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The effect of impurities on the properties of a system with competing superconductive and dielectric 
transitions of the Peierls type is studied. The case is considered when in the absence of impurities the system 
would be a dielectric. It is shown that under three-dimensional conditions a sufficiently high impurity level 
induces a transition to the superconductive state. At a certain concentration the superconductive parameter is 
maximal. Further increase of the concentration destroys the superconductivity and restores the dielectric 
properties. Some arguments are presented which indicate that in one or two dimensions impurities do not 
induce superconductivity. The possibility of applying the present model to superconductivity in the organic 
superconductor (TMTSF),ClO, is discussed. 

PACS numbers: 74.10. + v, 72.60. + g, 77.90. + k, 71.55. - i 

1. INTRODUCTION 

In recent experiments' superconductivity was ob- 
served  at  atmospheric pressure  in the organic conduc- 
tor  (TMTSF)2CI04. This conductor belongs to the fami- 
ly of organic sa l t s  (TMTSF)2X, where X is an anion of 
high symmetry. Superconductivity had already been 
observed2 in one of the compounds of this family, 
namely (TMTSF)2PF,; however, in this ca se  a pres-  

sitions impurities may also lead to superconductivity, 
even though in ion-disordered samples and dielectric 
s ta te  i s  favored. As a result  of the closeness of the 
transition temperature to the superconducting and di- 
electric s ta tes ,  the concentration of impurities can be 
very smal l ,  s o  that 1 >> 5 , .  The situation considered 
here  differs from that of Larkin and ~ e l ' n i k o v , ~  where 
the impurity concentration was assumed fairly large. 

- .  

s u r e  of 6-10 kbar  was necessary. The difference be- 
tween these two isostructural  compounds i s  very slight; 2. CHOICE OF MODEL 
in particular, the volume of the unit cel l  is V = 694.3 A3 We consider a system of conducting filaments. An 
and V =  714.3 A3 for X=ClO; and PF ,  respectively. attraction between electrons in the s ame  and different 
Nevertheless, there is  a basic difference in that the filaments leads to the possibility of formation of both 
orientation of the C10; anions is random, whereas that superconducting and Peierls states. In the case of 
of  the PFG anions is regular; thus, the compound strong one-vertex repulsion a situation may a r i s e  
(TMTSF)2C104 is characterized by internal disorder. 

where a 4k, rather than a 2k, anomaly occurs.  In both 
This disorder may be the main reason for the exis- 

these cases  a charge density wave (CDW) occurs  in the tence of superconductivity at  atmospheric pressure ,  if 
dielectric s tate.  We assume that the transition tem- there is a competition in the material  between a super-  
peratures a r e  close together. A random potential will conducting s ta te  and a dielectric s ta te  of the Peier l s  
lead to fluctuations of the CDW period (forward sca t -  

tY pe . tering) and to pinning of the CDW (backward sca t te r -  
The question of the effect of impurities on the com- ing). 

petition between the superconducting and Peier l s  t ran- 
We consider below the ca se  of s m a l l  concentrations. 

sitions has been investigated many t imes .3'5 This 
In this limit only backward scattering is important. To question is  of interest  because in the self-consistent- 
describe a sys tem having competing superconducting field approximation impurities suppress the dielectric 
and dielectric s ta tes ,  the author in a previous paper6 

s ta te  and do not affect the superconducting one.4 How- wrote the f r ee  energy, from phenomenological con- 
ever,  Larkin and ~ e l ' n i k o v  showed5 that taking fluctua- 

siderat ions,  in a Ginzburg-Landau form. Taking into 
tions into account in a one-dimensional metal leads to 

account interactions with impuri t ies ,  this energy is 
suppression of both transitions by impurities; this given by 
suppression occurs when the electron mean free path 
1 becomes l e s s  than the radius 5, of electron pairs. F =  j [ - ( ~ ~ l ~ l ~ + ~ ~ l x l ~ ) + ~ / ~ ~ ( l ~ l ~ + l ~ l ~ ) ~  

Below a model is propounded in which the transition 
temperatures to the dielectric and superconducting 
s ta tes  a r e  close to one another. Such a model was 
used by the author%o describe the properties of 
(TMTSF)2PF,. Small  additional interactions will then 
strongly affect the choice between the dielectric and 
superconducting states.  It was shown6 that many prop- 
e r t ies  of (TMTSF),PF6 may be understood if we assume 
that the effects of commensurability, which may faci- 
litate the occurrence of superconductivity, a r e  impor- 
tant. It turns out that in a model with competing tran- 

