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A collision integral is derived for particles interacting only gravitationally in a flat expanding universe 
described by the nonrelativistic Miln+McCrea solution. The collision integral does not contain divergences at 
large impact parameters and small deflection angles. This is a consequence of the growth of the expansion 
velocity of the particles with increasing impact parameter and not Debye screening, as in a plasma. The time 
required for establishment of a Maxwellian distribution is calculated. 

PACS numbers: 95.30.Sf 

1. INTRODUCTION 

The collisions of s t a r s  o r  other bodies interacting 
gravitationally occurs in the s ame  way a s  the collisions 
of particles in a plasma interacting in accordance with 
the Coulomb law. However, there is  an important dif- 
ference. In a quasineutral plasma, there a r e  particles 
of opposite charges, which screen  collisions which a r e  
not close,  so  that effectively they take place only within 
the Debye radius. In a medium of particles which 
interact only gravitationally, such screening is  absent. 
Because of this ,  it is impossible to have the existence 
and correc t  mathematical description of a homogeneous 
gravitating liquid o r  gas a t  res t ,  which always se rves  
a s  the basic model for  analyzing collisions in a plasma. 

Gravitating systems can exist ei ther  in the form of 
equilibrium objects of finite s i ze ,  such a s  galaxies and 
clusters ,  o r  in the form of a homogeneous and infinite 
but nonstationary gravitating medium which describes a 
model of an expanding universe. The f i r s t  studies of 
gravitational collisions of s t a r s  were  based on analysis 
of the motion of a test  particle in a homogeneous medium 
a t  rest.' Thisled to a Fokker-Planck equation, which 
was identical with the Landau equation derived ear l ie r  
for  a p l a ~ m a . ~  As was shown on a number of occa- 
s ion~:-~  such an approach is  incorrect  for  gravitating 
particles. In the case  of equilibrium systems of finite 
s ize,  the distribution of the test  particles cannot be r e -  
garded a s  homogeneous; i t  is  necessary to take into 
account the finite s i ze  of the sys tem and consider rea l  
curved particle trajectories. For a homogeneous but 
expanding universe, it is necessary to take into account 
the relative velocity of the separation of the particles 
when collisions between them a r e  being studied. In 
these cases ,  no divergence a r i s e s  in the collision inte- 
gra l  despite the absence of Debye screening. 

In Refs. 3-7, collisions in sys tems of finite s ize  a r e  
analyzed. In [8], it is shown that Hubble expansion 
is equivalent to a negative mean density, which reduces 
the problem to a plasma problem. In the present  paper, 
we derive a collision integral for  gravitating particles 
in an expanding universe described by the nonrelativis - 
tic Milne-McCrea solution. The obtained integral does 
not contain divergences a t  smal l  deflection angles and 
large impact parameters because of allowance f o r  the 
separation velocity for  colliding particles. However, in 
the equations there  is a divergence a t  smal l  impact 

parameters,  which lead to la rge  deflection angles. The 
reason fo r  this divergence, which also occurs in a 
plasma; is the use of the approximation of a smal l  de- 
flection angle in the derivation of the corresponding 

[see Eqs. (1)-(3) below]. To eliminate 
this logarithmic divergence, i t  is assumed that the 
minimal distance P,,,, between the particles is equal to 
the distance a t  which the corresponding potential energy 
of the interaction between the particles is  equal to the 
mean kinetic energy: ~ m ~ / p , , ,  = ( m9/2).  The obtained 
resul t  then agrees  with the resul t  of calculations in 
which close encounters a r e  taken into account correctly 
in, f o r  example, an  integral of Boltzmann type,g in 
which divergences do not a r i s e  a t  smal l  0. The ob- 
tained collision integral is used to calculate the relax- 
ation t ime of the distribution function of gravitating 
particles in an expanding universe and is  applied to 
nonrelativistic neutrinos of finite mass  and to collisions 
of galaxies. 

2. DERIVATION OF THE COLLISION INTEGRAL 

We proceed from the  system of equations for  the 
single-particle distribution function fa and the correla-  
tion function gab, s o  that fa, =fa fb  +gab, derived under a 
number of simplifying assumptions in Refs. 4, 5, and 
7 : 
af. af. aQ af. -+va-----= au, 
at ar. at. av. 

