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A consistent investigation of light scattering and the dispersion of the dielectric and elastic susceptibilities in 
the incommensurate phase is carried out. It is shown that the Goldstone excitation (phason) is always active in 
light scattering whether or not there is a change in the polarization. The intensity of the phason line vanishes 
at the symmetric-incommensurate phase transition point, and depends essentially on the direction of the 
scattering vector. In the scattering spectrum the phason line is a narrow central peak whose width is 
proportional to the square of the scattering vector. The phason also contributes always to the elastic 
susceptibility, but its contribution to the dielectric susceptibility is nonzero only if the crystal is piezoelectric 
in the symmetric phase. These contributions depend essentially on the direction of propagation of the elastic 
or electromagnetic waves, and manifest themselves only at very low frequencies (of the order of a hertz or a 
fraction of a hertz). The question of the appearance in the incommensurate phase of new spectral lines 
corresponding to non-Goldstone excitations is also considered. The selection rules are determined, and the 
intensities of the new lines and the scattering geometry in which they can be observed are discussed. The 
temperature dependence of the frequencies corresponding to these lines is also discussed. The analysis is 
carried out primarily for the case of a two-component order parameter, but the distinctive features that arise 
when the order parameter has a large number of components are analyzed also in the particular case of a four- 
component order parameter. 

PACS numbers: 77.90. + k, 71.45. - d 

The experimental investigations of light scat ter ing manifests  itself only in the necessity of the considera- 
and dielectric dispersion in incommensurate phases tion of certain t e r m s  containing the spatial derivatives 
have greatly gained in scope (see,  for  example, Refs. of the o rde r  parameter ,  which a r e  usually neglected 
1-11). At the s ame  time, the corresponding theory since they turn out to be insignificant in the analysis of 
s eems  to  u s  to be insufficiently developed. F o r  exam- commensurate phase transitions. 
ple, the l i terature contains the most diverse opinions 
about the manifestation in such experiments  of the char-  
acteris t ic  excitation of the incommensurate phase, viz., 
the Goldstone phason mode. Thus, Cowley, actually 
a s s e r t s  in h is  review article1' that the phason mode is 
equivalent to  an acoustic mode, and should similarly 
manifest itself in Mandel'shtam-Brillouin scattering. 
On the other  hand, it is claimed in Refs. 13-15 that the 
Goldstone mode i s  inactive in light scat ter ing and light 
absorption. The opinion a l so  exists3 that the phason i s  
active in light scat ter ing only if the crystal  does not 
possess  a center  of inversion. The absence of a defin- 
ite theory a l so  leads to lack of coordination in the in- 
terpretation of experiment. Some experimenters  have 
sought the manifestation of phasons in light scattering 
accompanied by a change in the p o l a r i ~ a t i o n ' ~ ~ ~ ~ ~ ~ ;  
others, in light scattering not involving a change in the 
p o l a r i z a t i ~ n . ~ * ~  Attempts have been made to  detect the 
contribution of the phason to both the central  peak's3 
and the Mandel'shtam-Brillouin sideband compo- 
nents." 

The purpose of the present  paper is to give a consis- 
tent and, a s  f a r  a s  possible, exhaustive description of 
light scattering and the dispersion of the dielectr ic  and 
elastic susceptibilities in the incommensurate phase on 
the bas is  of a phenomenological theory that goes back 
to  the Landau theory of phase transitions. Let u s  em- 
phasize that such an approach i s  standard, having been 
repeatedly used to  investigate light scattering in the 
vicinity of phase-transition points.14-l6 As  we shall 
see,  the specific nature of the incommensurate phase 

We note that in such an approach, as always in the 
Landau theory, we need consider only the symmetry of 
the high-temperature phase (which is the normal sym- 
metry) ,  the propert ies  of the incommensurate phase 
being then determined automatically. In part icular ,  it 
i s  not a t  a l l  necessary to describe the symmetry of the 
incommensurate phase with the aid of the superspace 
groups that have been introduced in a number of papers 
( see ,  for  example, Ref. 17). 

1. MANIFESTATIONOFTHEPHASON INTHECASE 
OF A TWO-COMPONENT ORDER PARAMETER 

There  a r e  in the l i terature two equivalent methods of 
describing the transition into the incommensurate 
phase. In the unified description of the most frequently 
observed case  of two transitions-from the high-tem- 
perature phase into the incommensurate phase, and 
from this  phase into the low-temperature commensur- 
a te  phase-the incommensurate phase i s  treated a s  a 
spatial modulation of the commensurate phase, and on- 
ly the order  parameter  corresponding to  the high-tem- 
perature-commensurate phase transition i s  intro- 
duced. The structure of the incommensurate phase i s  
then described a s  an inhomogeneous structure with a 
"frozen-in" order-parameter  wave, and a special role 
is played in the study of the transition into the incom- 
mensurate phase by the Lifshitz invariant, which i s  
that t e r m  in the thermodynamic-potential density which 
contains the f i r s t  derivatives of the order  parame- 
ter.18*19 The presence of the Lifshitz invariant makes a 
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second-order transition into a homogeneous (commen- 
surate) phase impossible, and, a s  a result ,  the incom- 
mensurate phase arises. On the other hand, we can 
introduce an  order  parameter  corresponding directly to 
the high-temperature-incommensurate phase transi- 
tion.20*21 Such an  order  parameter  is the normal coor- 
dinate Q(&) corresponding to the wave vector k =  I& 
of the incommensurate superstructure formed just be- 
low the high-temperature-incommensurate phase 
transition temperature T i .  This  parameter  is spatially 
homogeneous in the incommensurate phase, even though 
the Lifshitz invariant i s  allowed by the symmetry,  since 
the value of K,, is characterized by the fact that, for  
such k, the coefficient of the Lifshitz invariant in the 
thermodynamic potential vanishes at  the transition 
point. It is precisely the second approach that will be 
convenient for  us  to use in the present paper. 

The order  parameter  used has  at  least  two compo- 
nents, since the vector K,, l i e s  inside the Brillouin zone 
of the high-temperature phase and the s t a r  of the phys- 
ically irreducible representation contains a vector 
-K, that is not equivalent t o  it [the basis  functions of 
such a representation a r e  proportional t o  exp(dK,,.r)]. 
We note that, for  the majority of dielectr ics with in- 
commensurate s u p e r s t r u ~ t u r e s , 2 ~ * ~ ~  the order  parame- 
t e r  i s  precisely a two-component one. The case  in 
which the o rde r  parameter  has  more  than two compo- 
nents will be discussed in the third section. As  the 
components of the order  parameter  we can take Q(&) 
and Q(-K,) = Q*(K,). 

