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The problem of the kinematic dynamo at large magnetic Reynolds numbers R, is considered using as an 
example artificial flow with exponential particle stretching, simulating the stationary stochastic flow of a 
conducting fluid. The magnetic fields which have a periodic dependence on only one coordinate grow in time 
exponentially and without bound. Each Fourier harmonic of the deviation from this growing field increases 
initially rapidly with a rate independent of R, during a time interval t.=t,ln R,, and then decays very 
rapidly. 

PACS numbers: 47.65. + a 

1. INTRODUCTION 

In spite of substantial progress in the solution of the 
problem of the behavior of the magnetic field for a pre- 
scribed motion of a conducting fluid (the so-called kine- 
matic dynamo, see, e.g., the book of Moffatt'), some 
qualitative aspects of this problem a re  still unclear. 
The most difficult and pressing for applications in cos- 
mic physics is  the case of large magnetic Reynolds 
numbers, R, = L v / v ,  (here L and u are  characteristic 
scales of length and velocity and v, i s  the microscopic 
magnetic diffusion coefficient of the fluid). A decisive 
role in the generation of the magnetic field i s  played by 
the geometric (topological) structure of the velocity 
field. We restrict  our attention to stationary flows of 
an incompressible fluid (divv = 0). Then, from the point 
of view of the geometric structure the flows fall into 
two classes: 1) flows for which the streamlines a re  on 
stationary surfaces; 2 )  stochastic flows, in which in- 
dividual streamlines fill a spatial region everywhere 
densely. 

In principle, a solution of the problem of the kinemat- 
ic dynamo is known for the flows of the f i rs t  class. At 
Ril=O, only a nonexponential growth of the initial (in- 
trinsic) magnetic field is  possible. Taking into account 
a small diffusion R i l = &  << 1 one i s  led, in certain cir-  
cumstances, to an exponential instability, however the 
rate of growth of the field (the argument of the exponen- 
tial) turns our to be small, proportional to some func- 
tion of E ,  say &Ih (Ref. 2, 3). An exception a re  the de- 
generate flows along a system of parallel planes o r  
spherical surfaces, when an exponential instability i s  
impossible. 

The answer is  less  clear for flows of the second class, 
although a number of have been devoted to the 
solution of the problem of the dynamo for stochastic 
flows that simulate turbulence. The difficulty of the 
problem is that, one the one hand, the exponential 
separation of neighboring trajectories which is char- 
acteristic for a stochastic flow leads to an exponential 
growth of the magnetic field with a rate independent of 
R,, and on the other hand, there occurs a sharp frag- 
mentation of the size scales of the field and the role of 
diffusion increases, and does not become small even in 
the limit a s  R, -* .  

In the present paper we consider an aritficial example 
of a flow with exponential stretching of particles, pro- 
posed earlier4 by one of the authors. In this case the 
problem of the kinematic dynamo i s  amenable to a de- 
tailed investigation. Although the discussion of the ex- 
ample requires passing to a compact manifold with a 
Riemannian metric, this flow simulates the main pecu- 
larities of a stochastic flow in Euclidean space. 

Magnetic diffusion plays an important role. At Ril=O 
the magnetic fields depending on the three spatial coor- 
dinates may grow indefinitely. The introduction of an 
arbitrarily small diffusion (E  << 1) changes the result 
qualitatively. In this case an infinite exponential growth 
i s  possible only for fields which have a periodic depen- 
dence on one of the spatial coordinates. The Fourier 
harmonics of the deviation from this solution a t  f irst  
increase exponentially, with an exponent independent of 
&, and then decay sharply. The possibility of such a 
temporal growth of the field was first  pointed out in a 
paper of one of the authors,' and the succeeding rapid 
damping was indicated by Saffman.8 

2. FORMULATION OF THE PROBLEM OF THE 
KINEMATIC DYNAMO 

The behavior of the magnetic field for a given station- 
ary flow of an incompressible conducting fluid is  de- 
scribed by the induction equation, which in terms of di- 
mensionless variables has the form 

div v=0, div H=O. 

Here H(r, t )  i s  the magnetic-field pseudovector, v(r) is  
the velocity of the flow, R, is the magnetic Reynolds 
number, which is assumed to be large 

R,-'=~<1. 

The usual condition imposed on the solutions of the in- 
duction equation i s  the absence of external sources for 
the field. In infinite space this means that H r 3 - 0  a s  
r - *. However, if the velocity does not decrease a t  in- 
finity, and i s  periodic, for example, it suffices to re- 
quire that H  should not increase at infinity (or should 
be periodic ). 
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l i m e  does not enter explicitly into Eq. (1). Therefore 
one can set in (1) 

H-elt ,  7H=PH, 

where, in-general, Y is  complex since the differential 
operator P is not self-adjoint. 

