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The properties of the ground state of a classical one-dimensional system of XY spins, with random anisotropy 
Vcos ( p a )  and regular anisotropy A cos mq of different orders, are studied; the results apply also to charge- 
density waves in the presence of commensurability and random back-scattering effects. The dependence of the 
ground-state energy and of the order parameter on the values of V and A is found; the relative importance of 
the constant and random parts of the anisotropy is determined by the value of the parameter 
5 = 4AJ"3/V4'3. When CfO,  the system has two correlation radii, a longitudinal R ,, and a transverse R ,; and 
R, > R ,, always. The density of localized phonon mode, located below the edge of the continuous spectrum, is 
found. It is shown that introduction of a random perturbation in a regular system leads to the appearance of 
an exponential tail of the density of states below the edge of the continuous spectrum. It is shown also that in 
a system of the type of an incommensurable charge-density wave, the frequency dependence of the 
conductivity u (o )  is given by the formula u ( o  )-oZlnZ(o,/o), which has the same form as the formula of V. 
L. Berezinskii [Sov. Phys. JETP 38,620 (1974)l for one-dimensional localization. 

PACS numbers: 63.20.P~ 

1. INTRODUCTION Our paper is devoted to investigation of the properties 

In the present paper we continue the study of the low- 
temperature properties of classical one-dimensional 
periodic structures in a random field. Fo r  definiteness, 
we shall speak of a chain of classical, planar X Y  spins 
with anisotropy, although the Hamiltonian that we shall 
consider describes other physical systems a s  well ( for  
example, a charge-density wave (CDW), a Josephson 
transition, dislocations in crystals). In the preceding 
paper,' one of the authors de. eloped a method that en- 
ables one to t rea t  an incommensurable CDW in the 
field of randomly distributed impurities. It was shown 
that this problem i s  equivalent to the problem of a 
chain of classical planar spins with random second-or- 
d e r  anisotropy. In the present paper, we consider a 
chain of X Y  spins with random second-order anisotropy 
and constant anisotropy of arbitrary order  (an external 
magnetic field may be regarded a s  f irst-order aniso- 
tropy ). 

of a chain of X Y  spins under conditions of weak aniso- 
tropy, V << J (this corresponds to weak coupling of the 
CDW, V<<c&,lt4), when formation of the ground state 
occurs a t  distances much larger  than the lattice con- 
stant, and application of perturbation theory with r e -  
spect  to the weak anisotropy i s  impossible. In the 
presence of constant and random components of aniso- 
tropy, the behavior of the system is determined by 
competition between the energies V and A, o r  in other 
words between characterist ic  distances: a correlation 
radius R,  = u(J /v ) '~~  due to the random phase and a cor-  
relation radius d = ~ ( J / A ) ' / ~  of the regular system, 
where a i s  the lattice constant (in the case when A is 
the constant anisotropy energy, d is simply the thick- 
ness  of the domain wall). It then turns out that even an 
arbitrari ly weak external field (o r  constant anisotropy) 
leads to the establishment in the system of a nonvanish- 
ing mean (cosmcp), which vanishes only when A = 0. 

In this paper a general expression is found for the 
In the language of CDW, allowance for a constant order  parameter u=(cosmcp); in the limit for  R , < < d ,  

component of anisotropy corresponds to inclusion in the 
one gets u - ( ~ , / d ) ' .  Also calculated a r e  the energy of 

CDW Hamiltonian of commensurability energy. The the ground state of the system, the correlation function, 
Hamiltonian of a chain of XY spins with random second- and the density of localized spin-wave states.  
order anisotropy and constant anisotropy of arb i t rary  
order has the form 

2, DISTRIBUTION FUNCTION W ( P )  
H=C [~l,J(q,-q,+,)2-Vcos(q,-2a.)-Acosmcp,]. As was done before,' we obtain a recurrence relation 

connecting the f ree  energies &(q)  of chains of N and of 
Where the spin of the n-th si te  is S, = (S cosi3,, S sin On), N + 1 spins, assuming that cp and ~ ( q )  change slowly 
(p, = 28,, a, is a random phase uniformly distributed with a shift of one s tep  of the lattice: 
over the circle, 

1='/'1'S2( 

J' i s  the exchange integral, V=$S2D, D is the random- The conditions (2) a r e  satisfied if the anisotropy is 
anisotropy energy, A=$D,SZm, Do is the energy of the weak: V<< J ,  A <<J. The argument cp of the function 
constant component of the anisotropy, and, finally, the &, is the phase a t  the last ,  N-th si te  of the chain. 
order of the anisotropy is 2m. An external field cor-  The desired recurrence relation has the form 
responds to m = $. This Hamiltonian i s  analogous to the 
Hamiltonian of a commensurable CDW, used in papers 1 a&,  z 