Since Q and Q* correspond to one and the same fre-  
quency [w(k) = w(-k)], the corresponding vibrations can 
formally be considered to be degenerate. This degen- 
eracy i s  lifted below the phase-transition point because 
of the formation of the superstructure,  which leads to 
the splitting of the branches and the replacement of the 
single soft-mode frequency by two frequencies. One of 
them remains equal to zero  in the entire region of ex- 
istence of the incommensurate phase (the Goldstone 
mode), and the corresponding excitation is called a 
phason, while the other increases  with decreasing tem- 
perature,  i.e., behaves just like the frequency of the 
soft mode associated with a commensurate phase tran- 
sition, and the corresponding excitation i s  called an 
a m p l i t u d ~ n . ~ ~ - ~ ~  Figure 1 shows the Brillouin zone and 
the phason 1 and amplitudon 2 branches below T i ,  the 
normal coordinate Q corresponding to  the point A. If 
we se t  Q = p e i v ,  then the phason represents  the oscilla- 
tions of the phase p, while the amplitudon represents  
the p oscillations. 

Let u s  see  how these excitations manifest themselves 
in light scattering and susceptibility dispersion. As is 
well known, light scattering i s  connected with fluctua- 
tions of the permittivity tensor E, ,  (Refs. 27 and 16). 
To elucidate the  manifestations of these excitations in 
the scattering spectra,  we must consider f i r s t  those 
changes in cia which a r e  due to changes in the order 
parameter .  To  do this, we must determine the depend- 
ence of &,, on the order-parameter  components, i.e., 
find out which combinations of these components trans-  
form like the quantities c i k ,  which, like the components 

FIG. 1. Brillouin zone of the symmetric high- temperature 
phase. The point B represents the zone boundary; a portion 
of the branches has been continued into the second zone. The 
bottom branches a r e  for T < T i .  

of any tensor o r  vector, a r e  invariant under translation 
( let  u s  recall  that we a r e  now talking about the depend- 
ence of z ik  on Q in the symmetric phase). Similarly, in 
order  to find out whether the excitations under discus- 
sion will make a contribution to the dielectric o r  elas- 
tic dispersion, we must find out whether there can  be 
any coupling between the order  parameter  and the com- 
ponents of the polarization vector P o r  the strain tensor 
uik .  Let us  note that, if we assume that the vector P 
depends on the normal coordinates, then we actually 
have dielectr ics in mind, since we do  not then take into 
account the contribution to the polarization of the con- 
duction electrons. 

If the vector K,, i s  not commensurate with any r e -  
ciprocal-lattice vector of the symmetric phase, then 
the only quantities that a r e  invariant under translation 
in the symmetric phase, and depend on, but do not con- 
tain derivatives of, the order  parameter  a r e  the quan- 
tity QQ* = p2 and i t s  powers. The invariants containing 
spatial derivatives of the order parameter  play an in- 
significant role and a r e ,  a s  a rule,  neglected in the in- 
vestigation of light scattering and susceptibility disper-  
sion in the vicinity of the cri t ical  points of normal 
(commensurate) phase transitions. Because QQ* does 
not contain the phase g ,  it is concluded in Refs. 14 and 
1 5  that the phason is inactive.') But this conclusion i s  
incorrect ,  since, a s  we shall s ee  below, the translation 
invariants containing linear combinations of the f i r s t  
space derivatives of the order  parameter  (we shall call 
them gradient invariants) also play an important role in 
light scat tering and susceptibility dispersion in the in- 
commensurate phase. 

Let us  discuss the question of the activity of the pha- 
son f i r s t  for  light scattering. The simplest gradient in- 
variant is 

a ( q q ) i a x , = a p A / a ~  ,. 

It does not depend on g, and i s  therefore of no interest 
in connection with the question of the activity of the pha- 
son. There ,  however, exist gradient invariants that 
contain the phase, e.g., the Lifshitz invariant: 
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where by x we mean the ax is  directed along the wave 
vector K, of the incommensurate superstructure.  F rom 
the fact that the Lifshitz invariant i s  invariant not just 
under translation, but under the full symmetry-trans-  
formation group of the high-temperature phase (we shall 
call such invariants full invariants) it follows that the 
phase cp t ransforms like x .  Therefore,  the quantities 
p2acp/8xi a r e  a l so  gradient invariants that t ransform 
like the elements of a second-rank tensor. There  a r e  
no other gradient invariants of second order  in Q in the 
case of the two-component order  parameter .  

Let us, for concreteness, limit ourselves to c rys ta l s  
whose symmetric  phases belong to  the orthorhombic 
system, assuming that the vector K, i s  paral lel  to  one 
of the crystallographic axes,  as in the majority of di- 
e lec t r ics  possessing the incommensurate p h a ~ e . ~ ~ ~ ~ ~  
The case  of other sys tems can similarly be discussed 
without any difficulty. We consider f i r s t  the E,, diag- 
onal-element fluctuations that cause light to be scat- 
tered without a change in the polarization if the incident 
light is polarized along one of the crystallographic 
axes.'"ince in the indicated sys tem such elements a r e  
full invariants, their  dependence on y, can be due only 
to the presence of the Lifshitz invariant, e.g., 

Let u s  now consider the off-diagonal elements of cik, 
the fluctuations of which cause polarization-nonpre- 
serving light scattering.16 In accordance with the as- 
sert ion made above, their  dependence on cp i s  given by 
the relat ions 

alp alp 
~ . ~ - p ~ - ,  ex*-pz-. 

ay az 

The element E,,, on the other  hand, does not a t  a l l  de- 
pend on cp. Proceeding a s  above, we obtain formulas of 
the  type (5) for  the mean square fluctuations, but the 
quantity ( 1  A&,, 1') will have in i t s  numerator  the factor 
qY2 in place of qXZ, while the quantity ( I  A&,, 1') willcon- 
tain q:. 

Proceeding to  the discussion of the resul ts ,  we point 
out f i r s t  that, in contrast  to light scattering in the 
vicinity of normal phase transition points, the t e r m s  in 
c i k  that depend on the derivat ives of the order  parame- 
t e r  make a contribution that does not vanish in the limit 
q-0 .  This  i s  due t o  the fact that the phase fluctuations 
(4) diverge a s  q-  0. It is a l so  c l ea r  that allowance for  
powers of the f i r s t  o r  higher derivatives in the depend- 
ence of sik on the o rde r  parameter  is of no interest ,  
since the contribution of such t e r m s  will vanish a t  q - 0. An interesting characteris t ic  of light scattering by 
phasons i s  the c r i t ica l  dependence of i t s  intensity on 
the direction of q ,  a dependence which does not disap- 
pear  in the limit q-0 .  In other words, the q depend- 
ence of the scat ter ing intensity i s  not analytic at  q-0,  

The corresponding integrated intensity of the scat- and it i s  in th i s  circumstance that the similari ty be- 
tered light i s  proportional to the mean square fluctua- tween the phason branch and the acoustic branches in a 
tion of the Four ie r  component c,(q), where q is the solid manifests  itself,  although the charac ters  of the 
scattering vector, i.e., the difference between the wave q-direction depelldences in these two cases are, of 
vectors  of the incident and scat tered light.27*1"sing course ,  different. Since pe2 stands in the numerator of 
( I ) ,  we find the mean square c,,(q) fluctuation due to (5) ,  the intensity is low near the transition point, and 
the cp fluctuations: increases  in proportion to T ;  - T as the temperature i s  

where p, is the equilibrium value of p and cp(q) is the 
Fourier  t ransform of the fluctuation ~p of the phase. 

