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Doubly periodic solutions are constructed in the one-dimensional Peierls continuum model with arbitrary 
numberp of electrons per atom. The energy of the ground state of the system is obtained as a function of the 
concentration of the total number of particles and of the spin angular momentum. The dependence of the 
magnetic moment m on the external field h is investigated. This dependence is characterized by a critical 
value h, # 0 such that a spontaneous moment is produced in the system at h > h,. As m-+ 0, solitons that 
carry out localized spin states are considered against the background of the periodic structure. These solitons 
correspond to single-particle states of a system with one extra particle. The triplet and electron-hole 
excitations are each a sum of two single-particle states. The soliton charge q,, in contrast to the spin, is 
partially screened at p f l ,  so that in the Frohlich model, at Ip - l/>A/c,, the local charge vanishes like 
q, -eA/.c,Ip - 11, where A is the gap on the Fermi surface, E, is the Fermi energy at p = I ,  and e is the 
electron charge. 

PACS numbers: 71.50. + t 

1. INTRODUCTION 

Most quasi-one-dimensional conductors reveal  lat- 
tice superstructures that lead to the appearance of a 
gap E ,  on the Fe rmi  surface of the electrons. The 
theory of this phenomenon i s  frequently based on the 
Peier l s  model. ' In this model, the direct  interaction 
between the electrons i s  left out, but account is taken 
of the lattice-deformation potential 9 (x). In addition, 
i t  is assumed2 that the frequency w p h  corresponding to 
the deformation mode is smal l  compared with 
E, : wph <<Ep This condition makes i t  possible to con- 
sider  lattice deformations a s  stat ic  and to disregard 
quantum effects.' As  a result ,  the Peier!s model is 
compatible with a cor rec t  investigation on the basis  of 
the self-consistent-field approximation. The adiabati- 
city conditions a r e  well satisfied in quasi-one-dimen- 
sional compounds of the KCP family and in polyacety- 
lene, where E, /wph-10.  It is important that the same 
compounds a r e  distinguished by a la rge  width of the 
electron band t>>E,. a s  a result  of which the neglect of 
the repulsion of the electrons a t  one s i te  is justified, 
whereas the Coulomb long-range action is effectively 
screened. 

The properties of the Pe i e r l s  model depend essen- 
tially on the number and degree of filling of the elec-  
tron bands in the metallic phase. Investigations of the 
continuum models for  one electron show that the 
wave vector 2n/l of the superstructure 9 (x) coincides, 
accurate to the wave vector 2n/a of the reciprocal lat- 
tice of the main structure,  with the diameter  212, of the 
Fermi  surface in the metallic phase. Such a super-  
s tructure can be regarded a s  singly periodic. 

At the same time, many physical problems cal l  f o r  
the investigation of quasiperiodic lattice deformations, 
which a r e  characterized by incommensurate wave num- 
bers  Q i = 2 n / l i .  In the ground state of the system, dif- 
ferent periods l i  could appear i f  the metallic phase con- 
tained several  groups of electrons characterized by dif- 
ferent Fermi  momenta k p ) .  Such a problem a r i s e s ,  
obviously, for  a system in a strong magnetic field, 
when k,4 + k,.) for  different spin projections a, = t +. 

Another possibility can be realized in organic con- 
ductors with complex molecules that contain usually 
large numbers (M) of n  electrons. In these systems,  
the appearance of severa l  unfilled bands can occur a t  
M 2 T/ t , , ,  where T and t,, a r e  the hopping integrals be- 
tween neighboring atoms in the molecule and between 
neighboring molecules in the conducting chain, respec- 
tively. Typically, T 2 10 eV, t,, -0. 5-1 eV and 
M - 5-1 5 ,  i. e.  , the condition that many bands a r e  pre-  
sent can actually be satisfied. 

Quasiperiodic solutions a r e  likewise a convenient 
means of finding solitons against the background of 
periodic structure,  by going to the limit of infinite 
periods l i  - -, i '- 1  at  a fixed fundamental period of the 
supers t ruc t .~re  i,. Investigations of the solitcns a r e  
necessary to determine the electronic excitations in the 
system (see  the review5). From along the known 
periodic  solution^,^.^ this limiting transition was used 
to obtain spinless charge excitations a t  p= 1 (domain 
walls3) and a t  p=O (polarons4). To  determine the spec- 
trum of spin excitations a t  a rb i t ra ry  p  it is already 
necessary to use doubly periodic structures.  

