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Features of the motion of neutrons through nonmagnetic crystals at resonant and higher velocities are 
discussed. It is found that a magnetic potential well arises in a reference system at rest with respect to a 
neutron moving through a crystal as a result of the relativistic transformation of the electrostatic field of the 
lattice, and its structure is investigated. The appearance of a set of plane potential wells substantially alters the 
initially linear trajectory and leads to controlled localization of the particles either near the barrier, where the 
lattice nuclei are located, or in the region between barriers. This effect tends to enhance or suppress nuclear 
reactions involving channeling neutrons or other neutral particles having a magnetic moment. The 
characteristic range of angles of the paraxial motion within which such channeling takes place is an order of 
magnitude smaller than in the case of channeling of charged particles. 

PACS numbers: 61.80.Mk 

We have previously discussed the possibility of the changes s ign  a t  the cen te r  of the space  between planes 
channeling of neutrons and o ther  electr ical ly  neutral  and then increases  in absolute magnitude. 
par t ic les  having a magnetic moment in magnetic s t r u c -  The presence of s u c h  a field of s t rength H - lo5 O e  for  
tures , '  a possibility that is rea l ized  in the presence of 

resonance neutrons and H - lo8 Oe for  fast  ones that a l-  
dynamic o r  s tat ic  regular ly nonuniform changes in the t e rna tes  in  direction and magnitude may give r i s e  to  
magnetization. In this  c a s e  the forces responsible for  

a comparatively deep potential well,  which wil l  sub-  
the channeling a r e  due to the dipole-dipole interaction s tant ial ly  affect the motion of the neutrons in the c r y s -  
of the magnetic moment of the neutron with the magne- 

ta l .  The motion in the p resence  of the effective field 
tic moments of the lattice atoms.  

H is described by the Pau l i  equation 
We propose below an essentially different magnetic- 

channeling mechanism, which provides a much s t rong-  '' A+v,,+v~ Y=E,Y, v , , = ~ a H ( r ) .  (-G ) (1) . - -  
e r  interaction and consequently a l a r g e r  acceptance We sha l l  use  the following considerations to  simplify 
angle fo r  channeling. When we speak of neutrons in  

Eq .  (1). The  potential V, de te rmines  the s scat ter ing what follows, we mean  to imply that the effect is appli- 
of neutrons and is charac te r ized  by the isotropic  s c a t -  

cable to  any neutral  par t ic le  having a magnetic moment. 
ter ing amplitude fn(8)=Ro (R, is the nuclear  radius).  

The interaction energy between the neutron and the 
nonmagnetic lattice involves not only the purely nu- 
c lea r  potential V,, but is a l so  connected with features  
of the electrodynamics of moving media.  In the coordi-  
nate sys tem fixed to a neutron that is moving through 
the c rys ta l  in the electrostat ic  field E of the c r y s t a l  
a toms there  is a magnetic field H = E  x v / c .  To  es t i -  
mate this field we note that the motion of the la t t ice  
nuclei and electrons in the r e s t  sys tem of the neutron 
is equivalent to a c u r r e n t  I. The  maximum s t reng th  of 
the field H produced by such  a cur ren t ,  averaged o v e r  
the plane, can  be  es t imated  with the aid of the integral  
theorem 

The integration contour runs  in the immediate  vicinity 
of the s tat ic  c r y s t a l  plane. Noting that we have I 
=ZevL/So for  a plane of width L on which the nuclear  
charges Z e  a r e  disposed a t  the  lattice points of e le -  
mentary cel ls  of a r e a  S o ,  we find H m X =  2 n ~ e u / S ~ c .  As 
follows from the definition of H and the usual behavior 
of E in a c rys ta l ,  the field H sharply changes i t s  di- 

The second par t  of the potential, the potential V, f o r  
magnetic sca t te r ing  of a part ic le  o f  magnetic moment 
i~ by nuclei and atomic e lec t rons ,  reduces essentially 
to the Schwinger i n t e r a c t i ~ n . ~ ' ~  The amplitude for  such  
scat ter ing is highly anisotropic ,  and for  8 << n we have 
f , (e)=izpe/f ice.  It is known (see ,  e.g., Ref. 4) that 
the  particle-channeling p r o c e s s  and the use of the a v e r -  
age c r y s t a l  potential on the plane to  describe i t  a r e  
possible only in  the p resence  of coherent small-angle 
forward sca t te r ing  from a portion of the plane whose 
dimensions considerably exceed the interatomic dis-  
tance,  with subsequent interference of the scat ter ing 
amplitudes. The second par t  of the potential in (1) will  
c lear ly play the principal par t  in  such  a process  (est i -  
mates  show that I f,/f, 1 2 10-100 f o r  incidence angles 
0 s 10'~ onto the plane). As a resu l t ,  a zero th  approxi- 
mation to the solution of (1) can  be found without allow- 
ing for  the nuclear  interaction potential V,. Taking the 
spat ial  distribution of the part ic les  in the ze ro th  ap-  
proximation a s  given, one can use the known wave func- 
tion to calculate the change in the yield of a nuclear  
reaction in which the neutrons take par t .  