To compute the p(q) fluctuations, let  us wri te  the 
thermodynamic potential density in the variables p and 
CP: 

Notice that, for  the chosen order  parameter ,  the Lif- 
shitz invariant does not enter  here  ( s ee  above). Pro-  
ceeding in standard fashion,'%e find on the basis  of 
(3) the mean square fluctuation 

where V is the volume of the crystal  ( s ee  a l so  Ref. 15). 
Substituting this  expression into ( 2 ) ,  we obtain 

Let u s  note that the expressions for  the fluctuations 
of the other diagonal elements of cik will differ only in 
the values of the coefficient a, i.e., the numerator  will 
contain qXZ a s  before. 

lowered.') Let  u s  a l so  note that the phason contributes 
to  both polarization-preserving and polarization-non- 
preserving scat ter ing of light. Contrary to the a s se r -  
tion made in Ref. 3, the activity of the phason has 
nothing to do with the absence o r  presence of a symme- 
t ry  center in the crystal .  

Let u s  emphasize that the formula (5) only reflects  
in a simplified manner the character  of the dependence 
of the quantity (I i\c,,(q) 1') and the scattered-light in- 
tensity proportional to  it on the direction of the vector 
q. The point is that, a s  noted in Ref. 16, we should, 
in considering light scat ter ing below the phase transi-  
tion point, take into account the dependence of the ten- 
s o r  g i k  not only on the order  parameter ,  but also on the 
other quantities whose fluctuations a r e  linearly con- 
nected with the order -parameter  fluctuations (such a 
quantity i s ,  for  example, the s t ra in  tensor) .  This  al- 
lowance leads to the renormalization of the coefficients 
in expression (5), and it i s  significant that this  renor-  
malization has a nontrivial character:  the noted non- 
analyticity at  q - 0  may occur in the renormalized co- 
efficients as well. As a result ,  the angular dependence 
of the scattered-light intensity will be quite complicat- 
ed, but the main features of this dependence a r e  accu- 
rately reflected by the formula (5): the intensity van- 
i shes  a t  q = 0. Let u s  note he re  that a s imi la r  obser-  
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vation can be made about the role played by other quan- 
t i t ies  together with the o rde r  parameter  in the prob- 
lem, considered below, of the dispersion of the dielec- 
t r i c  and elastic susceptibilities. 

Let us  now discuss the spectral  intensity of light 
scattered by phasons. As usual, we introduce the kin- 
et ic  energy K and the dissipation function R that cor re-  
spond to  the normal coordinate Q: 

Since the phason and the amplitudon a r e  normal ex- 
citations of the incommensurate p h a ~ e , ' ~ - ' ~  a s  can a lso  
be seen directly from (3 ) ,  the equations of motion for  
Ap and Ap separate,  and for  acp we have 

where h, i s  the corresponding generalized force. .Us- 
ing the standard procedure,16 we find the spectral  den- 
sity of the fluctuations 

Since, a s  can be seen from (6), the quantity v has the 
meaning of a damping constant for the optical phonon in 
the symmetric phase and therefore there  i s  no reason 
why it should not be large (see  also below), the quanti- 
t ies  ptiiqi2 a r e  negligible in comparison with v2. Now 
we can see  from (7) that the spectral  density 
(I q(q, 9 )  1') decreases  monotonically a s  the frequency 
9 increases,  i.e., the cp fluctuations have a relaxation 
character .  In the most interesting region (low 9) we 
have from (7) the expression 

It can be seen from this  that the width of the central 
peak of the spectrum of the cp fluctuations i s  propor- 
tional t o  (dIq,2+ b2qY2+ b3q,2)/v, a s  in the case  of fluc- 
tuations of a diffusional nature. The spectral  intensity 
of the scattered light can be obtained from (2) by r e -  
placing ( I  cp(q) 1 ') by ( I  q(q, 9 )  1 '), 9 being the scat ter-  
ing-induced change in the light frequency. 

We emphasize that, although the phason branch i s  
sometimes called a new acoustic branch in the incom- 
mensurate phase, the scattering of light by phasons 
differs significantly from Mandel'shtam-Brillouin scat- 
tering, since the phasons contribute a central  peak in 
the spectrum ra ther  than sideband components. This  is 
due to the difference in the phason and acoustic-phonon 
damping. If the wave vector q tends to zero,  the acous- 
t ic  vibration does not lead to energy dissipation, since 
such a vibration corresponds to the displacement of the 
whole crystal  without a change in the relative positions 
of the atoms. On the other hand, a t  q - 0  the phason 
corresponds to a shift, a s  a unit, of the static wave of 
atomic displacements occurring below the phase transi- 
tion point. The various positions of this  wave in the 
crystal  a r e  energetically equivalent, i.e., the phason 
frequency tends to ze ro  a s  q-0 ,  but the transition 
from one position of the wave to another is connected 
with changes in the relative positions of the atoms, 

i.e., with dissipative processes.  A reflection of this  is 
that the phason-damping constant v is virtually inde- 
pendent of the wave vector q. 

Let u s  discuss the width of the phason central  peak, 
whose maximum value An,, can be estimated by taking 
a s  q the wave vector of light waves. We have 

Here k, is the dimension of the Brillouin zone of the 
symmetric phase, and we have taken into account the 
fact that 6ik,2/CL - w:, where w, is the characterist ic  
phonon frequency (-loi3 Hz), and the fact that the Q 
factor for  normal optical phonons wap/v - 1-10. It can 
be seen from this that even the maximum width of the 
phason peak is quite small .  

This difference between scattering by phasons and 
~andel ' sh tam-Bri l louin  scattering h a s  not been noted 
in the l i terature,  not even where i t  i s  asserted that the 
phason i s  active in light scattering (see ,  for  example, 
Ref. 12). As a result ,  in some experiments" the mani- 
festation of the phason was sought in the lateral  
Mandel'shtam-Brillouin components, and not in the 
central  peak. In a number of e~periments,'*~~%ttempts 
were  made to detect the scattering by the phasons in the 
incommensurate phase in the same scattering geometry 
and in the same frequency range a s  for  the phasons in 
the low-temperature commensurate phase. The nega- 
tive result  of these experiments i s  entirely natural, 
since in the commensurate phase the phason-induced 
scattering i s  practically determined by those t e rms  in 
the expansion of ci, in powers of the order  parameter  
which do not contain derivatives, and do not occur in 
the incommensurate phase, a fact which can result  in 
the manifestation of the phason in another scattering 
geometry. Furthermore,  the phason frequency in the 
commensurate phase does not vanish at  q -0 ,  i.e., 
such a phason contributes in the scattering either side- 
band components o r  a central  peak whose width does not 
differ much from w, and does not depend on q. 

We note that allowance for the coupling of the order -  
parameter  fluctuations to the fluctuations of other quan- 
t i t ies  does not lead in the investigation of the spectral  
density of the phason-scattered light to changes of a 
qualitative nature. This  is due to the fact that the pha- 
son relaxation r a t e  biqZ/v i s  much lower than the other 
characterist ic  frequencies of the crys ta l  that cor re-  
spond to  the given q, i.e., the variations of all the 
other quantities have t ime to adjust themselves to the 
variation of cp(q). 