. . + , ( q ) - ~ ~ ( c p ) = - ~  (-) - ~ ~ o s ( q - a . + i ) - A c ~ s  mq. (3) 
of Gor'kovz and of Lee, Rice, and Anderson. 
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(In the present paper,  we r e s t r i c t  ourselves to the case  
of zero  temperature, T = 0. ) 

We now introduce y,, the value of the phase cp, that 
minimizes the energy &,(cp,), i. e. 

and the quantity 

Equation (3) determines a Markov process for  &, [a 
random walk is prescribed by the second te rm in the 
right side of (3)]. Accordingly, P, and y, a r e  a l so  
random variables. In order  to calculate the basic 
physical characterist ics  of the system, i t  is necessary 
to find the distribution function W(P, y), to the calcula- 
tion of which we now turn. 

Let  the anisotropy constant f i r s t  be of second order  
(m = 1). Differentiating (3)  the corresponding number 
of times with respect  to cp a t  the point cp=y,, we get, 
a s  before,' recurrence relations 

(6) 
The last  te rm in (6) i s  always smal l  in comparison with 
the f i r s t  with respect  to the parameter  (V/J)' 3, but i t  
must  be retained (see  below): 

A P = P N - ~ N + ~ = ~ N " J - V C O S ( ~ N + ~ - ~ & ~ ~ ) - A C O S  Y ~ + l + p r '  A ~ - - ' / ~ P ?  ( A Y ) ' ,  

(3)- Aj3'"=pN ~N::'=~PN~N'J'/I+~~"A~-~/~~~'(A~)~ 
+V s i n ( h . + , - a s + , )  +A s i n  y N + , ,  (7) 

etc. ; 

In the preceding paper' i t  was asserted that the con- 
tribution of odd derivatives p(2n+') can be neglected. 
This i s  in general incorrect: the mean values of these 
quantities vanish, but the equations fo r  p'2k' contain 
[this is evident by substitution of (6) in (7)] products 
p(3)/3(2k+1), whose mean values a r e  not small. 

We shall determine the characteristic scale of the 
quantities p by averaging (7) over the random phase LY 

and the st i l l  unknown distribution W(P, y), transforming 
in the arguments of the cosines from y,,, to y, in ac-  
cordance with (6) and taking into account that y, is in- 
dependent of a,,,. Taking into account that the charac- 
ter is t ic  scales of a l l  the p(2n' coincide in order of mag- 
nitude, we have (the coefficient of the second te rm i s  
given in order of magnitude) 

Hence we have for  the averages 
( p ) - p , = ( J V Z ) ' " ,  (COS r )< l ,  if L K l ,  

( p ) - p o = ( J A ) ' " ,  (eos 7 ) - I ,  if 5 > 1 ,  
(9) 

L = 4 1 " A / V " a = 4  (Po/P,)'. (10) 

The quantity 5 = (4RJd)2 introduced here characterizes 
the relative contribution of the constant and random 
components of the anisotropy. 

Equations (6) and (7) a r e  essentially the Langevin 
equations for  the random variable 5 = (y, P, P"', . . . ), 
with an infinite number of components. The corre-  
sponding distribution function W(y, P, P"', . . . ) should 
satisfy an equation of the Fokker-Planck type. What 
interests  u s  i s  the distribution function W(P, y) averaged 
over the remaining P'"'. The equation for  W(@, y) i s  
most  simply obtained by relating the distribution func- 
tions a t  neighboring s i tes  by means of the formula for  
the total probability: 

w ( p . v + , ,  y ~ ; l ) d P ~ + t d : ~ + i  

= ( W ( P . v ( p N + , ,  y N + i ) ,  Y N ( ~ N + ~ ,  Y N + ~ ) ) ~ P J N ( P N + L ,  T N + ~ ) ~ Y N ( $ N + I ,  Y N + I ) ) .  

(11) 
The values of P, and y, on the right side of (11) a r e  
functions of ON+, and y,,,; the averaging is over the 
random phase a,,,. From the recurrence relations (6) 
and (7)  i t  i s  evident that a and change little in a shift 
by one s tep  of the lattice; this enables u s  to expand 
W(lJN, yN) in the vicinity of P,,,, y,,,. 

Writing further 

we get 

We shall solve Eq. (12) when 

A<< v. 

This condition does not res t r ic t  the physical generality 
of the results ,  because i t  permits  the existence of a r e -  
gion 5 >> 1, i. e.  , such that 

within which the properties of the system a r e  deter- 
mined principally by the constant component of the an- 
isotropy. 