The most interesting changes in the properties of a 
system occur in the concentration region I p  - 1 1 
adjacent to the limit of the half-filled band p= 1. This 
region corresponds to the experimental parameters of 
the intensively investfgated doped polyacetylene6" 
trans-(CH),. At p = 1  the essential wave vectors of the 
lattice deformations lie near  the boundary of the Bri l-  
louin zone i n/a ,  a s  a result  of which i t  is necessary to  
take exact account in the electron-phonon interaction 
the umklapp process of lowest (second) order.  At the 
same time, one can neglect the umklapp processes of 
higher order  k >2 which a r i s e  a t  p + 1  and whose am-  
plitudes have a relative smallnessRsg 

As  a result  we a r r ive  a t  a continuum modelq that con- 
tains a rea l  deformation field ~ ( x )  

Q ( x )  -A (x) cos (nxla) . A (x) I,=,=A,=const. (1) 
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where the function A(x) varies slowly over distances of 
the order of the interatomic distance a. 

At a large value of the concentration 

where v, is the Fermi velocity of the center of the band 
of the metal, the FrShlich limit is reached,'' a t  which 
the influence of the fundamental lattice becomes insig- 
nificant. In this limit it i s  p ~ s s i b l e ~ . ~  to describe the 
system by a complex field &x) :  

@ ( 5 )  -Re A ( 5 )  exp (2 lk ,x) ,  (3) 

where i ( x )  varies slowly over distances of the order of 

The transition between the two limits takes placeS con- 
tinuously by development of the superstructure ~ ( x )  in 
(1) from a soliton lattice to an almost sinusoidal defor- 
mation (3). 

The elementary electronic excitations cannot be band 
states in the potential of the superstructure A(x) of the 
ground state, because of the strong self-localization 
effect1' (see the review5). At p =  1 there are12-l4 spin- 
less (s  = 0) excitations with charge q = * e,  o r  else 
uncharged excitations (q = 0) with spin s = 1/2 of the 
domain-wall type 

with energy E ,  < A,, a s  well a s  symmetrical pola- 
rons15-l7 (bound states of an electron and two walls), 
which carry both a charge i e and a spin 1/2, with en- 
ergy ED: 

We note that 

In the limit of the FrShlich model (2), (3)  there a r e  
electronic excitations of only one type1',13,18 which car-  
ry  a spin but a r e  not charged: 

where E ,  is the excitation (soliton) energy, and cp and x, 
a r e  arbitrary constants. 

Thus, the question ar ises  of the change of the exci- 
tation spectrum with changing p. It is seen from the 
preceding paper3 that a t  p #  1 the charged walls (4) with 
q = * e, s = 0 cannot be regarded a s  excitations of the 
system, since they make up the periodic superstructure 
of the ground state of ~ ( x ) .  It follows from our r e -  
sults15 that the wall (4) with q = 0, s = 1/2 cannot be sta- 
ble in the presence of another wall with q = * e ,  s = O .  
Two walls of the type (4) with s = 0 and s = 1/2 should 
coalesce into a polaron (5), with an energy gain 

It is therefore natural to assume that with increasing 
p the character of the single-electron excitations 

FIG. 1. 

changes gradually from type (5) at n << A,/u, to type (6) 
a t  n >> &,/a,. 

A solution of this problem will enable us to determine 
the change of the system energy W(N) when the number 
N of the electrons is changed by unity, i. e . ,  to find the 
chemical potential 

We shall obtain simultaneously the triplet excited spin 
states of the system. 

We construct in this paper doubly periodic solutions 
in the Peierls  one-dimensional continuum model with 
the number p of the electrons per atom satisfying the 
condition ( p - 1 ( << 1. We obtain the energy of the 
ground state of this system W(n, m) a s  a function of the 
concentration of the total number of particles n =n, 
+ n, = ] p - 1 I / a  and of the spin moment m = n, - n,, where 
n, and n, a r e  the concentrations of the electrons with 
different spin projections on the direction of the mag- 
netic field H. We investigate the function m(H), which 
is characterized by a critical value H = H ,  such that at 
H > H ,  a spontaneous moment m # 0 i s  produced. At 
m # O  the superstructure of the lattice becomes doubly 
periodic, and an additional allowed and additional for- 
bidden band appear in the vicinity of the Fermi level 
(Fig. 1). 

We consider, a s  m - 0, solitons against the back- 
ground of a singly periodic superstructure, which 
carry  localized spin states. We investigate the soliton- 
charge screening, which turns out to be negligible a t  
n << 5;' and almost complete a t  n >> in accordance 
with (4) and (6). 