Let u s  proceed to discuss the contribution of the 
phason to the dispersion of the dielectric susceptibility. 
To  do this ,  we must f i r s t  find out which combinations 
of the order-parameter  components transform like the 
components of the polarization vector P. Above we 
said that the cp-dependent translation invariants have 
the form p2aq/axi, transforming like the elements of a 
second-rank tensor. Therefore, they can be linearly 
coupled to P only if the symmetric phase belongs to the 
piezoelectric class,  since some of the s t ra ins  leading 
t o  the piezoelectric effect a r e  described by a t  least one 
of the components u,,, u,,, o r  u,. 
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Assume that this  condition i s  fulfilled; then some 
component Pi t ransforms like p2aq/ax,. Retaining in 
the thermodynamic potential only the t e rms  that a r e  
important for  what follows, we have 

Since, a s  we shall s e e  below, the region of extremely 
low frequencies i s  the one of importance, we can ne- 
glect the intrinsic inertia and the viscosity of the po- 
larization. Now, varying (10) with respect  to Pi, we 
find 

Substituting this in ( l o ) ,  varying the resulting expres- 
sion with respect  to cp, and taking (6) into account, we 
obtain an equation relating cp with the field intensity E: 

x dx, ' 

From (11) and (12) we find the dielectric susceptibility 

where q and w a r e  respectively the wave vector and the 
frequency of the field E. 

We examine (13) f i r s t  in the stat ic  (i.e., w =  0) case.  
The temperature dependence of x has  a kink at  the cr i -  
tical point of the transition into the incommensurate 
phase, since pe2 - (Ti  - T). Note that a similar-in i t s  
dependence on T-contribution to x i s  made not only by 
the above coupling of P with the order parameter ,  but 
a l so  by the universal t e rm of the form p2Pi2 in the 
thermodynamic potential. But the coupling between the 
P i  and q in (10) gives r i s e  to a contribution to ,y of an  
essentially different nature. Let us  f i r s t  draw atten- 
tion to the nonanalyticity of the dependence of x on q at 
q -0 ,  a s  is the case  for the scattered-light intensity. 
We point out that a nonanalyticity of s imilar  nature i s  
observed in normal piezoelectric  crystal^.^' 

But, a s  seen from (13), this nonanalyticity will be 
manifest only at  low frequencies. It disappears at  w 
>> w,= B , ~ ~ / V ,  at which point the contribution of the 
phason to the susceptibility becomes negligibly small. 
At low frequencies the electromagnetic waves a r e  long; 
therefore, setting q - 1 / ~ ,  where L i s  the sample di- 
mension, we find for  the present case ,  in much the 
same way a s  (9) was found, the estimate 

For  L-0.1 cm we have w,-(0.1-1) Hz. Let us note 
that, in normal piezoelectric crystals ,  the analogous 
nonanalyticity i s  observed only at not very high fre-  
quencies: it disappears in these crys ta ls  a t  frequen- 
cies higher than the piezoresonance frequency, which 
i s  equal to -C/L - w a / k a ~  (c i s  the velocity of soundj and 
i s  kaL t imes higher than w,. 

The elastic susceptibilities s,,,, can be treated in 
similar  fashion. In contrast to the polarization vector, 
the strain tensor u,,, like the tensor c, , ,  i s  always cou- 
pled to the quantities p2acp/8xi. The expressions for 

s,,,,(q, w) a r e  extremely unwieldy, but the resul t s  have 
the same qualitative character  a s  for  X: in particular, 
there  a lso  exists  a t  q -0  a nonanalyticity that disap- 
pea r s  a t  frequencies of the order  of w,. A distinctive 
feature of the present case  i s  that the correction to 
siklm(q, W )  analogous to the second t e rm in (13) becomes 
appreciable again a t  frequencies -wa, when al l  the 
t e r m s  in the denominator a r e  of the s ame  order  of mag- 
nitude; but i t  hardly makes sense  to speak of a phason 
a t  such frequencies and a t  the corresponding q -k , .  

Note that a strain-phason interaction s imi lar  to the 
one considered by u s  i s  mentioned in Ref. 26, but i t s  
effect on the elastic-susceptibility anomalies i s  not 
discussed there .  Perhaps  that i s  why the assert ion 
made in Ref. 26 that the interaction in question i s  pro- 
portional to I ql i s  incorrectly interpreted in Ref. 28 a s  
evidence of the vanishing of the interaction between the 
phason and the acoustic modes in the long-wave limit. 
In fact, a s  indicated above, at  w = 0 the modulus of q 
cancels  out in the expression for  the correction to the 
elast ic  susceptibility. 

2. NON-GOLDSTONE EXCITATIONS 

Let us  note f i r s t  of al l  that the other characterist ic  
excitation of the incommensurate phase-the amplitud- 
on-manifests itself in light scattering and susceptibil- 
ity dispersion a s  a normal, fully symmetric soft 
mode.14*" Light scat tering involving the amplitudon 
has  been observed in many e ~ p e r i m e n t s , ' ~ ~ . ~ - ' ~ ~ ~  and 
i t s  interpretation offers  no difficulty. 

We consider now the manifestation in the spectra of 
other excitations of the incommensurate phase, f i r s t  
for  the case  of light scattering. The Raman-scattering 
spectrum, in the case  of any phase transition connected 
with a change in the translational symmetry of the 
crystal ,  is known to exhibit new lines, since the num- 
ber  of atoms in the unit cel l  changes in the transition. 
Fo r  transitions into the incommensurate phase, the en- 
t i r e  crystal  becomes a single unit cell, and the number 
of new lines, one would think, should be virtually in- 
finite. We shall show, however, that in fact the number 
of new lines with observable intensities in the spectrum 
of the incommensurate phase i s  relatively small. 

We consider f i r s t  some normal coordinate Q, not be- 
longing to the soft mode, but pertaining to the same 

point in the Brillouin zone. In Fig. 1 this coordinate 
corresponds to one of the C points located above the 
point A. The quantity QQ* will also be invariant under 
translation, and, in particular, some elements of the 
tensor E , ,  may turn out to be proportional to QQ:. A 
spontaneous value of Q = Qe + 0 appears below the phase- 
transition point, and therefore the change in Q, will 
give r i s e  to proportional changes in sib. This means 
that frequencies not occurring a t  T > T i  will appear in 
the scattering spectrum, since the point A i s  not locat- 
ed a t  the center  of the Brillouin zone of the symmetric 
phase. The intensities of these lines a r e  proportional 
to 
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The quantity QQl* may o r  may not be a full invariant. 
In the f i r s t  case  QQl* can be coupled to only the diago- 
nal  elements of c i l ;  in the second, to the off-diagonal 
elements, which a r e  forbidden in the symmetric phase 
(we recall  that we a r e  dealing with the orthorhombic 
system).  Therefore, the indicated lines can appear in 
the spectra of light scattered with o r  without a change 
in i t s  polarization. 