On carrying out in (12) the averaging over the random 
phase 0 ,  we get with the aid of (6) and (7) [and with use 
of (13)l 

where 

(the averaging of 4(4'  and pC3' is done a t  prescribed 0 )  is 
a certain function that is known with asymptotic accu- 
racy for  fl <<a, and for  p >>p, [we shall discuss the cal- 
culation of f(lJ) in more  detail below]. 
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Equation (15) is easily solved if we note that it has the 
form of the divergence of a certain vector j in the para- 
meter space in polar coordinates (P, y )  (P = radius, 
y =angle): 

Here j is the diffusion current in the external field. 
Rewriting (15) in the form 

we get an equation formally equivalent to the equation 
of stationary diffusion in a force field F with compo- 
nents 

4A 
F,= sin 7 ,  v2 

the diffusion-coefficient tensor is isotropic, Dir  =fl-'di,. 

It i s  easily shown that 

aF6 a(?Fr) - O, (rot F) .= - - -- 
a7 aB 

that is, the external field is irrotational, and the sol- 
ution of the stationary Fokker-Planck equation is a 
Boltzmann distribution with potential energy a ,  ob- 
tained by integration of the components of force (16): 

4BA Q =  - - cos y + @ , ( p ) ,  
V Z  

Here +, represents the external field in the absence of 
the constant anisotropy, and the constant A is deter- 
mined by the normalization condition. We see from the 
structure of the solution that the angular part, due to 
the action of the constant field, separates out; the 
value of a, is independent of A and can be determined 
in the ranges 0 >> P, and V << j3 << P, .  

The corresponding calculations have already been 
made1; here we shall improve them somewhat. It is 
easy to show (see Appendix A) that in the range a >>a, 

and therefore f(B)= 2/5. This enables us to determine 
the preexponential power factor in the asymptotic be- 
havior of W(0) for p >> 0,. In the range V << P << P,, i t  is 
convenient to use an expansion of the function ~(cp) a s  a 
Fourier ser ies  (the condition V<<P here insures the 
smallness of the changes of all quantities on shift by 
one step of the lattice). As a result (see Appendix B)'' 

This expression would be obtained from (16) and (17) 
for 

f ( B ) = l +  l / ln (P , /P ) ,  V<BKB., 
f ( B )  = v 5 ,  P B B S .  

For the potential energy a,, we have 

Q o ( p )  =-ln(BIP.)-ln ln(P./B) V q ' ~ q 3 ~  , 

% ( B )  =4//1(P/B.)L8/5 ln(P/B.),  PBB.  

Thus the distribution function W(j3, y)  has the form 

The distribution function W@) is obtained by integra- 
tion of (18) with respect t o y  and has the form 

where Zo(x) is a zero-order modified Bessel function. 
The constant A is determined from the normalization 
condition - - 

I= J w(B)dB=AB. ~ W ~ ( X ) ~ ~ ( S X ) ~ X ;  
0 

(20) 
x lnz- ' ,  M i ,  
x"" exp ( - ' / ,xJ)  , xB1 .  

For  a concrete calculation i t  is necessary to use some 
interpolation formula joining the asymptotes, for ex- 
ample 

Wo ( 5 )  = [ x  ln ( l f x - ' )  +iiS] exp (-'IsxS) . 

The final results  a r e  not very sensitive to the choice of 
this interpolation. 

From (20) we have 

When g << 1, the distribution function increases almost 
linearly over the interval (V, 0,) and drops exponentially 
for ji, "P,. In the case 5 >> 1, W(P) has a well expressed 
maximum a t  the point /3 =4,. We recall1 that the range 
p << V corresponds to a Poisson tail of the distribution 
function: 

The physical characteristics of the system will be 
calculated in the following sections; nevertheless we 
should like to mention immediately one important 
consequence of our result for W(j3,y). It i s  clearly 
evident from formula (18) that the distribution of the 
angle y around the circle is no longer uniform. 

In the presence of a constant component A of the 
anisotropy, the most probably values of y a r e  concen- 
trated about the value y =0,  but the randomness blurs 
the distribution. As a result, for arbitrary A + O  there 
is a nonvanishing mean (cosy) : 

Thus 
We note that (cosy) is not equal to the characteristic 

order parameter of the system, o =(cos cp), because by 
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y we always mean the phase cp a t  the last  point of the 
chain. But a s  will be shown below, a behaves similarly 
to (cosy) and is also nonzero when A 20. 