3. STATIONARY FLOW WITH EXPONENTIAL 
PARTICLE STRETCHING 

The problem (1) can be solved to the end for the case 
of an artifical example proposed by one of the  author^,^ 
which i s  a model of the fundamental property of a stoch- 
astic flow, namely the exponential stretching of the fluid 
particles. The domain of the flow is a three-dimension- 
al compact manifold, which in Cartesian coordinates 
can be constructed as  the product of the two-dimensional 
torus {(x, y )  mod 1) with the segment 0 Q z cl, for which 
the end-tori are identified according to the law 

On this manifold one can introduce a Riemannian metric 
as  the metric in R3 Which is invariant under the trans- 
formations 

The last transformation is  implemented by the area-pre- 
serving matrix 

which has the eigenvalues 

Changingfrom the coordinatesx, y, 2 to the coordinates 
p, q, z ,  where p has the direction of the eigenvector 
with A ,  < 1, and q is along the eigenvector with the 
eigenvalue A,>l, then the metric given by the line ele- 
m ent 

d s Z = e - Z ~ z d p z + e 2 " d q 2 + d ~ ~  k=ln A,-0.75 (4 ) 

i s  invariant with respect to the transformations (2) and 
therefore determines an analytic Riemannian structure ' 

on the compact three-dimensional manifold. 

On this Riemannian manifold we consider a flow with 
the stationary velocity field 

v= (0, 0, u ) ,  (5 ) 

where v=const, so that divv=O and curlv=O. When 
moving in this velocity field, each fluid particle is  ex- 
ponentially stretched in the q-direction and exponential- 
ly contracted along the p-axis (cf. Ref. 4). 

In the space with the metric (4) and coordinates p, q,Z 
the differential operations have the form 

V-(ep'Vp, e-"V,, V.), 

rot* H=e'aa'-e-Pza3 
a p  a q '  

az a Z  a z  Ace"" - fe-2"' + - 
a p e  aq2  a z Z  ' 

The Laplacian AH is identified with - curl curl H. 

Projecting Eq. (1) with the velocity field (5) onto the 
directions e'W,, eWv,, V, we obtain 

The equation for the z-component of the field separat- 
ed, therefore asymptotically, for t - * the component 
H, decays. Indeed, let us multiply the last equation by 
H, and integrate over the volume contained between the 
planes z=0 and z=1. Recognizing that the integrals 
f Hzdpdq on these planes coincide, we obtain 

The negative character of the right-hand side of this 
equation proves the assertion. On the basis of this re- 
sult we can for simplicity assume in the sequel that the 
component H, of the field vanishes. 

The equations for the P and q components differ only 
by the substitution p -  - p, it i s  therefore sufficient to 
consider only the q-component, which we denote by H, 
=Hwith p>0:  

a H  a H  
,+v-=pvH+e(A-pz )H.  
a t  a~ (7) 

Let us formulate the boundary conditions. This is 
simplest in the original coordinate system x, y, z. The 
symmetry (2) means that the function H i s  periodic in 
X, Y : 

where n, m are integers and (2, P are related to 2nn, 
2nm by a linear transformation corresponding to the 
transition from the coordinates x, y to p, q [a rotation 
of the Cartesian axes x ,  y by an angle arctan(2 -A , )  
=72"]. The symmetry with respect to a shift along the 
z axis: 

allows us to impose restrictions on the Fourier ampli- 
tudes. Substituting the last relation into Eq. (8), we ob- 
tain 

Hn(z+l)=ZfA~n(z), 

where n= (n, m), and A'  is the transpose of the matrix A;  
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in the case under discussion A1=A. 

Thus, a shift along the z axis i s  equivalent to a transi- 
tion from the Fourier amplitudes with indices (n, nz)=n 
to the Fourier amplitudes with indices An. An exception 
i s  the case ~z=)w=O, when the magnetic field does not de- 
pend on x, y, o r  P, 4. In that case AO=O. In the general 
case, applying the matrix A to the vector n shifts the 
point 12, 112 along a hyperbola in the (11, nz )  plane, see the 
figure. 

If the function H(x, y, z ,  t )  i s  analytic its Fourier har- 
monics Ita3 (z, t) must decay exponentially in a and 3. 
This means, according to Eq. (2) that the function 
ha, (z, t) must decrease not slower than a double expo- 
nential. If the function is  k times differentiable, then 
the decay will be according to a power law, a s  i s  well 
known. 

Thus, the solutions to Eq. (7) must be periodic in ( x ,  >I) .  

