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The cross section for the annihilation of a nucleon (N) and a antinucleon (g from continuum states, as well as 
the annihilation widths and shifts of the levels of a quasinuclear ~ q s ~ s t e m  with orbital momentum I = 0, is 
calculated within the framework of the coupled-channel model. It is shown that although the annihilation 
cross section is large (it is comparable with the unitary limit at nonrelativistic energies), the annihilation 
widths r,, of the quasinuclear states are small (r,, = 1-10 MeV at I = 2). It is 0bSe~ed that annihilation 
decreases the resonance width, and the physical cause of this phenomenon is explained. 

PACS numbers: 14.20.Dt, 13.75.C~ 

1. INTRODUCTION 

It w a s  in  1969-1970 that s t rong  nuclear  a t-  
t ract ion leads  t o  the appearance of a r i c h  spec t rum of 
bound s t a t e s  in  a n  NN system. It w a s  revealed in  the 
s a m e  papers  that the annihilation widths T, of these 
s t a t e s  do not exceed in o r d e r  of magnitude, a t  any r a t e ,  
the normal  hadron widths (-100 MeV), and can be much 
s m a l l e r  in s ta tes  with nonzero orbi tal  momentum I of 
the relat ive motion of N and N. It w a s  shown in Ref. 3 
that not only bound but a l so  resonant  s t a t e s  should exis t  
in  an NN sys tem,  a n d t h e i r  e las t i c  widths w e r e  calculat- 
ed. Bound and resonant  s t a t e s  of nuclear  type of the 
baryon-antibaryon sys tem have been named quasinu- 
c l e a r  baryonium. F u r t h e r  p r o g r e s s  i n  t h i s  field i s  de- 
scr ibed in reviews by Shapiro et  ~ 1 . ~ 1 ~  ( s e e  a l so  the 
re fe rences  therein). 

Special in te res t  in the baryonium problem a r o s e  
a f te r  the publication of experimental r e p o r t s  indicating 
the  existence of heavy mesons  (with m a s s  in  the region 
of 2 GeV) which a r e  strongly coupled to the NN channel 
(for the present  s ta tus  of the experimental  da ta  s e e  Ref. 
6). The observed baryonium leve ls  included a l so  some 
that were  quite narrow (width r 2 1 0  MeV). In the 
quasinuclear approach th i s  can be attributed to the 
presence of a nonzero orbi tal  momentum (see  Refs. 7 
and 8). The problem i s ,  however, that an exact calcu- 
lation of the annihilation widths ca l l s  for  a full account 
of the relat ivis t ic  dynamics of the s t rong interactions, 

t e r s  (the rad i i  of the annihilation and nuclear  interac-  
t ions,  the par t i c le  m a s s e s ,  the binding energ ies  of the 
baryonium) a r e  i n  accord with the t r u e  situation that 
obtains  f o r  the hTN sys tem.  Such a model, proposed in 
Ref. 11, h a s  already been used f o r  the  theory of bary- 
onium s - s t a t e s  ( s e e  Refs. 11-16). Greatest  interest ,  
however, a t t aches  t o  s t a t e s  with 1 # 0, s ince they should 
have,  as noted above, much Lower annihilation widths. 
In addition, calculation of one-boson exchange with r e -  
a l i s t i c  potentials ( s e e  Refs. 4 ,17,18)  have shown that 
mos t  quasinuclear s t a t e s  have a nonzero orbi tal  mo- 
mentum. At the s a m e  t ime,  the effect of annihilation 
on such s t a t e s  h a s  not yet been investigated f r o m  a 
point of view of in te res t  t o  us.') We fill  this  gap in this  
paper ,  and consider  d -s ta tes  by way of example (1 = 2). 

The  plan of the a r t i c l e  i s  the following. In Sec. 2 a r e  
formulated the bas ics  of the employed model. In Sec. 3 
is clar i f ied the c h a r a c t e r  of the interaction produced 
between N and N on account of coupling with the anni- 
hilation channel. Section 4 is devoted to the calculation 
of the annihilation widths and shif ts  of the bound quasi- 
nuclear  s ta tes .  In Sec. 5 i s  considered the influence of 
annhilation on the resonant  s ta tes .  The  NN annihilation 
c r o s s  section is calculated i n  Sec. 6 fo r  nonrelativistic 
energ ies .  Section 7 contains a brief formulation of the 
maiil r e s u l t s  of the paper ,  