Let u s  now consider a normal coordinate Q, corre-  
sponding to the wave vector 2&+ b, where b i s  some 
reciprocal-lattice vector of the symmetric phase, 
which can be chosen, for  example, such that the vector 
2&+ b l ies  in the f i r s t  Brillouin zone. The normal co- 
ordinate Q, may belong to both a high-lying branch and 
the soft branch. In the present case  we can form the 
translation invariant Q 2 ~ , * .  Proceeding a s  above, we 
see  that the Qz vibration can be active in the scattering, 
but that the intensity of the spectral  line i s  proportional 
to 1 Q, 1 = p: It i s  c lear  that the normal coordinate 
Qn corresponding to the wave vector nK,+ b with arbi- 
t r a ry  n can a lso  be active in the scattering, the inten- 
sity of the line being proportional to p t n .  

Thus, a s  expected, there will appear in the scat ter-  
ing spectrum of the incommensurate phase an infinite 
number of new lines (in view of the incommensurability 
of K,, and b, no two frequencies will be exactly equal), 
but only a limited number will in practice be observed, 
since, a s  a rule,  pe i s  small  in the entire existence 
domain of the incommensurate phase, and therefore 
the intensity of the lines will decrease rapidly with in- 
creasing n. In each specific case,  knowing the trans-  
formation properties of the order  parameter  and the 
normal coordinates Q,,, we can find out which element 
of the tensor Ein i s  coupled to a particular QnQn*, and, 
consequently, determine the scattering geometry in 
which the spectral  line in question should be ob- 
served. Let us  note that the appearance in the incom- 
mensurate phase of new l ines with intensities -peZn 
(n = 2,3,  . . .) has been considered by D V O E B ~  and Pet- 
zelt,14 but they analyzed only the non-Goldstone excita- 
tions belonging to the soft branch, failing to take into 
account the possibility of the appearance of more  in- 
tense new lines connected with the Q,(K,,) vibrations 
corresponding to other branches. 

In the foregoing discussions we have neglected the 
frequency splitting due to the appearance of the super- 
structure. The origin of this splitting in the present 
case  i s  easily explained a s  follows. Since there exists  
the translation invariant Q(K,,)Q~?K,,), the thermody- 
namic potential will contain the full invariant Q'(Q,*)' 
+ C.C. There will appear in the thermodynamic poten- 
t ial  of the incommensurate phase, where the spon- 
taneous value Q = Q, a r i s e s ,  &,-dependent off-diagonal 
t e rms ,  i.e., t e r m s  that do not reduce to 1 Q, 1 2 ,  and this 
leads to the splitting of the frequencies associated with 
the wave vector k= K,,. Let us  note that the frequency 
splitting i s  observed not only a t  k =  K,,. An even la rger  
splitting occurs  a t  k =  K,,/2 if the translation invariant 
Q(&) ~ ,yK, , /2)  '+ C.C.  is a full invariant, and will 
therefore be present in thermodynamic potential. But 
th is  splitting does not appear in optical spectra,  since 
the point k =  K,,/2 corresponds to the edge of the "Bril- 

louin zone" of the superstructure.  Let us  note that 
there  a l so  occur at  k= 2% + b, 3% + b, . . . , weaker 
splittings, which can be explained in s imi lar  fashion. 

Let us  d iscuss  the temperature dependence of the 
frequencies of the generated "non-Goldstone" lines. 
The frequency corresponding to the amplitudon in- 
c r eases  with decreasing temperature,  just a s  the fre-  
quency of a normal mode. The frequencies of the other 
new lines, which correspond to high-lying optical 
branches, in the general case  depend weakly on tem- 
perature,  largely a s  a result  of the variation of &. 
On the other hand, they may correspond to both the 
softest branch (at k =  2% + b, 3K,, + b, . . .) and to a 
branch genetically related to it (if such a branch ex- 
is ts ;  s ee  the branch 3 in Fig. 11, and then they may be 
low and quite strongly dependent on temperature.  Let 
us  d iscuss  in grea ter  detail the temperature depend- 
ence of the frequencies of such lines, noting that, since 
the damping constant in the present ca se  i s  of the same 
order  of magnitude a s  the damping constant for the 
other optical branches, the low-frequency lines may 
actually make a contribution to the central  peak, and 
not be sideband components. 

Let u s  f i r s t  consider the case  in which the end of the 
vector K,, l ies  near the boundary of the Brillouin zone 
of the symmetric phase, assuming for  simplicity that 
the vector K,, i s  parallel to a fundamental vector b, of 
the reciprocal  lattice, i .e.,  that K O =  b1/2- k,, where 
k ,  i s  small .  It often turns  out that the softening optical 
branch is degenerate a t  the zone boundary, i.e., that 
there  exists  a branch genetically related to it. As can 
be seen from Fig. 1, the frequency w(K,) of this branch 
3 at k = KO (we actually have two close frequencies to 
deal with a t  T <T,), to which corresponds a line with 
intensity -peZ, i s  a s  smal l  a s  k,. Let us  discuss the de- 
pendence of k ,  on temperature. At the considered posi- 
tion of K,, there i s  usually observed a t  low tempera- 
t u r e s  a commensurate phase whose order  parameter  is 
the normal coordinate corresponding to k =  b1/2. If the 
incommensurate-commensurate phase transition were 
of second order ,  k, together with one of the two f re-  
quencies w(K,) would vanish at  the cri t ical  point of this  
transition. But in al l  the published experiments this  
phase transition is found to be of f i r s t  order ,  and k, i s  
found to change within the l imits  of existence of the in- 
commensurate phase by severa l  t imes  at  most; dK,)  
will also change by roughly the same factor. Since in 
this  ca se  k ,  is roughly two o rde r s  of magnitude smal ler  
than b,, the frequency w(K,) is roughly two o rde r s  of 
magnitude lower than the characterist ic  frequencies of 
the crystal .  

In the unified description of the transitions from the 
high-temperature phase into the incommensurate phase 
and from this  phase into the commensurate low-tem- 
perature with a doubled lattice constant, the thermo- 
dynamic potential is represented in the form of a func- 
tion of the normal coordinate corresponding to k =  b1/2, 
and not k =  K,,, a s  in the present  paper ( s ee  the f i r s t  
section). Precisely this  approach is used in Ref. 15 to 
investigate light scattering, and the resul t s  of that pa- 
per  agree  with the observations made above (the activ- 
ity of the Goldstone mode i s  neglected and the branches 
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genetically unrelated to the soft branch a r e  not consid- 
ered in Ref. 15). The  frequency w(K,) figuring above i s  
re fer red  to in Ref. 15  as the phason frequency associ-  
ated with the wave vector 2k0, but it i s  not mentioned 
that i t  belongs to  another branch (the sense  in this  
designation is evident f rom Fig. 1 ,  especially if k i s  
measured from the point A'). The above-discussed 
splitting of the branch at  k =  K,, is in fact obtained in 
Ref. 15, since, besides the phason frequency, an amp- 
litudon frequency i s  found there to appear a t  the s ame  
wave vector 2k0 (the points C and C' in Fig. 1). 