We turn to consideration of the general case m #l. 
Equation (15) takes the form 

(22) 
(Here we have introduced the new variable x=P/@,. ) In 
the general case m # 1, the external field is no longer 
irrotational in polar coordinates, and solution of (22) is 
very complicated. We shall res t r ic t  ourselves to an- 
alysis of the situations 5 >> 1 and 5 << 1. 

When 5 >> 1, the principal contribution comes from the 
region near y -0, and therefore we can expand the t r i -  
gonometric functions in (22). Solving the resulting 
equation approximately, we find 

In the case 5 << 1, we may regard the regular poten- 
tial a s  a perturbation and seek a solution of (22) in the 
form 

W ( x )  = W , ( x )  +f tV, ( x j c o s  my. 

Then it i s  not difficult to show that 

w ( + ) = w , ( x )  [ ~ t ~ ~ ( x ) c o s  my] ( ~ K I ) ;  (24) 

where 

rp(x)-x"' for m<l, x<1, 

cp(x)-xllnx-'  for m>l, X K ! ,  

cp(x)=m2x for .zB 1 .  

Comparison of (23)-(25) and (18) shows that the general 
character of the function W(P, y) when m # 1 i s  the same 
a s  when m = l .  

3. PHYSICAL CHARACTERISTICS OF THE 
SYSTEM 

1. Energy of the ground state and order parameter 

The total energy of the ground state of a chain of N 
spins i s  by definition c,(y,). The mean energy E per 
lattice si te  i s  determined by the expression 

where the averaging is over the random phase a and the 
distribution function W(P, y) (in this section we shall, 
for brevity, restr ict  ourselves to the case m = 1 ;  the 
results for arbitrary m a r e  analogous). Using equa- 
tion (3) and the relations (5) and (7), we easily get 

The averaging gives 

E=- ( V Z / 4 $ + A  cos 1) W ($, 7 )  dpdy, 

and after integration over y we get 

where we have substituted A from (21). 

When g << 1 ,  this expression reduces to E - J (v / J )~ '~  
(in the CDW case  this corresponds to the expression 
obtained earlier, '  E - & , ( c v ~ / & $ ) ~ ~ ~ ) ;  and when 5 >> 1, 
E - A .  

By use of the relation (28), we can calculate the order 
parameter 

o=(cos p)=-aE/aA. (29) 

When 5 << 1, we find with the aid of equations (21) and 
(22) 

where the brackets (. . .), denote an average with the 
function I?o(x), and 

Comparing the last  expression with the mean 

we see  that for  c<< 1, (cosy) is in fact proportional to 
the order parameter.  

When 6 >> 1, we integrate in (28) by the method of 
steepest descents and, with the aid of (29), get 

2. In this section we shall calculate (restricting our- 
selves for simplicity to the case m = 1)  the correlation 
functions 

K,,=(cos y, cos yo), K,=(sin yN sin yo). 

Here i t  should be mentioned that the calculation of the 
correlation radius given earl ier1 is in e r r o r ;  the pres-  
ent paper presents a systematic calculation, which 
shows in particular that Ral is well defined within the 
Gaussian-fluctuation range and contains no large log- 
arithm ln(P,/V). 

The correlation function K,,(N) i s  determined by the 
expression 

and similarly for 

K , ( N )  =(sin y ~ ,  sin yo). (35) 
Since the random changes of the values of PN and yN 

from si te to si te  represent  a Markov process, the dis-  
tribution function CP is 

F = ~ ( T N ,  BN, NITo,  P o ) W ( ~ o t  Po), (36) 
where P is the conditional probability distribution of the 
values of and y a t  s i te  N for given Po and yo a t  N=O; 
i t  i s  determined by the nonstationary Fokker-Planck 
equation with the corresponding initial conditions: 
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Equations ( 3 7 )  and ( 3 8 )  a r e  an obvious generalization 
of (1  5 )  to include the nonstationary problem. 

Thus P i s  the Green's function of the operator .?/at 
- i. It is convenient to transform from the operator i 
to  an operator of the Schradinger type by the transfor- 
mation 

where Q, is determined by formulas (17) - (19) .  Then 
the Green's function P is expressed in t e rms  of the ei- 
genfunctions q,, of the operator L: 

where v is a se t  of two numbers (n ,  I )  corresponding to 
"radialu and "angular" quantum numbers. 