2. GENERAL RELATIONS 

We write down the electron wave functions +(x) in the 
form 

X Z  
, ( x )  =2z1z [ u ( x )  cos - +iu ( x )  sin - 

2a 2a "' I 
The components of the spinor $= (u, u) and the potential 
A(x) from (1) a r e  connected by an equation for the ei-  
genvalues of the energy E of the electrons: 

(the prime denotes the differentiation with respect to x). 
Here and elsewhere the Fermi velocity is equal to 
unity. From (8) we obtain the equivalent equations 

uEN+ ( E Z - p )  uE=O, p=Ai+ A'; 

uEN+ (E'-q) uE=O, q=A2-A'. 

The energy functional W of the system i s  of the form 
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where f,(E) a r e  the occupation numbers of the s ta tes  
with energy E and spin u, and take on the values f,(E) 
= 0.1, while g is the electron-phonon interaction con- 
stant. The stationary s ta te  of the system is determined 
from the condition that the functional (10) be an  extre-  
mum with respect  t o  the field ~ ( x )  for  specified total 
numbers of the particles N, = n, L, where L i s  the length 
of the system. 

We introduce the Fe rmi  levels p, and the thermody- 
namic potential @(pa) that depends on them: 

where p and H a r e  the total chemical potential and the 
external magnetic field, while p, i s  the Bohr mag- 
neton. The variation in (11) must  be car r ied  out with 
specified distribution functions f,(E). These functions 
a r e  determined further from the condition that the 
free energy of the system F=@-  TS be a minimum, 
where T is the temperature and S the entropy of the 
system. Confining ourselves only to the limit T = 0, 
we must assume that 

Fo r  the variation of (10) with respect  to A(x), we note 
that in accordance with (9) 

Account i s  taken he re  of a fact that can be derived from 
(8), namely that the components u(x) and v(x) a r e  inde- 
pendently normalizable: 

With the aid of (12) we obtain from (10) and (11) 

From (8) i t  follows that 

A ( x )  = - u p ' ( x ) l u 0 ( x ) ,  q ( x )  = u ~ ( x ) / u o ( x ) ,  

uo ( 5 )  Is-0. 

(15) 

Using ( l5) ,  we can write Eq. (14) in the form 

Equation (16) can be integrated and the integration con- 
stant can be determined from the normalization condi- 
tion (13). We obtain 

All we lose on going from (14) to (17) a r e  the self-con- 
sistency conditions on the particular case  of the homo- 
geneous solution 

1 u E ( x )  I =(2L)- '" ,  

corresponding to p = 1. 

Substituting (15) in the second equation of (9), we ob- 
tain 

The system (18) and (16) o r  (17), with allowance for 
the normalization condition (13), determines the sought 
s e t  of wave functions. We shall  show that this system 
h a s  solutions in the c lass  of finite-band potentials q(x). 
The Schradinger equattons (18), whose spectrum has 
only a finite number of forbidden bands, have been in- 
vestigated in detail ( see  the  review^'^.^^) in connection 
with solutions of the Korteweg-de Vr ies  (KdV) equa- 
tions with respect  t o  q(x ) .  Our problem calls  for  ad- 
ditional account of the functional connection (16), (17) 
between the solutions v,(x). It turns out that for  finite- 
band potentials Eqs. (17) reduces t o  an  algebraic equa- 
tion. 

We shall consider specifically the case  of interest  to 
us, that of a spectrum with two forbidden bands G , , , ,  
but the derivation presented below can be generalized 
in elementary fashion to  the case  of an arb i t ra ry  num- 
b e r  of forbidden bands. We define the boundaries of 
the spectrum E ,  = (E-, A, ,  E,, E,) a s  shown in Fig. 1, 
where the forbidden bands G,,, a r e  hatched: 

GI: E-'<E2<E,', GI: E22<E2<E+Z. 

According to Novikov et  al. 19'21 the two-band potential 
q(x), i t s  eigenfunctions v,(x), and the state density 
dN(E2)/dEZ a r e  expressed in t e rms  of two (in accord 
with the number of forbidden bands) functions y,,,(x) 
which a r e  defined in the regions of the forbidden bands 
GI ,2: 

E-'<y , (x)  <E,'. E ,z<:z (x)  <E+2,  

namelv 

The normalization coefficient A ( E )  in (19) is equal to 

A ( E ) = (  1 (EZ-yl  ( x ) )  ( E Z - y z ( x ) )  I ), (20) 

Here and below (. . .), denotes averaging over the length 
of the system: 