2. COUPLED-CHANNEL MODEL 
and i s  not feasible  a t  the present  t ime.  The cited pa- 
p e r s  gave es t imates  of r, based on the smal lness  of We consider  the  nonrelativistic model of two coupled 

the annihilation rad ius  Y, (-0.1 fm) compared with the channels. Channel 1 cons i s t s  of two par t i c les  with iden- 

size of the quasinucleus fm).  It would be desir- t ical  m a s s e s  m,. The interaction between them i s  de- 

able to  be convinced of the reliability of these est i -  sc r ibed  by a cer tain potential that is assumed to be 

mates .  The question has become even m o r e  timely in s t rong  ellough to produce a bound o r  resonant  s tate .  
connection with the planned forthcoming startup of an Channel 2 contains two identical noninteracting part ic les  

antiproton s to rage  r ing that o f f e r s  a new possibility of With masses m 2  < m l .  the particles are assumed to 

finding narrow baryonium s t a t e s  and of investigating have z e r o  spin. Channel 1 i s  the analog of the NN sys-  

the i r  p roper t i es  ( s e e  Ref. 9). t e m ,  c h a m e l  2 corresponds to  the annihilation products. 

The purpose of the p resen t  paper  is to a s s e s s  the The c .m.s .  momenta k ,  and k ,  in  channels 1 and 2 a r e  

agreement  between the qualitative es t imates  of the in- connected with the kinetic energy E in channel 1 by the 

fluence of annihilation and quasinuclear s ta tes  ( see  relations2) 

Refs. 4 and 10) with resu l t s  of calculations within the k,=(m,E)'- ,  k,={m,[E+Z(m,-m,)]}". 
framework of the exactly solvable nonrelativistic model (1) 

of coupled channels (elast ic  annihilation). The em- The S matr ix  as a function of the energy E has  two 
ployed model is real is t ic  in the sense  that i t s  parame- square-root  branch points, E = 0 and E = -2(m, - m,). 
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Accordingly, the corresponding Riemann surface has 
four sheets. We direct the cuts on the sheets from the 
branch points to the right along the real  axis. The 
joining of the sheets and their numbering a r e  defined by 
the inequalities 

I. Imk,>O} 11. Imk,>Ol 111. Im k 6 0 }  IV. 2;::; 1 , 
Im k,>O ' Imk*<O ' Im k,<O ' 

The poles corresponding to the quasinuclear bound 
states, which can decay only via channel 2, will then be 
located on sheet 11, while those corresponding to the 
resonant states (which decay both via channel 1 and via 
channel 2) will be on sheets 111 and iV. 

We consider also the S matrix a s  a function of the 
momentum k,, defined on a two-sheet Riemann sur- 
face. If the cuts a r e  drawn from the branch points k, 
= *i[2ml(m, - m,)]'12 up and down along the imaginary 
axis respectively, then the arrangement of the poles in 
the second sheet will be asymmetrical (about the imag- 
inary axis) reflection of the picture on the f i rs t  sheet. 
On the latter, the poles corresponding to resonant 
states in channel 1 a r e  located in the third and fourth 
quadrants above the bisectrices, while those corre- 
sponding to the bound states a r e  above the bisectrix of 
the second quadrant. 

The considered two-channel system i s  described by a 
Hamiltonian = @+ c, where the free-system Hamil- 
tonian i?" and the interaction Hamiltonian 3 a re  Her- 
mitian 2 x 2 matrices: 

Here H: =q/m, ,  H: =e/rn, - 2(m, - m,), U is the 
potential of the nuclear interaction between N and 
in channel 1 ,  and W is the annihilation interaction that 
couples the channels. We choose U and W in separable 
form: 

The equations for (kl U lk') and [ , ( k )  a r e  obtained from 
(2) by making the substitutions A-g, P, -P1, 5 ,  - [,, 
and rn,-m,. Here g i s  the dimensionless constant of 
the diagonal (nuclear) interaction, A i s  the dimension- 
less  annihilation constant, P,- 1 / ~  is the reciprocal nu- 
clear-interaction radius, & - l/r, i s  the reciprocal an- 
nihilation radius, P,(cos 0) i s  a Legendre polynomial, 
and 0 i s  the angle between k and kl. 

We use in this paper the following parameter values: 
m, = 940 Mev/c2 (nucleon mass), m, = 770 Mev/c2 
(p-meson mass), fi, = 2m1 = 1880 M ~ V / C  (corresponds 
to  r,- 0.1 fm), /3, = 0.1p2 = 188 Mev/c (corresponds to 
R = l  fm). 

The separable form of enables us to obtain the NN 
elastic-scattering amplitude f in algebraic form. An 
explicit expression for f i s  given in the Appendix. 

3. ANNIHILATION AND GENERALIZED OPTICAL 
POTENTIAL 

To ascertain the character of the interaction that is 
produced between N and N a s  a result of the coupling 
with the annihilation channel, we consider the gener- 
alized optical potential 

where G, is the Green operator of the channel 2 (in the 
absence of coupling with channel 1). We assume in the 
present section that channel contains n identical non- 
interacting particles with mass m,. We consider the 
I-th partial wave. For a separable interaction W of the 
form (2) we then obtain 

Here Q = 2m, - nm, is the energy released in the an- 
nihilation channel, p = (mz~) l l2 ,  and 

B=hz($zz lm,)  l , ( k )  bz(Icf)P, (cos 0).  