F o r  the correlation functions K, ,  and K ,  we have 

K,,=Z IfvlZexp(-h, t ) .  ( 4 2 )  

From ( 3 8 )  and ( 3 9 )  we easily find 

L=Lo-cU, ( x )  cos y-; ' /4, ( 4 5 )  

It follows from ( 4 2 )  and ( 4 3 )  that the behavior of the 
correlation functions a t  large distances is determined 
by the quantities A,,. Thus our problem reduces to a 
search for the eigenvalues A, of the operator L. It i s  
easy to see  that the unperturbed (for L = Lo) values 

a r e  nonzero only in the case I =  1 .  In fact, a s  is clear 
from ( 4 7 ) ,  the eigenfunctions of the operator Lo have 
the form 

and the integral over y in ( 4 4 )  and ( 4 5 )  vanishes for 
l # l .  

In view of the fact that we a r e  interested in the be- 
havior of the correlation functions a t  large distances, 
a l l  that is important i s  the smallest  ( n = O )  eigenvalue 
of the se t  h,!!'. Thus 

I ( 0 ) 1 2  (0)  
11 - 11 exp(-h?t),  ~ ~ ) = l g ? ) l ~ e x ~ ( - h , ,  t ) .  ( 5 0 )  

We note that the operator L of ( 4 6 )  has A,= 0  a s  i t s  
lowest eigenvalue, and the corresponding eigenfunction 
corresponds to the stationary solution of equation ( 1 6 )  
found above: 

The equation for $6;' when 6 = 0  has the form 

The value of A;!' is determined by numerical solution of 
( 5 2 )  for various choices of the interpolation formula for 
the function f ( x )  that occurs in U,(x) .  Calculation shows 
that the eigenvalues a r e  practically independent of the 
choice off. We shall  give the results  obtained for 

The unperturbed level for  6 =  0  i s  

When 5 f 0 ,  there appears in K, ,  a contribution indepen- 
dent of the distance t :  

The term 6U1(x) in the operator L spli ts  the doubly 
degenerate level A:;'; this leads to the occurrence of 
two different correlation radii, R,, and R, .  When 6 << 1,  
R , , ( 6 )  and R,(5)  can be found by perturbation theory, 
which i t  is convenient to construct a s  follows. We 
represent  the wave function corresponding to the level 
A,, a s  an expansion in powers of 5: 

Yoi=$ar cos r+cao(x )  +Laz ( x )  cos 2y+c2a, ( x )  COQ y. ( 5 4 )  

On substituting this expression in ( 4 1 )  and equating 
coefficients of identical harmonics, we get equations 
for the functions ao(x)  and a,(x): 

a / + a o  [h-Uo ( x ) ]  - ' / ,$ , , ( I )  U, ( x )  =0, 

a,"-4/xz+a,[h-U,(x)] -' / ,$, ,(x) U , ( x )  =O.  
( 5 5 )  

The corrections 6Ag1 and 6Ah1 to the eigenvalue Lo, a r e  
expressed in te rms of these functions: 

Numerical integration of ( 5 5 )  and ( 5 6 )  gives 

Thus for 6 << 1  we get from ( 5 7 )  

The relation between the longitudinal correlation 
radius R,,  and the transverse R ,  is easily determined 
in the limit 6  >> 1,  because in this case the character- 
istic y a r e  << 1  and the distribution functions with re-  
spect to y a r e  Gaussian. We have 

K,=(sin y, sin y,)=(y,y,)-exp ( - x / R , ) ,  

Kll=Ccos yh- cos yo))=1/h<yNZy02)) 

= 1 / 2 ( y x y . ) 2 - ' ~ 2  esp  ( -2x /R , )  - e sp  ( - x / R , , ) .  

Therefore for 6  >> 1  we get 
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It is easy to show further that in the l imit  6 >> 1 

We note that, a s  i s  evident from (58), the transition 
from the regime 6 << 1 to the regime 5 >> 1 actually oc- 
curs  a t  5 - 5. 

4. DENSITY OF STATES 

The equation of smal l  oscillations of an XY spin 
chain can be written in the form 

I 
aZ - ~ ~ e = - a ~ l W " ' e ( V  cos 9 (x) +Aces mcp(x) ) , 

uZ (59) 

where u i s  the velocity of spin waves in the pure sys-  
tem; for  applicability of quasiclassical methods, i t  is 
necessary that u/aJ << 1. Arguments s imi lar  to those 
given earl ier1 show that the density of localized spin- 
wave states i s  determined by the distribution function 
m(P) of the quantity /3 within a chain [in contrast to the 
distribution function W(P) a t  the las t  s i te  of the chain]. 
More exactly, for  the density of s ta tes  normalized on 
the mean length of a localized state we shall have 

In the limit 5<< 1,  the form of p(w) differs little from 
the case 6 = 0 ;  therefore, proceeding a s  in Ref. 1 but 
using the correc t  distribution function 

we get 

[w, is defined in (65)]; the previously treated1 fre-  
quency dependence of the conductivity of a charge den- 
sity wave has in fact  the form u(w) - w2 ln2(ws/w). 