(1) 
dr. 

b 

Here 

The system of equations (I)-@) is s imi lar  to the 
system (see, for  example, Ref. 1 0) from which the 
Landau collision integral2 is obtained, though i t  a l so  
takes into account the self-consistent potential @. In 
the calculation of the Landau collision integral logarith- 
mic divergences a r i s e  a t  both large and smal l  impact 
parameters,  but these can be eliminated if more  ac- 
curate allowance is made for  the binary correlations 
associated with screening and Eq. (2) is made some- 
what more  complicated. Fo r  the collisions of gravitat- 
ing particles in an expanding universe that we consider 
below, divergences do not a r i s e  a t  large impact param- 
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eters .  

The averaged gravitational potential @ can be found 
f rom h e  solution of the Poisson equation, which in a 
homogeneous expanding Newtonian universe with cri t ical  
density p = p ( t )  has the form" 

The development of perturbations in such a universe in 
the absence of collisions was studied in Ref. 12 by 
means of the collisionless Boltzmann-Vlasov equation. 
The integrals of the characterist ics  of the unperturbed 
motion of this equation have the form 

An arbitrary function flu) is  a solution of the collision- 
less  equation (1) without right-hand side with the nec- 
essary  dependence (4) of the density on the time. The 
collision integral does not vanish for  a rb i t ra ry  f(u), 
which leads to relaxation of an arb i t ra ry  f(u) to the 
equilibrium f,(u). 

To calculate the collision integral, i t  is necessary,  
using (2), to express gab in t e rms  of fa and f, and sub- 
stitute the result  in (1). We seek a solution of (2) by 
the method of integration along the trajectories,  which 
we write in the form'' 

The solution of (2) has the form 

All the functions in the integral (7) a r e  assumed to de- 
pend on the time t' in accordance with formula (6). We 
go over from the variables (v, r )  to the variables 

u,  E=r/t'ls. 

Then 

For the interaction energy, we have 

From (7), we obtain 

Because of the homogeneity of space,  the quantities in 
the integrand in (11) can be expanded in a Fourier  inte- 
gral :  

Since u is  an  integral of the motion, functions of u can  
be taken in front of the integral in (11). Taking into 
account the t ime dependence of 5 in accordance with (6) 
and (8) in the form 

C(t') =g( t )  f 3u(t-'"-t'-"), 

' at' 
x exp[ik($-gb) ] J - ;TesP[3 ik (u , -ub)  t (t-'.-t'-'") ] 

0 

Note that in deriving (13) we have not ignored the self-  
consistent field, a s  in the derivation of the analogous ex- 
pression in a plasma.1° Substituting (13) in the right- 
hand side of ( I ) ,  going over there to the variables (n, [ )  
instead of (r,v),  using an expansion of the type (12) for  
Uab in (I) ,  and the relations 

j e s p [ i ( k + q )  (g,-Z,,)  Id&= (2n)%(k+q). dv dr=du dg, (14) 

we obtain the collision t e rm in the form 

d b -  (4nGm,mb)' a 
S t  - - du 

( 2 ~ ) ~ m , ,  aua, J ( aunt ma am,  mb 

dk(k,k;)  dt' 
x jTj 7,esp[3ik(u.-ub) (t-'h-t'-"s) ] 

We transform the expression (15). From symmetry 
considerations, 

dkk,kj dt' w w 
1.j = S jFexp[3 ik (u . -ub)  (1-'Ix-t'-"j ] = A  -+ w Bb,,; (16) 

w.=ua-u,, z=t'-"'Lt-"> , h-=lk,l, (17) 

where A and B a r e  functions of 70, k ,  7. To find A and B, 
we calculate I,, and Ii,w,wj: 

Introducing x = cos(iiwi), and using k,w,= ~II.Y, d k  
= -2nk2dkdx, we obtain from (18) 

In (19), we integrate f i r s t  over d r  and then over dk. 
This choice is  explained by the fact that (19) contains 
the logarithmic divergence mentioned above, which can 
be eliminated readily from the physical considerations 
only for  this order of integration. We have 

t'", 3kwczt"). 
" sin(3kw.r)d.c - 

I= j 
3 k ~ . r ( . r + t - " ~ ) ~  (20) 

nt"' -IKl 3kw>t9". 