From (3) we easily obtain 

At large p (starting with p -@,) the form factor &(p) de- 
creases  rapidly enough, ensuring convergence of the in- 
tegral in Eq. (5) at values & - /3:/m,. Since we a r e  in- 
terested in energies E << m, and in an energy release 
Q << m,, it follows that E + Q << /32,/m, (we recall that 
j3,= Zm,). It follows from the foregoing that the integral 
in (5) i s  negative. This means that annihilation leads to 
an additional attraction between N and N at nonrelativis- 
tic energies. This conclusion i s  not a consequence of 
the specifics of the employed model, but i s  general in 
character. Consider, e.g., the simplest canonical dia- 
gram of the annihilation scattering of N and N (two nu- 
cleons a r e  transferred through the t channel, and two 
mesons through the s channel). We assume for sim- 
plicity the nucleons and mesons to have zero spin. In 
the Mandelstam representation, this diagram corre- 
sponds to a generalized optical potential of the form 

0 - 
V ( r ,  s )  - - ( l / r )  j dsl(s-sr-i0)-I j exp(-i-t'") y ( s1 ,  t ) d t .  (6) 

&m,a 4(81 

Here s and t a r e  known invariant variables, and y (s ,  t )  
is the double spectral density 
y ( s ,  t )  =gLs"/{t  (s-4m,") [ ( s -4mzZ)  (s-4rn?) ( s + t )  - S ( S - ~ ~ , ' ) ~ I  I"', (7) 

where g is the meson-nucleon coupling constant. The 
lower integration limit in (6) i s  given by 

The spectral density (7) leads to a negative real  part of 
the potential (6) at s = 4m: (near the ~ f l  threshold). In 
other words, we obtain additional attraction between N 
and N.3)  

Returning to our model, we estimate the ratio of the 
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imaginary and rea l  par t s  (4) and (5) of the generalized 
optical potential. At p<< P, the form factor &(p) i s  giv- 
en by [,(p) -(p/&)'. Since i t  i s  normalized by the con- 
dition 

and depends on only one dimensional parameter  p2, i t  
can b e  represented in the form 

where x =p/P,, h(x) is a dimensionless function, 
and the dimensionless constant C is chosen such that 
h(x)=xl  a t  x<<l .  Since E + Q < < & / ~ , ,  Eqs. (4) and (5) 
take the form 

We recall  that the function h(x) ensures  convergence of 
the integral in (8) at  the values x -  1. 

Thus, we ultimately obtain 

A=Im V (-EB0)iRe V(-Eno) - [m, (Q-EB0)/$,Z] (Z'+3''-S1'z, (9) 

where E: is the initial (at A = O )  binding energy of the 
considered quasinuclear state. In the case n = 2 (two- 
particle annihilation channel) and 1 # 0, the exponent in 
(9) i s  ?3/2. Consequently A<< 1 independently of E: 
i.e., the attraction due to the annihilation is much 
stronger than the absorption. The baryonium coupling 
energy i s  therefore expected to increase monotonically 
with increasing annihilation constant A, and the annihil- 
ation width is expected to be much l e s s  than the shift. 
The number of part icles in the annihilation channel en- 
t e r s  in Eq. (9) in the same manner a s  the orbital mo- 
mentum 1.  This means that if E = 0 but n 2 3  the charac- 
t e r  of the motion of the quasinuclear pull will be the 
same a s  at  I P 0 and n = 2 (this  was in fact obtained ear -  
l i e r  in Ref. 14 by numerical calculation for  n = 3). 
When 1 = 0 but n = 2, the exponent in (9) i s  1/2 < 1. 
Therefore, depending on the value of E:, the pole can 
behave in two ways. If the initial binding energy i s  
high enough ( E i  - Q), then A<< 1 and the pole moves in 
the same manner a s  in the ca ses  described above (see  
Ref. 12). When the binding energy i s  not too large (E: 
c< Q), we have A -  1 and the pole motion i s  finite about 
the initial position (see  Ref. l ~ ) . ~ )  

The character  of the motion of the quasinuclear poles 
with increasing annihilation constant h i s  thus deter- 
mined mainly by the fact that the annihilation produces 
between N and 3, an attraction which in the sense in- 
dicated above is much stronger than the absorption. 

4. ANNIHILATION WIDTHS AND SHIFTS OF BOUND 
QUASINUCLEAR STATES 

We consider now the pole trajectories (Fig. 1) corre-  
sponding to a quasinuclear bound state and obtained by 
numerical calculation from the equations of the Appen- 
dix. Curve 1 of Fig. 1 corresponds to E: = O  (the 
bound state i s  located a t  A =  0 a t  the threshold of the 
NN channel), and curve 2 corresponds to  E: = 70 MeV. 