In this section we shall further  determine the values 
of w(/3) and p(w) in the opposite limit 5 >> 1;  therefore 
we a r e  interested in the range p -6, "0,. We fix the 
phase cp, a t  an arb i t ra ry  point N within a chain, and we 
introduce the energies, dependent on the phase cp,, 
&i(cpN) and &;(cp,) of the right and left semi-infinite 
chains.' We a r e  interested in the range j3, <<P <<Po, in 
which the density of s tates r i s e s  exponentially with in- 
c rease  of p. In this range, we can write an expansion 

one can easily eliminate pC4'> and pC4'< and obtain ex- 
pressions for  y and p a s  functions of y<, y>, p<, and P': 

The distribution function a is now found with the aid 
of the well known formula of the theory of probability: 

Using (18), (19), and (62), we get, af ter  simple cal- 
culations by the method of steepest  descents [it i s  easily 
shown that for  calculation with asymptotic accuracy, i t  
i s  sufficient to replace (62) by /3 = P> + P'], 

(64) 
The expression (64) was obtained for  the case when 

the order  of the anisotropy is m = 1. This formula r e -  
mains correc t  a l so  when m # 1, if in i t  we make the 
substitution g - m2g.  h his i s  evident from a com- 
parison of expressions (23) and (18) in the limit g>>1.] 

Finally, fo r  the density of s tates a t  a lattice site, 
P( to )  =u(1L'1)'"p(o) 

[the characterist ic  dimension of a s tate is of order 
d = U(J/A)"~], we get with the aid of (60) and (64) 

The expression (65) has a sharp  peak a t  

In an ordered system, with V=O, the edge of the 
spectrum would be located a t  w = w,. The random po- 
tential leads to the appearance a t  w < w, of localized 
equalizing fluctuations with the density (65). At w 2 w,, 
the chief contribution to the density of s tates comes from 
the continuous spectrum; therefore the expression (65) 
is literally applicable at  such frequencies w < wol that 
P(W) << P(w,). 

where y; i s  the phase that minimizes the f ree  energy 
E; of the right semi-infinite chain (we recall  that in the 
limit p >>P, we have pC2k+1' <<P('*'). A s imi lar  expan- 
sion can be written for  &;. 

F o r  the energy of the whole chain, &(q)  = &< + &', we 
have (we retain the f i r s t  two t e rms  in the expansion) 

We now introduce the quantity y, the phase that mini- 
mizes &(cp), and p = (a2&/a(p2)y. Expressions for  y and 
p a r e  obtained, a s  above, by differentiation of the rela-  
tion (61) with respect  to cp. By taking into account that 
for  S>>1 

CONCLUSIONS 

We have investigated the properties of a uniform chain 
of classical XY spins in the field of a weak random an- 
isotropy V and constant anistropy A. It was shown that 
the relative importance of the random and constant 
par t s  of the anisotropy is determined by the rat io of the 
quantities ( J V ~ ) ~ ~ '  and (AJ)'I2; therefore the system be- 
haves a s  an "almost regular" one a s  soon a s  
A >> v(v/J)"~, even though A may be << V (since V <<J). 
If, in particular, A corresponds to an external mag- 
netic field (m=$) ,  then the order  parameter  reaches 
saturation a t  fields much smal ler  than the random 
anisotropy field. A constant part  of the anisotropy oc- 
cu r s  also when the distribution of random axes i s  "not 

1143 Sov. Phys. JETP 54(6), Dec. 1981 Vinokur et a/. 1143 



completely random0: (cosa) + 0 (in this case  m = 1). 
Here A -V(cos a); therefore a s  soon a s  (v/J)"~ <<(cosa) 
<< 1, the system behaves a s  an  almost  regular  one. The 
general  expression for  the o rde r  parameter  o =(cosmcp) 
is given by formulas (28) and (29). The o rde r  para- 
me te r  o is nonzero for  a l l  A#O; Fukuyama's assert ion5 
that in such a system there  is a phase transition, with 
appearance of a n  order  parameter  a t  A =  A, >O, is in 
e r r o r .  

Calculation of the variation of the correlation radii  
with f = 4 A J ~ ~ ~ v ' ~ ~  shows [see (58)] that both radii, R,, 
and R,, decrease with increase of f, and that R,, is al-  
ways smal ler  than R,. Because of the smal l  numerical 
coefficients of f2 in (58), the dependence of R,, and R, 
on f becomes significant when 1; = 3 to 5. 