The integral in (20) can be interpolated approximately 
by the formula 

I=nt'13/(6kw+nt'"). (21) 

Substituting (21) in (19), we obtain 

Finally, fo r  the collisional t e rm in the expanding uni- 
ve r se  we obtain the expression 

we obtain 
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The maximal value k,,, corresponds to the minimal 
distance p,, ,  between the part icles,  which is determined 
from the condition 

m.b(uZ) -Gm.mblpm,,. 

m,b=m.mb/(m.+mb), (u2)=( ( V . - V ~ ) ~ ) .  

We have 

Taking into account approximately w = (v2)1/2t213 under 
the logarithm in (23), we obtain 

The mass of weakly interacting objects in the uni- 
ve r se  varies in a wide range from 5 x g for  neu- 
trinos if thier r e s t  energy is  30 eV (Ref. 13) to the 
mass  1 0 1 4 ~ , = 2  x g of c lus ters  of galaxies. Ac- 
cordingly, A var ies  from 

for neutrinos to 

fo r  clusters  of galaxies. Here, we have assumed t = 6 
x 1017 sec ,  corresponding to z =0 ,  ( v ~ ) " ~  = 6  X lo5 cm/  
sec (see, for  example, Ref. 14), and (v;)'I2 = 10' cm/  
sec.  

3. EQUALIZATION OF THE TEMPERATURES OF 
PARTICLES I N  AN EXPANDING UNIVERSE 

UTe consider a universe filled with two species of 
collisionless objects with masses  m, and m,. We a s -  
sume that both species have Maxwellian distributions 
but with different "invariant temperatures" 0, and 0,, 
i.e., (see Ref. 12) 

If Q,=ob,  then the functions (27) satisfy the kinetic 
equation 

where Stafb  is  defined in (23); the equation fo r  f, has 
the same form. 

If then the collisions result  in energy transfer  
and equalization of the "temperatures." Assuming 0, 
and Ob to be functions of the time, and substituting (27) 
in (28), we obtain a s  in Ref. 2 

The integral on the right-hand s ide  of (29) with the func- 

tions (27) was calculated in Ref. 2 for  the case  ma/mb 
<< 1 and in the general case  in Ref. 15. Multiplying (29) 
by m,u2,/2, and integrating over dua in accordance with 
Ref. 15, we obtain 

The characterist ic  relaxation t ime T of the "tempera- 
tures" in a flat universe with nonrelativistic f r ee  par- 
t icles is 

Although (31) has been obtained a s  the time of 
establishment of equilibrium between tyro species of 
particle, i t  can be used in order  of magnitude to esti- 
mate the relaxation time in a medium of particles of 
one species. For  this, it is necessary to'set ma =m, 
= m, 0, = 8, = 8, bearing in mind that €3 = (jrng). 

We make est imates for  two different situations. If 
the neutrinos have mass ,  then on the transition from 
the relativistic to the nonrelativistic s ta te  the dis- 
tribution function becomes a nonequilibrium function16: 

f-enp (-mu&), (32) 

and i t  relaxes to the nonrelativistic Maxwell distribu- 
tion (27) because of collisions. We consider the ideal- 
ized situation when perturbations of the density a r e  
absent and homogeneity i s  preserved.1' At the time 
t = 6  x 1017 sec  for  mu = 5  x g,13 the mean velocity is 
(z?) = 6 krn/sec (Ref. 14) and 8= m,(~? ) t~ '~  = 9 x lo3. Then 
fo r  the relaxation t ime we obtain the huge value T,= 10'' 
sec ,  i.e., there  is virtually no relaxation. 

Obviously, with increasing mass  of the objects their 
relaxation time decreases.  Using the approximate re- 
lation 0 = r n ( ~ ? ) t ~ / ~ ,  we rewrite (31) in the form 

F o r  clusters  of galaxies with m, = 1014~,= 2 x lo4' g, 

Note that (34) is valid for  objects corresponding to the 
maximal inhomogeneity scale in the universe under the 
condition that the diameter  of the objects is much l e s s  
than the distances between them. By the present epoch, 
the random velocities of clusters  of galaxies in the ex- 
panding universe could have achieved a Maxwellian dis-  
tribution. 

"1n the real universe, there are inhomogeneities in the den- 
sity and velocity distributions. This leads to the development 
of gravitational instability, and the real situation with mas- 
sive neturinos differs from the idealized case considered 
here. 
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