The f r ee  energy (1) contains two complex o rde r  
parameters ,  A and x ,  which determine the magnitudes 
of the superconducting and dielectric gaps. In accor-  
dance with the assumption that the transition tempera-  
tures  a r e  close,  we assume that the inequality 

is satisfied. In the following we assume that al l  the 
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difference in ease  of formation of the dielectric and 
superconducting s ta tes  i s  included in the difference be- 
tweenA, andA2. Strictly speaking, of course,  the co- 
efficients of the gradients of A and x in (1) a r e  differ- 
ent, and the coefficients of A and x in the fourth-order 
te rm may also be different; however, to simplify the 
formula we shall take them equal. The appropriate 
generalizations of the calculations ca r r i ed  out below 
a r e  straightforward. 

The third te rm in (1) contains a sum over the three 
directions in the crystal .  A quasi-one-dimensional 
system sat isf ies the inequality 

The presence of impurities in the metal leads to the 
appearance of a random potential V(r). The potential 
V(r) in (1) describes backward scattering and i s  given 
by 

where V,, is the scattering amplitude a t  the CDW wave 
vector Q at  a single impurity and g i s  the magnitude of 
interaction of the electrons. The sum (3) i s  taken over 
al l  the impurities. 

A more detailed description of the form of the te rm 
linear in x has been given e l s e ~ h e r e . ~ ' ~  We do not 
take into account the destruction of dielectric ordering 
connected with breaking of pa i rs ,  which i s  analogous 
to that considered by ~ u l a e v s k i r . ~  

For  a random distribution of impurities and a weak 
interaction with them the distribution of random fields 
is Gaussian with corre la tors  

where y describes the impurity concentration and is 
given by 

The order  of magnitude of the coefficients in (1)-(3) i s  
given by the formula 

In (5) we have 
T,-Eo e x p ( - l l g N ( O ) ) ,  

where N ( 0 )  i s  the density of s ta tes ,  and v the velocity, 
at  the Fermi  surface. 

The coefficients C, and C, depend in a complicated 
way on the hopping of electrons from chain to chain and 
on the interaction of different chains. If the coeffi- 
cients C2 and C, a r e  not too smal l  and the temperature 
T is not too close to the cri t ical  temperature,  al l  
physical quantities a r e  determined by the condition that 
the free energy be a minimum, and the contribution 
of thermodynamic fluctuations be small .  The condition 
for such fluctuations to be smal l  can be written in the 
form 

The inequality (7) shows that over a wide range of the 
parameters the contribution of thermodynamic fluctua- 
tions i s  small .  A fairly la rge  amount of hopping does 
not necessarily destroy dielectric pairing, since the 
lat ter  requires only the presence of parts  of the Fermi  
surface which coincide under parallel translation, and 
these need not be planes. 

. It is convenient to introduce a four-component order  
parameter  C with the following components 

where x' , A' and n n  , A N  a r e  the rea l  and imaginary 
par t s  of the dielectric and superconducting order  pa- 
rameters .  When the inequalities (2) and (7) a r e  fulfill- 
ed  and there is a fairly sma l l  impurity concentration, 
the modulus of the vector C is rigidly fixed by the con- 
dition that the f ree  energy (I), without taking account 
of the impurities, be a minimum, and is described by 
the formula 

Assuming that Eq. (9) is fulfilled, we write the vector 
C in the form 

where S is a four-component unit vector. 

Going over to new coordinates 

I=., (C, ) '" ,  y=uz (C, )  '", z=u, ( C s )  '" (11) 

and renormalizing the constant y in the rule that deter- 
mines the distribution of random potentials (3) by the 
formula 

-+ t. =TI ( c , c ~ C ~ ) ' " ,  (12) 

we represent  the free energy functional (1) in the form 

where 51 is the volume of the sample. 

