S

2 .
o) ] sin @ (z), f=A[ o

A
] cos O (z),

D(z)= Ip(z)d1+~2—, 2>0.

The normalization coefficient A is found from the con-
dition

2t it
2 2 — 2 KO_V _ 1
J[(Igi +f1?) dz=14] Jj'p(z) di=,
from which
K~V -
=2-" : 20
[A1=2 {J' e dz} i (20)

Here z, is the turning point in the region z > 0 for the
effective equation

u”+k* (z)u=0,
where

E=2(0—-U), o=(K,-1)/2

TR ST

i.e., z; is the positive root of the equation k¥(z)=0.

If the barrier penetrability is exponentially small,
the energy levels K{™ can be determined from the
Bohr-Sommerfeld quantization condition:

it

| p@dz=(m+r2) i;— (21)
Differentiating Eq. (21) with respect to m and compar-
ing the result with Eq. (20), we find

A= (a"'9K,/om) “. (22)

Then, as shown in Ref. 5, for w(&,£.,) < 1 for descrip-
tion of the vacuum electrons one can use the single-
particle approximation, and the vacuum electron den-
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sity can be found by direct means, summing over sin-
gle-particle states localized in the region 2Az lying
between the turning points:

, Ko~V
n,=—;|¢ml-=—;w p(z):——i—m

We recall that at B/Bj > 2% in each state n=0,m,s
there can be only one electron, with a spin oriented
opposite to the magnetic field direction. Therefore the

0K, K,—V
“om p(z) (23)

right-hand side of Eq. (23) does not contain the factor 2.

Going over from summation over m to integration in
Eq. (23), we obtain
1 K~V 1 zdz
=— (g - ==
e T e By el e
If we are interested in the distribution of the electrons
in the vacuum shell of the nucleus, integration over the
energy K, must be carried out in the interval (see Ref.
5)

—1>K,>1+V.

In the case of a neutral atom in which both the external
and vacuum shells are filled, the upper limit is equal
to 1. Consequently we obtain n, =—(2V + V?)!/%/27 for

a superheavy nucleus with a filled vacuum shell and
n,=—(-2V + V?)!/2/2 for an atom in which all shells
are filled. Here we have taken into account that the
characteristic dimensions of the region of motion of the
electrons along the magnetic field are 2Az.

We note that, as was done for the state s =0, quasi-
classical functions can be constructed also for other
s-states. Here, if B/By < Z%, then as was shown
above the wave function of the electrons located in
neighboring s -levels will overlap to a significant de-
gree. Therefore it will be more advantageous to the
electrons to fill the lowest s -levels (where s < Z) and,
this means, the rather high m-levels, since such a
distribution will correspond to the minimum energy of
the system. In this case the function n, can be con-
sidered to be a function of all variables (p,z), and we
obtain the true electron density by multiplying =, by the
normalization coefficient of the total electron wave
function y7 .

We shall write the Poisson equation in the form
Ag=—4ne(np,—n,). (24)

Heree>0,¢ =-Ve"! is the electrostatic potential and
n, is the density of protons. For the function V we
have the equation

AV =—4ne (n—ny). (25)
We shall take n, in the form®:
ny,(r)=n,0(R—r).

Obviously the vacuum shell has a finite radius 7y,
since n,(r) is different from zero only in the region of
space where V?> 2V. Therefore the boundary condi-
tions for solutions of Eq. (25) in the case of a supernu-
cleus with a filled vacuum shell has the form®

V(0)=const, V(ry)=—rvV'(rv)=2, V(rv)=—2Z,/rv,

where Z, is the combined charge of the nucleus and the
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vacuum shell for an external observer. In the varia-
bles » =k, Eq. (25) has the form
 AV=N[F2V4V] "+hnan,,
a® B Z VA 3
2 __
()

(26)
“wBS MTaMTT
where R =A'/% is the nuclear radius, ,=1.1 F, and
A is the mass number. In the relativistic limit V?
<« 2V Eq. (26) coincides with Eq. (9) of Ref. 2, which
was obtained by a different method for description of
the potential of a neutral atom with Za <1 located in
a strong magnetic field. In this case the value of the
ratio B/Bj for which Eq. (26) is valid is also bounded
from below: B/B{> z*/3. This condition arises from
the requirement that there be no electrons in the first
excited Landau level in the main region of the poten-
tial. The condition that there be no vacuum electrons
with a high binding energy (—K g, > mc/k) in the first
excited Landau level has the form (1/2)(=Kcoufi/mc)
X(By/B)!'/*« 1.

Going over to a new function V,=V #1, we obtain for
it the simpler relation

AVy=A2(Vo*—1) “+4non,. (27)

Let us find the charge distribution inside the vacuum
shell for Za > 1. We shall consider the region of val-
ues 7 < Zyan,/2. Then Eq. (26) is greatly simplified
and takes the form

AVo—A*Vo=B0 (R—r), B=4ann,. (28)

The spherically symmetric solution of this equation
which (together with its first derivative) satisfies the
condition of continuity for » =R and is finite for » =0
has the form

Vom 2L ((41R) e sh Ar—rlo(R-1)

’r

P (1 - —!—+2£e‘“‘)9(r—lf)} .