In the case  considered in Ref. 15 the normal coordi- 
nate corresponding to the branch 3 and the coordinate 
pertaining to the soft branch transform according to 
different irreducible representations, whence it follows 
that the quantity QQ* ( see  above) i s  not a full invariant. 
Therefore, the frequencies in question should, in ac- 
cordance with the foregoing, be observed in polariza- 
tion-nonpreserving light scat ter ing,  a s  was likewise 
found in Ref. 15. We note that the es t imates  given in 
Ref. 15 show that the modes corresponding to  these 
frequencies may be ei ther  overdamped o r  under- 
damped; also given in that paper a r e  formulas for  the 
corresponding scattered-light intensity. 

Let u s  now consider the ca se  in which the end of the 
vector K,, again l i e s  near  the Brillouin-zone boundary, 
but no degeneracy ex is t s  at  the zone boundary. Since 
there  a r e  then no branches genetically related to the 
soft branch, the new spectral  lines with intensities 
-p: will correspond to only high-lying branches whose 
frequencies depend weakly on temperature. As  pointed 
out above, the vibrations with normal coordinates 
Q,,(n&) can also manifest themselves in light scat ter-  
ing. In the case of the normal coordinate Q,(2K0) the 
spectral-line intensity i s  proportional to pe4, and the 
frequency w(2K0) of the soft branch i s  not low and de- 
pends weakly on temperature,  s ince the point 2K0 = b, 
- 2k0 l ies  in the neighborhood of the center of the Bril- 
louin zone. The most intense line, which corresponds 
to  a low frequency, and depends fairly strongly on tem- 
perature,  appears because the point 3K0 = 3b1/2 - 3k,, 
when re fer red  to the f i r s t  zone, l i e s  near  KO; but the 
intensity of this line i s  -pe6 ( in more  exact est imates 
we should, of course,  take into account the fact that the 
low frequency gives a small  term-the square of the 
frequency-in the denominator, and this  increases  the 
intensity [cf. Ref. 15)]. Naturally, a l l  the lines dis- 
cussed here occur in the ca se  in which the soft mode i s  
degenerate at  the zone boundary. 

If the lattice constant of the low-temperature com- 
mensurate phase i s  th ree  t imes that of the symmetric  
phase, then the quantity KO i s  close to  b1/3, i.e., KO 
= b1/3 - k,. Now even the frequency w(2K0) will be low, 
s ince,  modulo a reciprocal-lattice vector, the differ- 
ence between 2K0 and -KO i s  equal to -3k,. The inten- 
sity of the corresponding line will be proportional to 
pe4. This  case  i s  considered in Ref. 14. Using the fore- 
going arguments, we can easily determine the other 
low frequencies that manifest themselves in the scat- 
tering spectrum of the incommensurate phase; but the 
intensities of the lines will be even lower than the in- 

tensi t ies  in the c a s e s  considered. As to the formulas 
fo r  the spectral  distribution of the intensities of the 
generated non-Goldstone lines, they can be derived in 
standard fashion; they have the usual form, and the 
specific nature of the incommensurate phase in no way 
manifests itself in them. This  lat ter  fact can be seen 
f rom the part icular  case  of the formulas obtained in 
Ref. 15. 

The s ame  normal modes that a r e  active in light scat- 
ter ing should manifest themselves also in the dispersion 
of the elastic susceptibilities, s ince the tensor uik pos- 
s e s s e s  the s ame  transformation propert ies  a s  c ik .  
Naturally, such dispersion can be observed by acoustic 
methods only if the frequencies of the corresponding 
vibrations a r e  sufficiently low. In the light of what has 
been said in the present  section, we have reason to 
believe that such frequencies exist in the incommen- 
surable phase. 

In order  to  ascer ta in  the non-Goldstone-excitation- 
related characteris t ics  of the dielectric dispersion in 
the incommensurate phase, we must determine which 
of the translation invariants QnQn* transform like the 
components of the vector P. Here also the number of 
new lines that appear in the spectrum i s  relatively 
small ,  since the oscillator strength i s  proportional to  
peZn. Let u s  note that the contribution of the soft branch 
to the dielectric dispersion i s  analyzed in Ref. 14. 

3. FOUR-COMPONENT ORDER PARAMETER 

Let us now discuss  those new features which appear 
in the considered problems when the number of the 
order-parameter  components i s  grea te r  than two. As 
f a r  a s  we know, except for  some asser t ions ,  often of 
an erroneous nature, in some experimental papers, 
the light-scattering and susceptibility anomalies oc- 
curr ing in the incommensurate phase in this case  have 
not been discussed in the l i terature a t  all.  Let us per- 
form the analysis for  the particular case  of a four- 
component order  parameter ,  when the s t a r  of the phys- 
ically irreducible representation contains four non- 
equivalent vectors: K,, -K,, &, -&. As the order-  
parameter  components, we can take the corresponding 
normal coordinates Q,(K,), Q,*, Q,(&), and Q,*. 

If the o rde r  parameter  i s  a two-component one, then 
the point symmetry of the incommensurable phase i s  
always the s ame  a s  that of the symmetric  phase. This 
i s  due t o  the fact that in the present  case  the only 
translation invariants that depend on the order  parame- 
t e r ,  but do not contain i t s  derivatives a r e  the quantity 
QQ* = I Q 1 and i t s  powers, which a r e  a l so  full invari- 
ants. Therefore,  no tensor quantities forbidden in the 
symmetric  phase a r i s e  in the transition into the incom- 
mensurate phase, when Q acquires a spontaneous value, 
i.e., the point symmetry does not change ( s ee  a l so  Ref. 
29). 

A different situation a r i s e s  when the number of or-  
der -parameter  components i s  grea te r  than two. In the 
ca se  of four components, besides I Q, 1 + I Q, 1 ', the 
quantity I Q, 1 - I Q, 1 ', for example, will a l so  be a 
translation invariant. This  invariant cannot be a full 
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one, since there  i s  only one second-order full invari- 
ant: I Q, 1 + I Q, 1 '. Therefore, if the phase with 1 Q,, 1 
# I Q,, 1 corresponds to a s ta te  of thermodynamic equi- 
librium, then the spontaneous tensor quantity I Q,, 1 
- I Q,, 1 ', which i s  forbidden by the symmetry of the 
high-temperature phase, a r i s e s ,  i.e., the point sym- 
metry changes. As will be shown below, such a sym- 
metry change can manifest itself in, for  example, light 
scattering. 

In the case of the four-component order  parameter ,  
the soft mode in the symmetric phase i s  formally four- 
fold degenerate. This degeneracy is partially o r  com- 
pletely lifted below the phase-transition point, i.e., 
there  can a r i s e  below this  point up to four different 
modes, although, a s  we shall see  below, not every one 
of these modes has  to contribute to light scattering o r  
the susceptibility dispersion. When the order  parame- 
t e r  possesses four components, there can be realized 
phases with two-dimensional incommensurability and, 
consequently, with two Goldstone modes,30131 and we 
shall show below that both a r e  active in scattering. 