In expression (13) the distribution of random fields 
V is described by formula (3), with the substitution 
(12). The vector S, describes the dielectric o rde r  pa- 
rameter  and the vector s,, the superconducting one. 
The vectors S, and S,, a r e  mutually perpendicular and 
satisfy the condition 

The vector V has components 

The anisotropy parameter  a characterizes the degree 
of proximity of the superconducting and dielectric t ran- 
sitions and is given by 

a=A,-A,.  (15) 

The minimum of the energy (13) determines the be- 
havior of the system for a given impurity concentra- 
tion; the existence of a nonzero vector S,, indicates 
the appearance of superconducting properties in the 
system. The condition of a minimum of the free energy 
(13) will of course determine only the modulus of the 
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vector S,,, not i t s  direction. The minimum corresponds -AX=-V, (u) sin X-Vz(u) cos X. (25) 
to a constant direction of the vector S,, in space;  
therefore in what follows we sha l l  take S,, to be a s ca -  
l a r  quantity which defines the modulus of the super-  
conducting o rde r  parameter .  In subsequent sections 
we shall investigate the solution which real izes the 
minimum of the functional (13) for various impurity 
concentrations. 

3. INSTAB1 LlTY OF THE DIELECTRIC STATE 

So f a r  we have made no assumption about the sign 
of a in (13). We shall  res t r ic t  consideration to the 
more  interesting case  a > 0 ,  when in the absence of 
impurity the dielectric s ta te  with S,, = O  is favored. The 
presence of a random potential leads to the appearance 
a t  some impurity concentration of a nonzero value of 
el,), where the angular brackets  indicate an average 
over the impurities. We may verify this by examining 
the stability of the solution with St, = 0. Expanding the 
free energy (13) up to t e rms  quadratic in S,, and using 
the relation (14), we obtain 

f (1) =- (VX)'+ V, cos X+V, sin ~ + a ,  ( 1 6 4  

In  expressions (16) and (17) the angle x determines the 
vector Si by the formula 

s,= I S, I (cos X, sin x). (18) 

Stability of the dielectric s ta te  requires that the 
quadratic form (16) be positive definite. This condi- 
tion is  equivalent to the positivity of the eigenvalues 
E of the corresponding Schrtidinger equation. At the 
cri t ical  point E tends to zero ,  and the Schrtidinger 
equation can be written in the form 

We represent S,, in the form 

Substituting (20) in (19) and averaging, we obtain 

( f (u)  )(Sll)+(f(u)$)=O. (21) 

Subtracting (21) from (20), we find in the f i r s t  approxi- 
mation 

where the Green's function G ( u )  sat isf ies the equation 

-AG ( u )  =6 (u). (23) 

With the help of (22), Eq. (21) takes the form 

The cri t ical  concentration is found from the condition 
that the expression multiplying S,, in (24) tends to zero .  
T o  calculate the averages in (24) we must find the solu-  
tion x which minimizes the f r ee  energy F,, in (17); this 
will enable us to find, with the help of (16a), the func- 
tion f ( r )  which enters  in (24). The extremal solution 
~ ( r )  is defined by the equation 

Expanding Eq. (25) in x and solving i t  by iteration, we 
verify after  substitution in (16a) that 

For  the calculation i t  is convenient to use the dia- 
g ram technique developed by Larkin and the author.? 
Consideration of the t e rms  in the perturbation-theory 
s e r i e s  shows that the equality (26) i s  satisfied in a l l  
o rde r s  of perturbation theory. Calculations for  the 
second t e rm in (24) by the s ame  method give the final 
condition for  appearance of a nonzero value of (S,,): 

where G(k) is the Four ier  component of the function 
C ( u ) .  

The integral in (27) over the Green's  function G(k) de- 
fined by (23) diverges a t  large momentum. Imposing an  
upper cutoff at  a momentum ko -C f l2/t0 and going over 
to dimensional units, we obtain with the help of (4) and 
(5) 

l o  I = -  
TI-T. 

(28) 

where 1 i s  the mean free path, given by the formula 

and lo is a length of o rde r  

where to is the pair radius. 

Consideration of higher o rde r s  of perturbation theory 
than those used in the derivation of (24) shows that for- 
mula (28) i s  valid for sufficiently long mean f ree  paths 
1 >> I,, for which the inequality 

is satsified. 
- - 

For  y < y, there is no superconducting order .  The 
formula which describe the dielectric s ta te  can be ob- 
tained f rom the solution of Eq. (25). An investigation 
of Eq. (25) was car r ied  out in previous work,? where in 
particular the absence of long-range o rde r  was proved 
to al l  o rde r s  of perturbation theory and the s t ruc ture  
factor  

n(r)=<x(O)x*(r))  (32) 

was calculated. In dimensional units n(r) has the form 

When the condition (31) is fulfilled the function n ( r )  
changes slowly over a range t o ,  which indicates the 
applicability of expression (33) under the assumptions 
made above. If +r,, the superconducting o rde r  pa- 
rameter  is nonzero. This region is investigated in the 
next section. 