The fluctuational tail of the density of s ta tes  is given 
(for 1; >> 1) by formula (65), which is applicable under 
the conditions 

these a r e  necessary in order  that i t  may be possible to 
neglect mixing of the fluctuational levels with the 
s ta tes  of the continuous spectrum, beginning with a 
pure (V= 0) system with o = w,. The resul t  ob- 
tained means that introduction of randomly located im- 
purities in a regular  system leads to the appearance of 
an  exponential tai l  of the density of s tates below the 
edge of the continuous spectrum. 

F o r  f << 1, we have for  the density of the fluctuational 
levels 

A s  has already been mentioned, the problem under 
consideration is formally equivalent t o  the problem of 
the catching of a charge density wave on impurities, 
in which calculation of the frequency dependence of the 
conductivity o(w) is of interest. It is interesting to 
note that the behavior of a(w) found by u s  coincides with 
that obtained by Berezinskir6 for  the case  of noninter- 
acting particles in a random potential: 

We a r e  grateful to S. A. Brazovski;, V. L. ~okrovsk;, 
and D. E. ~ h m e l ' n i t s k i i  for  useful discussions of the 
work. We a r e  a lso  very grateful to L. N. Shchur, who 
patiently taught u s  the use of the computer. 

APPENDIX A 

We shall find the distribution function F(P, P ( ~ ) )  for  
p "8,. As will be shown a t  the end of this Appendix, 
in the limit under consideration a l l  fi(2k+1) <<P(2n); there-  
fore in equations of the type (7) we may a t  once drop 
t e rms  containing p(2k+1). The Fokker-Planck equation 
for  F is derived from the recurrence relations (7) with 
A = 0 by use of a total-probability formula of the type 
(11) [we recall  that in the absence of a regular  poten- 
tial, the distribution function F(P. . . ) i s  independent of 
y] . On averaging over the disorder and integrating 
over P(6) .  . . , we get 

(A. 1)  

x=$/p. ,  y = - p " ' / ~ . ,  z=b'"/ B -  

We shall seek  the function F in the form 

F ( x ,  y ) = W ( x ) 6 ( y - a x ) .  (A. 2) 

On substituting (A. 2) in (A. 1)  and then integrating the 
equation over y, we determine the form of the func- 
tion 

w ( ~ )  = x ~ - ~ e - 4 ~ ~ .  (A. 3) 

When P >>P,(x >> I), equation (A. 2) can be rewritten in 
the form 

a 
-0, (A. 4) 

On substituting (A. 3) and (A. 4) in (A. 1) and retaining 
the t e rms  that a r e  important when x - m, we get 

W ( x )  [ ( 4 x y + x Z ( a - 2 ) )  6 ' ( y - a s )  +4x6 ( y - a s ) ]  =O. (A. 5) 

It is easily seen that when a = 2/5, the left side of (A.5) 
reduces to 

which i s  equal to ze ro  in consequence of the equality 
x6(x) = 0. Thus the substitution (A. 2) with a= 2/5 in 
fact gives the solution of (A. 1)  in the limit x-  a; the 
distribution function W(x) has  the form 

w (x) = = ~ ~ ~ e - ' ~ a + ,  x>> I. (A. 6) 

T o  avoid misunderstanding, we note that the b func- 
tion in (A. 2) corresponds simply to the fact that the 
characterist ic  spread of the difference ( y - Ex) i s  much 
smal ler  than x for  x - 00; and in fact i t  can be shown 
that 

We shall now show that when P >> P,, the relation 
((/3'3))7 <<P2 is satisfied. Fo r  this purpose, we con- 
s ider  the Fokker-Planck equation for  the distribution 
function Q(x, z)(x = PIP,, z = P(3)/p,), integrated over a l l  
the other P'"). With the aid of (7), retaining the t e rms  
important when x >> 1 ,  we get 

(A. 7) 

The important difference of this equation from (A. 1)  
consists in the absence of a te rm containing the mixed 
second derivative Q;; this  leads to a substantially dif- 
ferent asymptotic solution: 

Q (x, z )  - J V ( X )  e-5:nT. (A. 8)  

As  is evident from (A. 8), 

It is c lear  that this is t rue  a lso  for  a l l  the other odd 
derivatives p(2k+1'. 
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APPENDIX B 

To determine the asymptotic behavior of Wo(P) when 
P <<P,= (JV')~'~,  i t  is convenient to use an expansion of 
the function &(p)  a s  a Fourier  ser ies :  

E ( q )  =- gum cos( ( ~ - 6 ~ )  m). (B. 1)  
rn=l 

It is natural to suppose that when P - 1  &(p)  ( << P,, the 
coupling of different harmonics produced by the non- 
linear term J ' ( a ~ / a p ) ~  in (3) will be small. If we 
generally discard a l l  harmonics with m 22,  then, a s  
was shown earlier, '  the equation for the distribution 
function W,(a,) will have the form 

a a w ,  . w ,  
da,( -xi- a, ) -0. 