We must, in considering incommensurate phase 
transitions with a four-component order  parameter ,  
distinguish two cases.'' In the f i r s t ,  some combination 
of the vectors Kl and K, coincides with one of the r e -  
ciprocal-lattice vectors, and incommensurability i s  
possible only along one direction. In the second case  
no combination of the vectors K, and K, yields a re -  
ciprocal-lattice vector, and two-dimensional incom- 
mensurability i s  possible here.  Let us, for  concrete- 
ness,  discuss the f i r s t  case,  using a s  an example bar-  
ium manganese fluoride BaMnF,, in which this  case  i s  
r e a l i ~ e d , ~ '  and which has been the subject of a relative- 
ly large number of experimental investigations. Let us 
limit ourselves to light scattering by the order-parame- 
t e r  oscillations. It i s  not difficult to take the other os- 
cillations into account in the investigation, and a lso  to 
analyze the susceptibility anomalies in much the same 
way a s  this was  done for  the two-component order pa- 
rameter .  

If we se t  

then the thermodynamic potential density has,  af ter  we 
have allowed for  the transformation propert ies of the 
o rde r  parameter  in the BaMnF, the form 

where of the invariants that a r e  quadratic in the deriva- 
t ives we have written out only those which a r e  essential 
to our problem. In BaMnF, the incommensurability is 
observed along the polar axis  x ,  and the Lifshitz in- 
variant has the form 

The diagonal elements of the tensor c ik  a r e  linearly 
coupled to pi and cpi combinations of the type of those 
which enter  into (14) and to  the Lifshitz invariant; the 
element c,, is linearly coupled to  

and the elements E, and E, a r e  coupled respectively to 

Depending on the coefficients in [ E ~ .  (14)], there  
can be two equilibrium solutions3) corresponding to dif- 
ferent incommensurate phases3,: 

1) p,=p,.+o, p2=0 (or P,=o, pz+O), o < $ , < ~ ~ - I $ ~ l ;  (15) 

2) P,=Pz=P., sin 2 (cpI-cp2) =0, $,> 1 p2- 1 p3 1 1 .  (16) 

In the case  of (15) the point symmetry of the incommen- 
surate phase is different from that of the symmetric 
phase (E$) 20);  in the case  of (16) the point symmetries 
of the two phases a r e  the same (ci;) = 0). 

In both ca ses  four soft branches a r i s e  below the 
transition point.32 In the case  of (15) these branches 
a r e  connected with the oscillations associated with p,, 
cp,, and the two linear combinations of Q, and Q,*. 
Corresponding to  the Goldstone mode a r e  the cp, "vibra- 
tions" with the dispersion law 

for  the complex frequency, vibrations which a r e  clear- 
ly overdamped (see  the f i r s t  section). The Q, and Q,* 
vibrations do  not manifest themselves in ei ther  f irst-  
order  light scattering o r  susceptibility dispersions, 
since any translation invariant i s  quadratic in these 
quantities, and the spontaneous value of Q, i s  equal t o  
zero.  The amplitudon contributes not only to the fluc- 
tuations of the diagonal elements of cik, a s  in the case  
of the two-component order  parameter ,  but a l so  to the 
E,, fluctuations. 

The cp, fluctuations will manifest themselves in light 
scattering owing to the presence of the quantities 
j.Jle2aAcp1/axi, which make contributions to the fluctua- 
tions of al l  the elements of cia. Moreover, the charac- 
t e r  of the scattering by the phasons i s  the s ame  a s  in 
the case  of the two-component order  parameter ,  except 
that the angular dependence is different, since for  the 
fluctuations of the Four ier  component q1((L) we have 

( 1 cp, (q) 1 2)=kBT/Vp12(6,qrZ+6~qy2+6aq.2+6~qYqz). (17) 

This  quantity changes when the sign of q, o r  q ,  i s  
changed, i.e., the directivity pattern for  the scattering 
does  not, in  contrast  to the ca se  of the two-component 
order  parameter ,  possess the symmetry of the high- 
temperature phase. In the final analysis, this  i s  due to 
the lowering of the point symmetry in the transition in- 
to the incommensurate phase. Naturally, this  effect is 
weaker in a multidomain sample. Let us  note that now 
the mean square fluctuations ( I  i-\sia(9) 1 ') may contain 
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in t h e  numerator  not only the s q u a r e s  of the individual 
components of the vector  q, a s  in (5),  but a l s o  combin- 
ations of the f o r m  (aqy + bq,),. 

In the c a s e  (16) the  Goldstone mode cor responds  to  
the p'+) = cpl + cp, v ibrat ions with the  dispersion law 

f o r  the complex frequency; t h r e e  o ther  soft modes a r e  
connected with the cp(-) = pl - g,, p(+)  = p, + p,, and p(-) 
= p, - p2  vibration^.^' The  Goldstone mode manifests  
itself in the fluctuations of a l l  the e lements  of cia, ex- 
cept the element &,,, s ince  the fluctuations of these 
elements  a r e ,  when allowance i s  made  f o r  (16), coupled 
t o  the p,2aacp(+)/ax,. The mean square  fluctuation of 
the Four ie r  t rans form of n g ( + )  h e r e  i s ,  fo r  smal l  val- 
ues  of I q l ,  given by a fo rmula  coinciding up t o  a factor  
of 2 with (4),  anh does  not, in con t ras t  t o  (17), change 
when the sign of q, o r  q, is changed. The  ci, fluctua- 
tions coupled t o  u p ( + )  a r e  given by formulas  of the type 
(5). 

F o r  the non-Goldstone excitations the specific nature 
of the incommensurate  phase pract ical ly  does not man- 
ifest i tself.  Cn account of (16), the q(-)-phase oscilla- 
tion make i n  the l imit  q- 0 a contribution only t o  the E,, 

fluctuations, with 

The diagonal e lements  of ci4 a r e  coupled to p12+ pZ2, 
and the p(+)  oscillations manifest themse lves  in  the i r  
fluctuations; the p(-)vibrations, on the otherhand, make a 
contribution t o  the E,, f luctuations, s ince  E,, depends on 
p12 - pZ2. AS i s  usually the c a s e  for  soft modes,'' the 
intensity of light sca t te red  by the p") o r  p(-) oscilla- 
tions undergoes a jump a t  the c r i t i ca l  point of the t ran-  
sition into the incommensurate  phase. 

Proceeding to the analysis  of the c a s e  in which no 
combination of the vec tors  Kl and K, f o r m s  a rec ipro-  
cal-lattice vector ,  le t  us ,  f o r  convenience of compari- 
son with the preceding c a s e ,  per form the analysis  f o r  
c rys ta l s  possessing the s a m e  space  group in the sym- 
met r ic  phase (A21am-C,:2) as BaMnF,. Although we  
do not know any experimental  examples of th i s  incom- 
mensurate  phase t ransi t ion i n  c r y s t a l s  with precisely 
the  indicated space group, such a t ransi t ion i s  ob- 
served34 in barium sodium niobate Ba2NaNbjOl,, which 
belongs t o  another sys tem.  A special  analysis  shows 
that the r e s u l t s  presented below a r e  qualitatively valid 
fo r  c r y s t a l s  of the  type B%NaNb,Ol, as well.  