If the solution does not depend on P, q then H(z, t) i s  per-  
iodic in 2. If there i s  a dependence on 0, q, then the 
Fourier harmonics ha8 ( z ,  f) of this solution must de- 
crease rapidly with the increase of 121. 

We first  consider the case & = O .  Then, going over into 
a Lagrangian reference frame, it i s  easy to obtain a 
solution to the Cauchy problem. Returning to Eulerian 
coordinates we have 

When the initial field does not depend on p and q this 
solution can be represented a s  a superposition of the 
eigenfunctions exp(2nimz) exp(y,t) belonging to the 
eigenvalues 

:,=pc.-2rrirnc, n1=0, *I, 3 2 , .  . . . 

This is easily seen by expanding Eq. (9) into a Fourier 
ser ies  with respect to 2.  If the initial field depends on 
p and q (i.e., is  a periodic function of x and y), then, 
a s  shown above, the Fourier harmonics of the expan- 
sion of (9) in terms of p and q, must decrease with the 
increase of 121. Therefore the indicated set  of functions 
does not describe solutions satisfying the boundary con- 
ditions. In fact this is  related to the circumstances that 
the translation operator along the z axis has a continu- 

FIG. 1. The dashed axes indicate the directions of the eigenvec- 
t o r s  of the matr ixA corresponding to the eigenvalues hi > I >  A ? .  
Since A,$ = 1, the product nrn is  conserved under the action 
of A on a vector with components (n, m), i.e., there  occurs 
a shift along a hyperbola. One such hyperbola is  shown in the 
figure. 

ous spectrum. 

We now go over to the general case E + 0. As before, 
Eq. (7) has solutions periodic in z which are  indepen- 
dent of p and q ,  with the set of eigenvalues 

However, when the initial field depends on p and q, the 
character of the solution i s  completely different from 
(9). The shift z - vt along the z axis i s  equivalent to a 
translation (along the hyperbola) of the labels of the har- 
monics he8 (z, t )  for fixed z. Therefore any given har- 
monic will shift with time into the region of large wave 
numbers, where dissipation becomes important, and 
asymptotically, for t - *, will decay independently of 
the magnitude of &. Let us describe this process. 

We look for solutions of the form (8) 

Then the equation takes on the form 

It is natural to assume that for & - 0  the leading role i s  
played by terms containing the exponentials. Therefore 
we consider the reduced equation 

It has two f i rs t  integrals 

12=ha8(z, t )  exp [ -pz+ ~ ( a z e 2 " z - p ~ e - 2 ~ z )  
2 P  

with the help of which i t  is easy to construct a solution 
of the Cauchy problem with the initial field ha, (z, 0): 

has (2, t )  =hop (z-c t ,  0) exp 1 

- p ~ ~ - * * ( l - ~ & = ~ )  1 } ~ h ~ , ( ~ - ~ t ,  0 ) exp  put- B2e-2*'*'} . (12) { 2ps 

We see that for a prescribed initial function which i s  
bounded in z, ha3(Z, O), each a8-harmonic will first in- 
crease  exponentially in proportion to eFv: being a t  the 
same time translated to the right along the z axis with 
velocity L', and then the growth i s  replaced by a sharp 
decay1) 

after the lapse of a characteristic time 

However, during this process the scale of the field in 
the z direction s tar ts  changing rapidly [approximately 
over the same time interval, only with ln(&r32)-' replac- 
ed by In(&/ 3 I)-'], i.e., the transition to the compact 
equation i s  no longer justified. 

In order  to find the asymptotic solution for t-* we go 
over from the equation (11) to an equation of the Schri5- 
dinger type: 

1085 Sov. Phys. JETP 54(6), Dec. 1981 Arnol'd etal. 1085 



The potential U has a minumum at the point I =0: 

Umi,=2]apI'" 

and increases exponentially rapidly on both sides of the 
minumum. One can roughly estimate that the lowest 
"energy" level i s  of the order of Urn,, . This leads to 

It can be shown that for z - * the corresponding eigen- 
function has the form 

We thus come to the conclusion that asymptotically, for 
t - - ,  only the solution which is independent of P and q 
survives. 

We want to stress the fundamentally three-dimension- 
al character of the problem. The expansion occurs in 
the p, q plane, and the velocity of the flow is along the 

axis. It was the shift along the z axis which was re- 

sponsible for the increasing factor ePv', which does not 
depend on P and 9, in the field. On the other hand, the 
same shift along the z axis gives rise to the continuous 
spectrum, leading to the sharp decay of the harmonics 
in the expansion with respect to P and q. 

' ' ) ~ o u ~ h l ~  speaking we have k,,= koe "&, hclB = hd (0)emea2, 
which leads to  the exponential in the argument of the expon- 
ential. 
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