The number of vacuum-shell electrons located inside
a sphere of radius 7 is N,(r)=Z - Q(r), where Q(r)
can be found from Gauss’s theorem, V’'(v) =eE
=Q(r)e?/r*. We note that x» « (Z«)*/?, and therefore
the interval of values of » in which the obtained solu-
tion is valid has the form

(Za) "’;<rl.,"<Z.a,

i.e., for Za > 1,Z,~Z this interval turns out to be
rather broad.

Let us find @(r). Differentiating V, with respect to
v, we obtain

shAr

v (r)= (e ar—
(r) e chAr Y

2 o

B e—Mr=R) (1+_1)(1__ 1+2}.re_m)9(r——R)}.

r Ar

r

From this we obtain for @(»)

3z il
Q(R)=—s (1HAR)e (chAR

sl;RhR)

If \R < 1, then
Q(R)=Z[1—'/»(AR)*] ~Z, N.(R)~'/.Z(MR)*<Z.
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In the second case AR > 1 we have

Q(R)=~3Z/2(AR)<Z.

Therefore the total negative charge of electrons located
inside the nucleus for AR > 1 is of the order of Z.

As in the absence of a magnetic field, in the case
considered here (for AR > 1,Za > 1) inside the super-
heavy nucleus there will be formed an electrically
neutral plasma and the screening of the nuclear charge
by the electrons of the plasma will become important.
Since inside the nucleus the total charge is close to
zero, there will be no electric field in this region.
However, the electric field strength is large for » =R,
i.e., at the nuclear boundary, and the value of this
field is inversely proportional to B!/%:

By \'hch
(%)

where for A =22

Ep=2n"* E

D cy
0,'/z

npz‘/u (mnc/ﬁ)a=1/4kn!-

Here we must have in mind that Z3/? « (B}/B)!/* « a,
Za > 1. For an estimate let us set (Bj/B)!/*=a°"?,
Then E, = (1%/%/2)a’(\ o/A4)*B,. In this case we obtain
essentially the maximum possible value of E at the
nuclear boundary (see Ref. 5). We note that without
taking into account the vacuum charge which screens
the nuclear field, the field E; will approach infinity
with increase of Z as Z!/%: E} =2Z'"%(x/3)/% 2, in
which Z1/3> (\ ./Ay).

As is well known, the effect of diamagnetism in
atoms leads to appearance of a magnetic field induced
by the external field in the atom, and the strength of
this field at the center can be estimated from the for-
mula (see Ref. 13, p. 535) By,q=—(e*/3mc?)¢,(0)B,
where ¢,(0) is the electrostatic potential created by
the electrons of the atom at its center. The validity
of this formula for the case of a neutral heavy atom
located in a strong magnetic field B> B, has not been
proved by us, but if we nevertheless use it for esti-
mates, we obtain

2‘/; B i
moﬁ(&, z=) B.

Bina=—

[Here we have taken the value of ¢,(0) from Ref. 2.]

At the limit of applicability of the nonrelativistic
equation (26), i.e., for B=B{,(Zs) (here we also assume
that Za < 1), the following estimate is obtained: B,
=-[(Za)}/37'?/5]2!/°B, i.e., the value of the field in-
duced at the center of the atom, obtained from Eq. (26),
is approximately Z%/3 times greater (Z > 1) than the
value of this field obtained on the basis of the Thomas—
Fermi equation.

CONCLUSIONS

1. In the superstrong magnetic field of strength
B/B,> Z%a? in the field of heavy nuclei with charge Z
> Z .. there should be created Z positrons with polari-
zation along the vector B. Here there is formed si-
multaneously an electron vacuum shell which has a
small magnetic moment and a charge -Ze.
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2. The distribution of charge in the vacuum shell of
superheavy nuclei (Za > 1) located in a strong magne-
tic field of strength Z3a? > B/B,> 1 can be studied on
the basis of a modified relativistic equation of the
Thomas-Fermi type. We have found a spherically
symmetric solution of this equation which describes
the distribution of the vacuum charge in the region
r < Za), where.=f/mc is the electron Compton
wavelength. It is shown that for (aB/7By)'/*R > 1,
where R is the nuclear radius, the total negative
charge of the vacuum electrons inside the nucleus be-
comes of the order —Ze. As in the absence of a mag-
netic field (for Za!/?> 1), in the case considered by
us the electric field in the internal region of the nu-
cleus is close to zero, and the strength of the electric
field at the nuclear boundary, with allowance for
screening of the nuclear charge by the vacuum elec-
trons, is equal to a finite value and does not approach
infinity (with increase of Z). The value of the electric
field strength at the nuclear boundary agrees in order
of magnitude with the value of E found previously in
the absence of a magnetic field.’

3. In the superstrong fields B > B, the critical
charge of the nucleus is significantly less than in the
absence of a field. Therefore in fields B > B, nuclei
with relatively small charge Z (Z « Z%9) should be-
come unstable.
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