This equation has two solutions: 

In order to explain which of these solutions is real- 
ized, we must allow for the second harmonic of the 
function c(p) .  Substituting in (3) 

e N ( q )  = - a l N  cos ( q - 6 , ,  ,) +a,,  cos 2 ( q - h 2 ,  ,), 

we find the amplitudes a, and a, and the phases 6, and 
6, in the next step: 

a,,~+i=at,n.  cos ( 6 , , ~ - 6 , , ~ + , )  +V cos ( 6 i N + , - a N + r )  

From (B. 3) it i s  easy to obtain the corresponding 
Fokker-Planck equation, which in the dimensionless 
variables 

has the form 

We shall seek a solution of (B. 4) for  x << 1 in the 
self-similar form 

For  R(t, E) we have 

When t >> 1, the principal term of the asymptotic R(t ,  &) 
is determined by the f i r s t  three te rms in (B.5) and has 
the form l/ t .  When t << 1, the most important te rms in 
(B. 5) a r e  the last  two, which give R(t ,  c)  - t. It i s  
clear in advance that discarding of a l l  the higher har- 
monics of &(p)  is not justified if the amplitude of any 
of the remaining ones is of the order of o r  larger than 
unity (in dimensionless variables). Therefore the be- 

havior R(t, &) - l / t  occurs when u 5 1, i. e. , when 
t 5 x - ~ ;  when t >> x - ~ ,  the function R(t ,  E) decreases ex- 
ponentially. Therefore the distribution function is 

ca - 
w , ( x ) =  Jw,(z ,  u ,  E ) ~ U ~ E = X  j ~ ( t ,  ~ ) d t d s - x l n x - ' ,  z<i. (B. 6) 

0 0 

We note here  an important fact: integration of equa- 
tion (B. 4) over u and & leads to the previous equation 
(B. 2) for  W,(x), since the additional te rm 

is much smal ler  than the others for  x << 1. Therefore 
consideration of the second harmonic was necessary 
only for choice of one of the two solutions of equation 
(B. 2). We note that these same considerations permit 
immediate discarding of the solution t-'lnt-I for R(t, &) 
when t >> 1 [which is also allowed by the te rms in (B. 5) 
that a r e  important when t >> 11, since then integration 
in (B. 6) would give 

which i s  not a solution of equation (B. 2) and therefore 
is incorrect. 

We shall now, by using the already known properties 
of W,(x, u, &), find the distribution function Wo(b) [pre- 
viously, only the te rms with m = 1 , 2  were retained in 
(B.l)]. The value of P a s  a function P(x, u, &) i s  given 
implicitly by the equations 

the distribution function W0(P) i s  given by the expres- 
sion 

In 

W , ( B ) =  j j  d x d u j  d e W s ( x ,  a ,  e )G(B-B(s ,  U ,  6 ) ) .  (B. 9) 
0 0 

Elimination of y from (B. 7) and (B. 8) leads to cumber- 
some expressions for P(x, u, &); therefore it is more 
convenient to introduce under the integral in (B. 9)  the 
6 function from equation (B.7) and an additional inte- 
gration over dy: 

The factor 

pP.-'=xcos y-4a cos ( 2 y + e )  

(B. 10) 

is the Jacobian corresponding to integration over dy. 
The principal contribution to the integral (B.lO) comes 
from the range x << 1, x4 <<u << 1, in which 

W s ( x ,  u,  C )  -xIu. (B. 11) 

Substituting (B. 11) in (B. lo) ,  we have 

e ( s i n  y  sin (274- e) ) 0 (cos y-2 sin y c tg(2y+e)  ) 
X .  

lsinyllcosy-2sinyctg(2y+e)I ' 
(B. 12) 

The integral (B. 12) contains a logarithmic divergence; 
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actually, the divergence is cut off because of the bound- 
edness of the x, u region within which W,(x, u, &)  has the 
form (B. 11). We have finally 

(B. 13) 

The function W,@) has the same form as does the distribu- 
tion function of the amplitude of the first  harmonic, W,(x); 
i t  is easily shown that allowance for higher (m 2- 3) har- 
monics also does not change the result (B. 13). 

'"l'he result obtained earlier? W@)-P\  7 =I -100a2/3, where 
a is the ratio of the amplitudes of the second and first har- 
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monics of the potential energy, is  in error .  The properties 
of systems with a random potential containing several 
harmonics will be treated separately. 
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