F o r  the potentials we have 

q ( x )  =E+ZfE-Z+Ei2+ E Z 2 - 2 ( y 1  ( I )  + y2 ( x )  ), 

The number of s ta tes  cLV in the interval dE2 is 

Ldp LdE2 d ~ = - = -  ( 1  ( E z - y ,  (x)) (E2-yz  ( x ) )  I), 
2n 2R"(E2)  

where 

p(EZ{=+R"(EZ)<{E2-y,(x)) ( E 2 - y , ( x ) ) } - ' >  (23) 

is the wave vector of the function (19). With the aid of 
(20) we can rewrite (22) in the form 
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The following important additional conditions also ap- 
ply19,20 

Equations (25) ensure uniqueness of the momentum 
p(E2) continued from the intervals of the forbidden 
bands to the Riemann surface y2 = R(E2). 

We present also for completeness differential equa- 
tions that determine the family of functions 

In this case q(x) satisfies the second KdV equation 

q"v'-5(q')Z - 10qq'+loq=+CIq=CI. 

It i s  remarkable that in the subsequent calculations no 
use i s  made of the coordinate dependences o r  of the 
equations for the functions y,, , (x) .  

We substitute (19) in (16) and (17). We then obtain 
from (17) 

IEz-y,(x) I IEZ-yZ(z)  I - 
A ( E )  

E.0 

Equation (26) is of the form 

where B,, B,, B, a re  constants. In analogy with (16) we 
obtain 

whence, with allowance for (21), 

BIB'+ B1(A'"6A2A') =0. 

The solution of Eq. (28), which is of the form of a 
modified KdV equation, can be only a singly periodic 
potential3 with one forbidden band E? <E2 < E : .  TO ob- 
tain a potential with two forbidden bands i t  is necessary 
to require B, = B ,  = B3 = 0. As a result we obtain from 
(26) three self-consistency conditions: 

Using the relations (19), we find that Eqs. (29)-(31) a r e  
linearly dependent. We shall use therefore hereafter 
only two of them. 

The investigated state of the system i s  characterized 
by six parameters: p,, o = t +  and E,( i=  l , 2 ,  +, -). 
Equations (30) and (31) and the conservation laws for the 
number of particles with each spin projection 

imposes for constraints on these parameters, which 
define, say, E i  in terms of p,. The remaining two 
parameters a r e  determined from the condition that the 
total energy of the system (10) on the class of two-band 
potentials be a minimum, o r  e lse  from the extremum 
condition on a larger class of potentials. 

We assume in this paper that the Fermi levels p, 
pass through the forbidden bands of the potential. This 
assumption is sufficient for the investigation of the 
single-electron states, when we must consider remote 
solitons with a local level E,: 

In this case 

This assumption i s  natural also in strong fields 
h >>A,, m >> A1/vF. In this limit the deformations 2kFt 
and 2kF+, and accordingly the gaps G ,  = {E:, E:} and 
G, ={E:,  E?} on the Fermi levels and should be approxi- 
mately independent. 

We shall assume hereafter that p < 1, i. e. , that the 
electron band is on the whole less  than half filled (the 
case p > 1 differs only in that the electrons a r e  re-  
placed by holes). This means that the bands E >E+ 
and E - > E >  -E- a r e  not filled: n, (Ef  = O  at E > -E-. 
Next, the band E < - E, is always filled for both spin 
components: n,(E) = 1, E < - E,, o = 4 + ,  i. e . ,  each band 
state is doubly filled. The filling of the additional band 
-El > E > - E, should be different, depending on the lo- 
cations of the levels p,. For the state-filling multipli- 
city of this band v= n,(E) + n,(E), - E l  > E > - E, we have 

0 -E,>p++>-E+ 
v= 1 2: - E _ > p , + > - E , .  

(33a) 

( 1 ,  - E - > p + > - E , ,  - E , > p , > - E + .  
(33b) 
( 3 3 ~ )  

We consider now the self-consistency condition (30) 
a t  an arbitrary value of v. Changing from summation 
over E to integration, we obtain with the aid of (24) 