4. THE SUPERCONDUCTING REGION 

To investigate the region in which the superconduct- 
ing order  parameter  is nonzero we write the equations 
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which determine the minimum of the f ree  energy (13) in 
general form. Varying (13) with respect  to S ,  and using 
(14), we obtain 

S ,  ( I - S L z )  -''A (1-SL2) 'Is-AS,-V-aS,=O. (34) 

In accordance with the assumption of a transition to 
the superconducting s ta te  for 7 > <, we assume that 

( s , 2 > < 1 .  (35) 

We shall show below that this condition i s  fulfilled for 
a wide range of concentrations. Keeping only the linear 
aild cubic te rms in S,, we write Eq. (34) in the form 

-AS,-?+, (S,AS,) - S ,  ( V S , )  '-aS,=V. (36) 

The nonlinear t e rms  in (36) can be treated by the 
method of self-consistent fields. Carrying out a de- 
coupling according to the formula 

S,, (SlkASlj ,)  +sit(SLfiASl~)+(SliASl~)SLfi, 

S,,CS,,VS,,-Sit( VSikVS, , )  

and calculating the superconducting order  parameter  
(S,,), we obtain 

1 
( S , , ) = I  -- <Sl2>=I  - - J 8 k  

2 (2n) ( k l +  b-a)  ' 
v b = - j  kz d z  = v G ( 0 ) .  

(Zn)' (kz+b-a) '  

An estimate of the corrections to the self-consistent 
field approximation shows that they may be neglected 
if condition (35) is satisfied. 

Calculating the integral in (37) and using relation 
(27), we have 

An analysis of the expression (38) shows that a s  a func- 
tion of 7 the quantity PI,) has a maximum which is at-  
tained for 7=vc. At this point the value of the super-  
conducting order  parameter  (S,,),,, i s  equal to 

When condition (31) i s  fulfilled the quantity (S,,) , ,  i s  
close to unity. Moving away from 2y-c leads to a de- 
c rease  of (S,,) and an increase of (s:). The condition 
(36) allows us to write  down the extent of applicability 
of (38). This condition may be written in the form 

At the edges of the region defined by the inequalities 
(40), (st) i s  of order  unity. In the previous section it 
was shown that for  smal l  concentrations this leads to 
the disappearance of superconductivity. In the region 
of large concentration, 7 2 G(O), vanishing of super-  
conductivity is also to be expected. This region is 
characterized by strong pinning of CDW's to impuri- 
t ies ,  such that the vector S follows the variation of 
the vector V in space and accordingly has a component 
S,, equal to zero.  

In the superconducting region the existence of a finite 
(S,,) i s  accompanied by quite strong correlations of the 
dielectric order parameter .  For example, the co r r e -  
lation function II(r), defined by expression (32), has the 

form 

This formula i s  also applicable when the inequality 
(40) i s  satisfied. On the boundary between the super-  
conducting and dielectric regions the correlation 
lengths and pre-exponential factors in expressions (33) 
and (41) a r e  of the s ame  order  of magnitude. At the 
s a m e  t ime it remains unclear whether the correlation 
length in n ( r )  has a singularity a t  the pointy,. 

F o r  sufficiently large impurity concentration o r  suf- 
ficiently weak interaction between different filaments 
the inequality (31) is no longer satisfied and the theory 
developed in the previous section becomes inapplicable. 
In this case  we would guess that the superconducting 
o rde r  parameter  (S,,) would not appear for  any concen- 
tration, if a > 0. A weak interaction between filaments 
can result in a one- o r  two-dimensional situation. In 
the next section we shall give arguments which suggest 
that in such a low-dimensional case  superconductivity 
cannot occur for a > 0. 