rection on crossing the plane and slowly decreases  in 
Star t ing from the expression for  a sc reened  Coulomb magnitude on moving away f rom the plane because of 

potential, the screening action of the e lec t rons ,  which is equiva- 
lent to a decrease  in  the total cur ren t  I .  The field V,~,=Zee-"~/r ,  R=h2/m.eZZ". 
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we obtain the following expressions for the local elec-  
t r ic  and magnetic fields E, and H,: 

To determine the field on the plane we introduce a lab- 
oratory coordinate system with the y  axis coinciding 
with the channel axis ,  the x axis perpendicular to the 
crystal  planes, and the z  axis parallel to the planes. 
It is traditional in the case  of channeling to assume 
that the average potential (V,) may be used in place 
of the actual potential V,, which contains the variable 
components pop, ,  pu,,H,, and pug , ,  of which the 
f i r s t  two change sign periodically and average out 
( (HJ  = (H,) = 0), and the last i s  associated with E ,. In 
addition to the quantum treatment presented above, 
there i s  a classical  basis  for  the use of the averaged 
potential, associated with the insensitivity of the para- 
xial  motion of massive particles (protons, ions, neu- 
trons) o r  fast particles (electrons and positrons) to the 
low-amplitude high-frequency spatial variations of the 
local field. Because of the weakness of the interaction 
of the neutron with each individual atom, the averaged 
parameters alone shape the trajectory. 

Employing the usual method of averaging over the 
plane5 and introducing the cylindrical coordinate p = (r2 
- x2)l/2 , which i s  perpendicular to the x axis ,  we obtain 
the following formula for the average magnetic potential 
of the static plane of the crystal: - 

(V,)=po,  (Ee,) {Hz  (xZ+pz) 'h2npx/S, (zZ+p2)  ") dp, 
0 

where 5 i s  a vector normal to the yz  plane. Perform- 
ing the integration with the aid of (2) ,  we obtain 

< V J =  (Ee.) 2npZeu0, exp ( -x lR)  IS&. 

This equation does not take the thermal motion of the 
lattice into account. On averaging (V,) with the aid of 
the function 

for  the fluctuational deviations of the atoms f rom 
their equilibrium positions and taking into account the 
effect of the two planes closest to the potential well, 
we obtain 

(( v,)) =o , { v0  ( x )  -v0 (a-x)  ) UIC,  (3) 

where 

u is the r m s  deviation in the direction perpendicular to 
the plane of an  atom from i t s  equilibrium position, 
a(%) is the probability integral, and a i s  the distance 
between planes. 

Fo r  simplicity, in what follows we shall  write V for 
((Vu)). Figure 1 shows the structure of the magnetic 
potential V in the crystal. One feature of the potential 
well that a r i s e s  from the motion is the sharp  depen- 
dence of the position of i ts  minimum on the rat io of 
the parameters R ,  u ,  and a ,  the last two of which a r e  
adjustable since they depend on the temperature and the 

FIG. 1 .  Potential energy of a neutron in a planar channel re- 
duced to a static Lattice for R = a/5 and various values of u :  
1-u= 0, 2-u=R/6,  3 - u = R / 4 ,  4-14 =R/3 ,  5 - u = R O ,  6-  
u = R,  7-U= RJZ. 

specific choice of the channel. The possible values of 
u lie in the range from u - 3 X 10" cm for light and 
weakly bound atoms when T > O D  to u - 2 x lo-'' cm for 
crystals  having the maximum value of MOD when T 
< OD (M i s  the m a s s  of an atom and OD is the Debye 
temperature). When u << R and u << a ,  the coordinate 
x, of the bottom of the well i s  

In the opposite case ,  when R < u < a ,  we have 

xo=u{l+ (R2 /2uZ)  + ( d 2 R )  exp ( - a Z / 2 u z ) ) .  (5 

It follows from (4) and (5), a s  well a s  from the numer- 
ical calculations shown in Fig. 1, which were based on 
formula (3), that a s  u increases the potential well be- 
comes shallower and the bottom of the well shifts to- 
ward the center of the channel. Increasing the channel 
width a results  in the s ame  shift,  but with a certain 
increase in the depth of the well. 

In view of the expression obtained for  V and the dia- 
gonal form of the Pauli matrix u,=-(-1)"6,,, we s e e  
that the initial equation (1) breaks up into two indepen- 
dent equations for neutrons having two opposite polari- 
zations (with their spins oriented parallel o r  antiparal- 
lel  to the z axis): 

AY ,,%+ (2rnlA2) (Eo*V) Y ,.%=0. (6) 

When the neutron polarization is reversed  the potential 
well t ransforms to i ts  mi r ro r  image in the line 77 = O  on 
Fig. 1 ,  and this leads to a symmetric disposition of 
the well minima with respect  to the plane. 