Calculating the integrals in (34), we obtain 

Here K ( P )  is an elliptic integral of the f i rs t  kind. From 
(35) we obtain the following results: 

a )  v =  0: E i  =E?, i. e. , the empty additional band 
{-E,, -E,} is clamped and attached to the empty band 
{E., -E-} above it; 

b) v =  2 : E i  =E:, i. e. , the completely filled addi- 
tional band is attached, retaining the finite width cor- 
responding to the particle number, to the completely 
filled band {E < - E,) below it; 

c)  v = l :  i t  follows from (35) that 

i. e . ,  the bands have a common center designated Eg 
in (36). 
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The results  of i tems a )  and b) show that in a single- 
band (m = 0) Peier l s  s tate the Fe rmi  level y, = y, can 
pass only through the forbidden band. In the opposite 
case the system i s  absolutely unstable with respect  to 
a difference between the state densities on the Fe rmi  
level, with subsequent joining together of equally filled 
bands. These results  agree  with the conclusion ar r ived  
a t  earl ierl '~ls  in the Friihlich limit Ip - I I - 1 ,  that 
there a r e  no activation charge excitations, despite the 
presence of a gap in the s ta te  spectrum of the rigid 
potential. We note that the usual picture of degenerate 
semiconductors would correspond precisely to location 
of the Fermi  level in an  allowed band. 

We consider now the self-consistency condition (29) 
o r  (31). We subtract  f rom (29) Eq. (30) multiplied by 
E;, and change from summation to integration with the 
aid of (13). We obtain 

I " E2 (E2-E:) + 13' E2 (Ez-E:) 
-- J dE dE=O. 
gz --Ell$ 

nR'" (E') 2 nll'" (Ee )  
-E3 

(37) 

When account is taken of relations (36), i t  is easy to 
find that the last  te rm in (37) vanishes. The logarith- 
mic dependence on the cutoff energy Em is eliminated 
if one subtracts from (37) the s ame  equation a t  p =  1,  
when E l  = E ,  = E-  = 0, E+ = A,. As  a result  we obtain 
from (37), subject to the condition (36), a second rela-  
tion 

It shows that the interval (E:, E?), which s tems from the 
forbidden band of the single-band potential, broadens 
when an additional allowed band (E:, E;) is included. 
At El  =E, Eq. (38) goes over into the relation E: - ~2 
=A:, which i s  equivalent to the result  of the ea r l i e r  
paper. 

Relations (36) and (38) impose two constraints on the 
four parameters E , ,  i =  +, -, 1,2 .  The f ree  parameters  
of the band structure can be connected with the particle 
densities no o r  with the limiting momenta of the bands 
p+ and p- (Fig. 2): 

where 

We introduce the notation 

[from (38) we have a2 - b2 = A;/4] and use the relation 

FIG. 2. 
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(36). Equation (24) then takes the form 

The quantities q and A,=A(E,) a r e  defined in (11) and 
in (10a). The coefficients (q)  and A, in (42) can be ob- 
tained from the conditions (25). 

We define the family of hyperelliptic integrals 

and introduce the abbreviated notation 

for  the integrals over the forbidden ( I ; )  and allowed 
(J:, 2) bands. Substituting (25) in (42) we obtain 

Substituting (42) in (40) we obtain 

Equations (46) and (47), with allowance for  (44), (45), 
and (39), jointly with the constraints (36) and (38), de- 
termine completely the l imits  of the bands E, given the 
particle numbers n, and n, . 

We introduce now general relations for  the densities 
of the energy w(x), of the charge p(x), and of the spin 
o(x). By definition 

Using (8), (19), and (29), we transform (48) into 

w ( x )  = L-'Z A-I (E)E"E2- (E,2+E22+E+2+E_2)/2] .  
E 

We find that, a s  in the case  of a single-band potentialS 
and in the limit of an isolated soliton,13 the total energy 
of the system is delocalized, i. e . ,  

w ( x )  =WIL=const. 

The summation in (49) diverges rapidly f a r  from the 
Fe rmi  levels. We can regularize i t  by subtracting f rom 
(49) the energy density w, of the Peier l s  dielectric a t  
p = l ,  when 

E,=E,=E-=0, E+=A,, p+=p-=0, r~ ,=w , , , -A ,~ /2n .  

Here w,,, is the energy density of a metal with p =  1 
without lattice deformation. Since the sum over E 
converges for  w - w,, we can calculate w and w, sepa- 
rately, introducing the arb i t ra ry  limiting momentum 
p, >>p+, p-. The value of pm must be fixed, in order  for  
the changes of the particle densities no to be connected 
with the momenta p, by the relations (39). The quan- 
tity p, is connected with the energy E m  corresponding 
to this s tate by relation (23). Since E m  >>E,, we have 
from (13) 



3. FROHLICH LIMIT PHASE TRANSITION IN A 
MAGNETIC FIELD 

The condition p, = const can be rewritten approxi- 
mately in accordance with (50) a s  

We consider the general  relations of the theory on 
going to  the Frohlich limit 

This result  is in fact not connected with the form of 
the potential q(x), but follows directly from (9) a t  
E2, >> (9). 