Let us  take a s  the s t a r  of the i r reducible  representa-  
tion a s t a r  of the general  f o r m  in the k,k, plane inside 
the Brillouin zone. If we re ta in  only the t e r m s  of im-  
portance to  us ,  then the thermodynamic potential will 
a l so  have the fo rm (14), except that the t e r m  with the  
coefficient p, will be absent; the analogous t e r m s  in the 
other translation invariants  will a l so  vanish. In the 
present  case  there  a r e  two Lifshitz invariants: 

which ref lects  the absence of a symmetry-related ex- 
t remum of the dispersion sur face  along both the k, and 

the k, a x e s  a t  a n  a r b i t r a r y  point in the k,k, plane. The 
dependence of c, ,  on gl and g, is given by the Lifshitz 
invariants  fo r  the diagonal components and by analogous 
quantities, but with derivat ives with respec t  t o  other  
coordinates ,  f o r  the off-diagonal components. 

Depending on the values of the coefficients in  a ,  one 
of two incommensurate  phases  is real ized (we shal l  not 
d i scuss  the third solution, which a r i s e s  when the high- 
e r - o r d e r  invariants  a r e  taken into account): 

1) p,=p,+O, pz=O (or p,=O, pz+O), 0<p,<Bz; (18) 
2 )  pi=pz=p., pa> l pz I .  (19) 

In the c a s e  of (18) t h e r e  a r i s e s  a one-dimensional in- 
commensurability ( the wave with vector  K, o r  K, is 
frozen) ,  and the point symmetry  d e c r e a s e s  in the t ran-  
sition (E::) -(p: - pZ2) f 0);  in  the c a s e  (19) the incom- 
mensurability i s  two-dimensional (being character ized 
by both vectors: K, and I$), and the  point symmetry  
r e m a i n s  unchanged in the t ransi t ion (E : : )  = 0). 

The laws governing light sca t te r ing  in the c a s e  of the 
phase corresponding t o  (18) a r e  s imi la r  to those dis- 
cussed above f o r  the solution ( l 5 ) ,  but instead of two 
inactive soft modes,  we have h e r e  a single doubly de- 
generate  one. 

Some new fea tures  appear  in  the c a s e  of the two-di- 
mensional incommensurability. Naturally, h e r e  there  
a r e  two Goldstone modes corresponding t o  the gl- and 
q,-phase oscillations, the dispersion law f o r  the com- 
plex frequencies  having the fo rm 

The two modes make a contribution to the fluctuations 
of a l l  the e lements  of cik. The  angular dependence of 
the intensity of the sca t te red  light connected with this  
contribution will  be quite complicated here ,  which can 
be seen  f rom the part icular  c a s e  of the mean square  
fluctuations of the diagonal e lements  of the cik tensor: 

where  a and b a r e  coefficients in  the expansion of c i i  in 
powers  of the o rder  parameter .  In sp i te  of the fact that 
the  ql and q, fluctuations a r e  not invariant under a 
change of the sign of q,  o r  q, [the quantity ( I  q,(q) 1') is 
a l s o  given by an expression of the type (17), while 
( I  p2(q) 1 2, is given by the analogous expression with the 
sign in front of 6, changed], the contribution of the two 
Goldstone modes to scat ter ing r e s u l t s  in  the invariance 
of (20) under a change of the sign of qy o r  q,, which al- 
s o  accounts f o r  the complicated form of th i s  expres-  
sion. 

4. EXPERIMENTAL SEARCH FOR THE PHASON 

In our opinion, it  cannot a t  present  be s a i d  that the 
Goldstone phason h a s  been experimentally detected. In 
a number of papers  on light scat ter ing and dielectr ic  
dispersion715 where the observat ion of the phason i s  
c laimed,  the authors  actually meant, a s  can be  con- 
cluded f rom the texts  of the i r  papers ,  non-Goldstone 
low-frequency modes (the terminology ambiguity noted 
in the f i r s t  footnote shows up here ) .  
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Lyons et al.2*3 have reported the observation in 
BaMnF, of a central  peak whose width is proportional to  
the  square  of the vector q, as i t  should be i n  the ca se  of 
scat ter ing by the Goldstone phason (see  above). They 
detected this  peak in experimental investigations of po- 
larization-preserving light scattering, i.e., light scat- 
te r ing  connected with the fluctuations of the diagonal 
elements of c,,. Above we asser ted  that in the case  of 
BaMnF, the diagonal elements of ci, depend on cp, and 
cp, because of the Lifshitz invariant 

and, consequently, their  mean square fluctuations a r e  
proportional t o  1:. But Lyons et al.293 repor t  that the 
central  peak under discussion disappears precisely 
when q i s  oriented along the x axis ,  and, moreover,  
that i t s  maximum width ~ 5 1  is roughly 101° Hz, which is 
two-to-three o r d e r s  of magnitude grea ter  than the 
width (9). Thus, their  claim that they have detected 
scat ter ing by phasons i s  clearly not supported by the- 
ory.  Let u s  a l so  note that Lockwood et al." have ex- 
pressed doubt about the cor rec tness  of the interpreta- 
tion of the experimental data in Refs. 2 and 3.  

In their  turn, Lockwood et al. repor t  in Ref. 11 the 
detection of light scattering by phasons, to  which they 
attribute the contribution to  the Mandel'shtam-Brillouin 
components. But, as asser ted  above, the Goldstone 
phason should contribute to the cental peak. 

It i s  already evident from the foregoing that the de- 
tection of the manifestations of the Goldstone phason i s  
not a simple experimental problem. F i r s t ,  the width 
of the phason central  peak i s  quite small .  Secondly, 
t h i s  peak should have a relatively low intensity. As has 
already been noted, the intensity of the phason line is 
proportional to  p:, i.e., i t  vanishes a t  the cr i t ical  point 
( T  = T i )  of the transition into the incommensurate 
phase. 

In conclusion, the authors express  their  gratitude to 
A.A. Sobyanin, J .  Petzelt,  and R.A. Sur i s  for  a discus- 
sion of the resu l t s  of the present  paper and for  useful 
comments. 

') Let us note that the terminology in this field i s  not standard- 
ized. Sometimes by the word "phasons" is meant not only 
the Goldstone excitations, i.e., the excitations corresponding 
to a small neighborhood of the point A (see Fig. l ) ,  but also 
the higher excitations of the branch 1, which a r e  called pha- 
sons with wave vectors 2ko, 3ko, etc. In the present section 
we consider only the Goldstone excitations; the activity of 
the higher-lying excitations will be discussed below. 

2, Note that such a temperature dependence obtains only in the 
region of applicability of the Landau theory, in which pi  - (Ti - T); in the scaling region the quantity is propor- 
tional to (Ti -T)~' ,  where fi is one of the critical exponents 
(see, for example, Ref. 16 and the literature cited there). 
Below, for brevity, we limit ourselves everywhere to the 
region of applicability of the Landau theory; the generaliza- 
tion of the corresponding formulas to the scaling region is 
trivial, since the important temperature dependences in 
them a r e  determined only by the quantity p,  . 

3)Allowance for higher-order invariance shows that a third 
solution is also possible.33 ( 0 * p  * p  2 '0); it will not be 
analyzed here. Nor shall we identify the case actually 
realized in BaMnF4. 
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