Because of the complicated form of the potential V(x), 
an  accurate solution of (6) can be obtained only by nu- 
mer ica l  methods. Nevertheless, the principal qualita- 
tive features of the motion of neutrons in that field can 
be studied using a simple quasiclassical analysis. In 
that approximation the standard solution of Eq. (6) 
has the form 
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where p,= (pi,* 2 m ~ ) '  l2 is the effective local t rans-  
ve r se  momentum on the classical  trajectory between 
the turning points x,  and x,, which a r e  defined by the 
condition p ~ , = 2 m ~ ( x ~  ,2). 

Solution (7) is valid for  resonance neutrons and fas t -  
e r  ones except within negligibly smal l  regions near 
the points x,  and x, where pX=O. The low ba r r i e r  
height Vm" - l0-~-10-~ eV leads to high transparency 
of the interchannel ba r r i e r s  and to the absence of 
bound levels of purely channeling motion, for  which the 
following well-known condition must  be satisfied: 

In connection with this the t ransverse  motion of the 
neutrons i s  delocalized and corresponds to the geo- 
metric optics of a plane laminated medium having a 
variable refractive index, the necessary cri ter ion for  
the admissible rate of change of the refractive index 
being determined together with other variable param- 
e ters  of the longitudinal motion."'l 

Because of the periodicity of the function V(x), the 
solution (7) must satisfy Floquet's theorem: 

In particular, i f  the neutrons a r e  incident a t  the Bragg 
angle we have a case  of higher-order diffraction. In 
the general case,  from the continuity condition we find 
the dispersion equation 

which is satisfied for the only possible sma l l  values of 
the arguments P , , ~  << 1 provided ql  2 (P?. Bearing in 
mind the symmetric form of the potentla1 curve,  we 
find that this condition will be satisfied only if Ix2 -xl  I 
2 a/2,  i.e., if the region of classically allowed motion 
exceeds the halfwidth of the channel. This result  de- 
termines the region of allowed energies for the trans-  
verse  motion, which lie above the middle of the poten- 
tial ba r r i e r ,  i.e., at  q 0. Motion with Ix2 - x, I < a/2  
and q < 0 will be damped. Motion above the ba r r i e r  is  
characterized by the absence of forbidden energy 
bands. 

The motion of neutrons discussed here  differs sub- 
stantially from ordinary channeling, but many proper- 
ties of the lat ter  a r e ,  nevertheless, characteristic of 
it. Actually, it i s  not s o  important for the nuclear 
interaction of a particle with the lattice whether the 
particle always remains within a single channel o r ,  
remaining preferentially in the space between planes, 
jumps rapidly back and forth through the bar r ie r .  

Another so r t  of motion i s  also possible, in which the 
neutron rapidly c ros ses  the space between planes and 
'hovers" for a long time near the ba r r i e r  where there 
is a high density of nuclei. In view of the quasiclassi- 
ca l  nature of the motion and the transparency of the 
ba r r i e r ,  such features follow immediately from the 
relation 1 \kl ,, 1 - 1/ IP,(X) 1 . It i s  obvious that the last  
two modes of motion, which a r e  qualitatively s imi lar  
to the channeling of positively o r  negatively charged 
particles, will tend to enhance o r  suppress nuclear 
reactions involving neutrons. Above-barrier particles 
will have the s ame  s o r t  of motion. The reaction will 
consequently be enhanced for neutrons, the energy of 
whose transverse motion is close to the top of the bar -  
r i e r .  If the crystal  consists  of alternating planes hav- 
ing different potentials, the motion near the ba r r i e r  
with enhancement of the reaction yield at  one plane 
will be accompanied motion above o r  below the ba r r i e r  
a t  the other plane and the reaction will be suppressed 
on that plane. 

With the aid of Eq. (3) ,  we s e e  that the optimal angle 
for such quasichanneling is 

where q,-0.3-0.7 is the relative depth of the potential 
well (see Fig. I),  which var ies  within that interval for  
al l  realistic relations between u and R .  The slow de- 
c r ease  in the characterist ic  angle 0, - 1 / 6  a s  com- 
pared with the relation 0, - l / v  for the channeling of 
heavy charged particles i s  connected with the fact that 
the well depth and ba r r i e r  height increase linearly with 
v .  Fo r  crystals  having the parameter  values 2 - 10-50 
and S, - 10-16 cm2 we have 8, -2'-5' for v - 4 x  lo6 cm/ 
s ec  (E, - 10 eV) and 0, - 10"-20'' for  v - 10' cm/sec 
(E, - 1 MeV) in the ca se  of neutrons, and 0, -0.7-1.4' 
and 0, -5'-7' for  the s ame  respective velocities in the 
ca se  of light atoms having magnetic moments. 
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