F o r  the case  (3312) of interest  to u s  we have v =  1, 
and expression (49) reduces, when account is taken of 
(24) and (36), to 

It is natural to express  a l l  the physical quantities in 
this limit in t e rms  of the gap width E,= E, - E -  between 
the doubly filled and unfilled s ta tes  and the width 
E,  = 2Ab =E2  -El  of the singly filled band E,  = a/E,, E, 
= b/E,. The results  should not depend explicitly on the 
value of E,, which now determines only the general 
shift of the Fe rmi  levels  relative to the band center. 
The energy scale is defined by the quantity 

Calculating the integrals, we obtain 

Expanding the integrals (43) up to  t e r m s  -Ei3 inclusive, 
we obtain from (34) and (45) 

whence 

E(k) i s  a complete elliptic integral of the second kind. 
From (46), (47), (57), and (58) we obtain The quantity (A2) a s  a function of E i  is determined by 

'(4 5). 

Equation (53) yields a simpler  form of the energy for  
the single-band potential than the form given earl ier ,= 
since the energy in (3) was reckoned from the energy 
of a metal with a given number of part icles.  In place 
of (53) we obtain the expression 

From (60) we can deternine E, and substitute, to- 
gether with (57) and (58), into Eq. (53) for  the energy. 
We obtain 

which goes over into the result  of the preceding paper3 
a t  m=O,p+=p..=nn/2. where 

The particle-number density n(x) in the system is by 
definition 

Equations (59) and (61) make i t  possible to determine 
the energy of the spin excitation in the Frahlich limit. 
A s  m - 0 we have according to (59) k - 1 and A - A,, 
and from (61) we obtain 

Using (8), (19), (30), and (42) we obtain 

C= [vJ,+-2J,+ ( a ,  m) ]/4n, 

D= [do+-2J,+(a. m)] /4n. 

The quantity E, coincides with the energy of the self- 
localized state"*13*ls with spin s = 1/2 in the Peier l s -  
Frohlich model. 

The particle spin density i s  by definition At high spin density m >>A, we have from (59) k - 0, 
and from (61) we get 

In analogy with (54) we obtain We have considered s o  f a r  the properties of the sys-  
tem for given particle numbers N , ,  N,, i. e.  , for  given 
n and m. We consider now the propert ies of the system 
in the case  when only the total number of part icles i s  
specified 

Equations (361, (38), (39), (43), (46), (47), and (53)- 
(55) enable u s  to investigate the basic stat ic  properties 
of the Pe i e r l s  model a t  zero  temperature. Simpler 
relations can be obtained in the limit of large n and in 
the limit of smal l  m. 

The spin density m should be determined from the con- 
dition that the f r ee  energy be a minimum 

G ( n ,  h ) = w ( n ,  m)-mh (64) 
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at  a given magnetic field h. An investigation of ex- 
pression ( 6 4 )  a t  a rb i t ra ry  n is quite difficult. We con- 
fine ourselves to the Frahlich limit considered above 
n >> A,. This region is of greatest  interest, f i r s t  be- 
cause i t  includes practically a l l  the quasi-one-dimen- 
sional substances with structural  dielectric t ransi-  
tions. Second, with increasing n the value of the gap 
2A decreases  in accordance with ( 5 6 )  and ( 6 0 )  in pro- 
portion to n", and can be compared with the attainable 
magnetic fields. 

Substituting ( 5 9 )  and ( 6 1 )  in ( 6 4 )  we obtain 

( 6 5 )  
where k =  A o / A  according to ( 5 6 ) .  From ( 6 5 )  we have 

where E ,  = 2Ao/n in accordance with ( 6 2 ) .  It is seen 
from ( 6 6 )  that the function F(k) has a minimum a t  k  = k ,  
< 1  only a t  h > h , +  E, : 

Equations ( 6 7 )  and ( 5 9 )  determine the function m ( h ) .  
Plots of f ( k )  at  h > k c  and of m (k) a r e  shown in Fig. 3 .  As 
h - h , + O  we have 

whence 

At h >> h, the modulus k  - 0 and we have 

where X, is the Pauli  susceptibility for  the metal. 

We have found that a t  h <h ,  the system does not have 
paramagnetic susceptibility: rn = 0, x = 0. At h > h, the 
system becomes paramagnetic, and with a susceptibility 
x that becomes infinite a t  h - h,. At h >> h, the value of 
x coincides with X ,  for  a normal metal, despite the 
presence of gaps on the Fe rmi  levels p, and p,. 