5. LOW DIMENSIONALITY 

If the spatial dimensionality d is less  than three,  the 
formulae obtained in the two preceding sections a r e  in- 
applicable, s ince for any impurity concentration the 
discarded t e rms  a r e  of the same order  of magnitude a s  
those kept. This is a result  of the large contribution 
from the small-momentum region. The simplest case 
to consider is that of smal l  concentrations o r  suffi- 
ciently strong impurities in a one-dimensional system, 
which corresponds to strong In the notation 
used above, strong pinning se t s  in if the inequality 

i s  satisfied, where r ,  i s  the mean distance between im- 
purities. In this case  the representation (3) in te rms of 
individual impurities i s  essential; the transition to the 
Gaussian distribution (4), which was made in the pre- 
vious sections for the three-dimensional case,  i s  now 
invalid. 

Substituting (3) in (16), (16a) and (17), we find that 
the dielectric s ta te  is s table  i f  the quadratic form Fz 
is positive definite, where 

where the function ~ ( u )  minimizes the functional F,: 

1 dx 
F F ~  [ (d;; ) - PI cos (x+Qu.) ] du, Q= (C,)"Q. (44) 

It is easy to s e e  that when the inequality (42) is sa t -  
isfied the minimum of (44) is obtained for 

where rn i s  an integer. The t e rm in (dX/du)2 i s  small  
and i ts  contribution may be neglected. Substituting the 
solution (45) in (43), we can convince ourselves that the 

1201 Sov. Phys. JETP 54(6), Dec. 1981 K. B. Efetov 1201 



quadratic form (43) is everywhere positive definite. 
The impurities only make the "dielectricization" of the 
s t a t e  easier .  . 

In the opposite limit of concentrated and weak impur- 
i t ies  the analysis i s  much more  complicated. In both 
the one- and two-dimensional cases  slow spatial  varia-  
tions a r e  essential.  Fo r  a qualitative investigation we 
use the idea of partitioning the system in  i t s  ground- 
s ta te  into domains9110 with dimension L ,  over  which the 
change of y, i s  of order  unity. The formation of do- 
mains leads to a loss of elastic energy in (44), but in 
return there i s  a gain in the energy of interaction with 
impurities because of the phase matching. The energy 
per unit volume can be written in the form 

Minimization of F' [Eq. (46)] with respect  to the do- 
main s i ze  L gives the characterist ic  domain s i ze  Lo: 

The characterist ic  energy E multiplying $2 in (43) can 
be written in the form 

Substitution of (47) in (48) gives 

It is c lear  from this formula that for spatial  dimension 
d 2 the characterist ic  energy in (43) i s  everywhere 
positive for  a > 0, which indicates the stability of the 
dielectric s ta te  for any impurity concentration. 

Expressions (45)-(49) have of course only a qualita- 
tive significance and cannot s e rve  a s  a rigorous proof 
of the stability of the dielectric. For  d 2 3 la rge  mo- 
menta a r e  important for the occurrence of supercon- 
ductivity, and therefore i t  would be insufficient to take 
into account only the contribution of slow variations to 
the characteristic energy E . 

6. CONCLUSION 

It has been shown above that impurities may lead to 
the onset of superconductivity if there is a competition 
in the system between transitions of the superconduct- 
ing and Peier l s  types. A further increase of impurity 
concentration destroys superconductivity and evidently 
leads again to a transition to the dielectric s tate.  The 

sequence just described, dielectric-superconductor- 
dielectric, i s  possible in a space with dimensionality 
d 2 3. In the lower-dimensional system with d 2 no 
such sequence takes place and the dielectric s ta te  a l -  
ways occurs.  A characterist ic  feature of the transition 
to the superconducting s t a t e  i s  the sensitivity of the 
superconducting order  parameter ,  and hence of the 
transition temperature of the superconductor, to im-  
purity concentration. 

The model considered above may shed light on the 
simultaneous existence of superconductivity in the o r -  
ganic conductor (TMTSF)2C104 (Ref. I ) ,  which i s  char-  
acterized by internal disorder in the distribution of the 
C10; anions, and i t s  absence in the ordered crystal  
(TMTSF),PF,, which has  the s ame  s t ruc ture  and close- 
ly s imi lar  dimensions of the unit cell.  The quite strong 
variations of cri t ical  temperature from sample to sam- 
ple in (TMTSF)2C104, which a r e  evidently connected 
with sample purity, a r e  also evidence in favor of the 
validity of the above model for  this material .  It would 
be very  interesting to investigate experimentally the 
properties of the organic s a l t s  (TMTSF),X a s  a function 
of c rys ta l  purity by varying the impurity concentration 
in a controlled way. 

The author thanks A .  I. Larkin for discussions on the 
results  of this work. 
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