The results  a r e  applicable a lso  to other systems with 
overlap of two bands, if the Fermi  velocities can be 
regarded a s  close. The field h corresponds here to 
the difference between the Fe rmi  momenta for  two 

groups of electrons in the metallic phase, while n m / 2  
corresponds to the difference between the limiting mo- 
menta in the dielectr ic  phase. 

4. SINGLE-ELECTRON AND SPIN EXCITATIONS 

We consider the l imit  of an infinitely small  spin den- 
sity, when the number of s ta tes  and the number of par-  
t icles in the band {-E,, -E,), which is equal to the num- 
ber  of s tates,  tends to zero. The band contracts then 
to  a local level -E,, and we have 

T o  calculate the f i r s t -order  effects in m, i t  suffices to 
separate in the integrals ( 4 3 )  the t e r m s  -ln(A:/b) and to 
neglect the correct ions of higher powers of b. 

Assume that a smal l  spin density m = M / L  << n is 
produced in the system and that the total density is 
changed n - n +  6n, 6n<<n. The values of m and 6n de- 
termine the width b and the shift of the spectrum 
6 ( E 3  of the band {E; ,  E;).  From ( 4 6 )  and ( 4 7 )  we ob- 
tain in f i r s t  order  in m 

where 

Z(0, Y )  is the Jacobi zeta function, &(cp, Y ' )  is the Hey- 
mann lambda function, and F ( 8 ,  Y ) ,  E ( 8 ,  Y )  a r e  elliptic 
integrals of f i r s t  and second kind respectively 
[ ~ ( r )  = F ( n / 2 ,  r ) ,  E ( Y )  z E ( n / 2 ,  Y)]. 

We calculate 6(q)  f rom ( 4 5 )  and 6(E2,) from ( 7 0 )  and 
substitute in ( 5 3 ) .  We obtain the change in the system 
energy 

6W=L[E(n+6n ,  m )  -rr~(n, O ) ] = p ( S N - M )  +E.JJ, 
( 7 1 )  

p = = -  a w ( n ' O )  E ( r ) ,  E .=pS( r ) ,  6N=L6n, M=Lm. 
dn XI' 

In the limiting cases,  Eq. ( 7 1 )  takes the form 

2 
dW=E+ Gn + - z Am, 2A=E+-E-, nBA, .  ( 7 3 )  

From ( 7 1 )  i t  follows that the change of the system en- 
ergy upon addition of a singlet pair  ( 6 N =  2,  M  = 0 )  i s  
6Ws = 2  p,  upon addition of a triplet pair  (6N = M  = 2 )  
- 6Wt = 2Es,  and on going from a singlet to a triplet 
s tate ( 6 ~  = 0, M = 2 )  we have 

Upon addition of one particle ( 6 N = M  = 1 )  

FIG. 3. 
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Upon removal of one particle (dN= - M = - 1) 

and upon excitation of an electron-hole pair 

We note that the electron-hole and spin excitations 
have the same activation energy E,, while the single- 
particle chemical potentials a r e  equal to pi = p i  E,. 
These facts, as well a s  the investigation of the corre- 
sponding coordinate dependences show that the two-par- 
ticle state is simply an aggregate of two remote soli- 
tons, each carrying a single localized particle. At 
n>>Al, it follows from (73) that E , = ~ A / T ,  i.e., each 
soliton constitutes a domain wall (6). 

At n << A, i t  follows from (72) that 

i. e . ,  the activation i s  effected via a transition of spin- 
less  domain walls (4) into polarons (5). 

We consider now the local properties of one soliton, 
namely the charge and the spin. To this end i t  is 
necessary to investigate the transition rn - 0 in Eqs. 
(54) and (55). F a r  from the soliton (as  x - i a )  we 
have 

where A&) satisfies Eq. (28) with Bl/B, =4E$ and 

since v,,(x) degenerates into the wave function of the 
local level. Therefore the expression in the square 
brackets of (54) and(55) tends to zero a s  x - i a. 

According to Kuznetsov and klikhafiovZ2 the asymp- 
totic singly periodic solutions A,Jx) in the presence of 
one soliton differ exactly by half a period, from which 
we get in our case A+&)= -A&). Taking these re-  
marks into account, we obtain from (54) the soliton 
charge q,: 

q,=e lim [<n(r) -n, (x) )lm] 
n t o  (74) 

= e lim ([C(A'-A,1(x)>+2D< (E,Z-Y,) (Eoz-7,) )]lm). 
7"-0 

partial screening of the charge is caused by the defor- 
mation of the periodic structure in the vicinity of the 
soliton. 

In the Frijhlich limit n >> A,, Y << 1 we have 9,-  0,  i. e. , 
the charge is completely screened in accordance with 
the ear l ier  results. l 1 9 l 3  The residual charge 

is a weak effect of a remote commensurability point, 
which was lost in the previously employed11s13 FrGh- 
lich Hamiltonian based on the jellium model. 

The calculation of the spin density in accordance with 
(55) and (55a) a s  rn - 0 leads to the obvious result  

o(x) =rnluE(x) 1'. 

The spin of one soliton is  s = 1/2. 

The authors thank L. P. Gor'kov, S. P. Novikov, and 
V. L. ~ o k r o v s k i r  for helpful discussions. 

'R. Peier ls ,  Quantum Theory of Solids, Olxford, 1956. 
's. A. Brazovskii and I. E. Dzyaloshinskii, Zh. Eksp. Teor. Fiz- 
71, 2338 (1976) [Sov. Phys. J E T P  44, 1233 (1976)l. 

3 ~ .  A. BrazovskiI, S. A. Gordyunin, and N. N. Kirova, Pis 'ma 
Zh. Eksp. Teor. Fiz. 31, 486 (1980) LJETP Lett. 31, 456 
(198011. 

4 ~ .  D. Blokolos, Teor.  Mat. Fiz. 45, 268 (1980). 
's. A. Brazovski and N. N. Kirova. Chem. Scr. 17, 171 (1981). 
6 ~ .  J. Heeger and A. G. MacDiarmid, Physics in One Dimen- 

sion, J. Bernaskoni and T. Schneider, eds., Springer, 1981, 
p. 179. 

'w. P. Su, S. Kivelson, and J. R. Schrieffer, ib id . ,  p. 201. 
's. A. Brazovskii, I. E. Dzyaloshinskii, and S. G. Obukhov, Zh. 

Eksp. Teor. Fiz. 72, 1550 (1977) Bov. Phys. J E T P  45, 814 
(1977)l. 

'P. A. Lee, T. M. Rice, and P .  W. Anderson, Sol. St. Comm. 
17, 1089 (1975). 

'OH. Frijhlich, Prpc.  Roy. Soc. A233, 296 (1954). 
"s. A. Brazovskii, Pis 'ma Zh. Eksp. Teor. Fiz. 28, 656 (1978) 

[JETP Lett. 28, 606 (1978)l. 
I2w. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. 

Lett. 42, 1698 (i979). Phys. Rev. B22, 2099 (1980). 
13s. A. Brazovskii, Zh. Eksp. Teor. Fiz. 78, 677 (1980) [Sov. 

Calculating the coefficients C and D in (54a) and (54b) PhyS- 51* 342 (lg8O)]. 

a s  b - 0, we obtain 1 4 ~ .  Takayama, Y. R. Lin-Liu, and K. Maki, Phys. Rev. B21, 
2388 (1980). 

Calculating (44) and (45) a s  b - 0, we obtain, with al- 
lowance for (69) 

(A2(x))-(A,Z(x)>=4mE+Z(n/4, r), Ao=A,2E,rn. (76) 

Substituting (75) and (76) in (74) we obtain ultimately 

Equation (77) shows that a t  n << A, the soliton charge is 
close to the single-electron charge. With increasing n, 

"s. A. Brazovskii and N. N. Kirova, Pis'ma Zh, Eksp. Teor. 
Fiz. 33, 6 (1981) [JETP Lett. 33, 4 (1981)l. 

16w. P. SU and J. R. Schrieffer, Proc.  Nat. Acad. Sci. U. S. 
77, 5526 (1980). 

I'D. K. Campbell and A. R. Bishop, Preprint,  Univ. of Calif., 
1981. 

"J. A. Krumhansl, B. Horovitz, and J. Heeger, Sol. St. 
Cornmun. 34, 945 (1980). 

"B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Usp. Mat. 
Nauk 31, 55 (1976). 

2 0 ~ .  A. Dubrovin and S. P .  Novikov, Zh. Eksp. Teor. Fiz. 67, 
2131 (1974) [Sov. Phys. J E T P  40, 1058 (1975)l. 

''v. E. Zak$arov, S. V. Manakov, S. P.  Novikov, and L. P. 
Pitaevskii, Teoriya solitonov (Soiiton Theory), Nauka, 1980. 

"E. A. Kuznetsov and A. V. Mikhailov, Zh. Eksp. Teor. Fiz. 
67, 1717 (1974) [Sov. Phys. J E T P  40, 855 (1975)l. 

Translated by J. G. Adashko 

1216 Sov. Phys. JETP 54(6), Dec. 1981 