FIG. 1. Motion of poles corresponding to bound quasi-nuclear 
states with increasing annihilation constant h.  

As  expected, annihilation increases  the binding energy 
of the level, which acquires a smal l  annihilation width. 
The maximum width rm; i s  smal ler  the la rger  the ini- 
t ial  binding energy E: [in accordance with Eq. (9)]. 
Thus, a t  E: = 0 the width is rm? = 21 MeV, while a t  
E O  - - 70 MeV we have r",U = 5 MeV. 

The annihilation widths of the d levels thus turn out 
t o  be in our real is t ic  model smal ler  by one o r  two or-  
d e r s  of magnitude than the widths of the s levels, and 
amount to several  MeV. The physical cause of the de- 
c r ease  of the annihilation width on going to higher or-  
bital momenta i s  the action of the centrifugal ba r r i e r  
which prevents the distance between N and N to de- 
c r ease  to the annihilation value. 

At la rger  values of the constant A, the quasinuclear 
pole goes off f a r  from i t s  initial position. At the same 
t ime another ("annihilation") pole (not shown in Fig. 1) 
approaches the physical region. The behavior of such 
poles, which appear near the physical region in the 
ca se  of intense annihilation depends strongly on the dy- 
namics at  short distances, r s  r , .  They have therefore 
no physical meaning within the framework of the non- 
relativistic approach (which i s  used by us  to describe 
near-threshold phenomena that a r e  determined mainly 
by the nuclear interaction between N and @. 

5. EFFECT OF ANNIHILATION ON RESONANT 
QUASINUCLEAR STATES 

Two-channel resonance is known to correspond to two 
pa i rs  of poles located on two sheets  (111 and IV) of the 
Riemann surface E.  It i s  therefore more convenient to 
t rack  the motion of the resonant poles on the Riemann 
surface of the variable k,. 

It was shown in Sec. 3 that coupling with the annihila- 
tion channel produces additional attraction between N 
and N. One can therefore expect the resonance energy 
and i t s  elastic width to decrease with increasing an- 
nihilation constant. The resonant s tate can become 
bound a t  a sufficiently large constant A. 

These expectations a r e  confirmed by numerical cal- 
culations (Fig. 2). Figure 2(a) corresponds to a rat io 
of the annihilation and nuclear-interaction radii  Y, /R  
= 0.1, while Fig. 2(b) corresponds to Y, /R = 0.2 (P, 
= 0.2 P, = 376 ~ e ~ / c ) .  In Fig. 2(a) the total width of the 
resonance decreases  from r,= 15 MeV (at  A =  0) to 
r,,,= 5 MeV (at = 21.3), while in the ca se  b we have 
respectively To= 19 MeV and r,,,= 3 MeV (at A 2 =  13). 
We note that the decrease of the total width of a quasi- 
nuclear s resonance on account of annihilation was ob- 
served ear l ie r  in Ref. 16. Here this phenomenon is 
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FIG. 2.  Motion of poles corresponding to quasinuclear reson- 
ance: a) T,/R = 0.1; b) r,/R= 0.2 (Pi= 0.2 P 2 =  376 M~v/c). 

even more pronounced, for in the case of the d states 
the effect of attraction due to annihilation is much 
stronger than the absorption effect (see Sec. 3). 

At A 2 =  21.9 in case a and ha= 13.6 in case b, the 
resonant state turns into a bound state at the NZ 
threshold (the poles cross  in this case the bisector of 
the second and fourth quadrants). With further increase 
of the constant A,  the binding energy of this state in- 
creases.  

On Fig. 2(b) (at r,/R = 0.2) the right-hand pole goes 
off at large A far from its  initial position, and an "an- 
nihilation" pole ar r ives  in i t s  place. In Fig. 2(a) (at 
r,/R = 0.1) no such restructuring takes place (the "an- 
nihilation" pole passes far from the physical region, 
and the quasinuclear pole executes finite motion near 
the initial position). The difference i s  due to the fact 
that in the case r d R  = 0.2 a larger part of the quasi- 
nuclear-state wave function lands in the annihilation 
region then at Y,/R = 0.1. 

We note that trajectories similar to those in Figs. 1 
and 2(a) were obtained recently in the case of an s wave 
in a single-channel model with complex separable po- 
tential in Ref. 22 (see also Ref. 23). This result could 
be expected beforehand, since the authors of these pa- 
pers  used an attractive potential with sufficiently small 
ratio of the imaginary and real  parts. 

6. DEPENDENCE OF THE ANNIHILATION CROSS 
SECTION ON THE MOMENTUM AT LOW ENERGIES 

We consider the dependence of the annihilation proba- 
bility vo, (v i s  the relative velocity of N and N, and 

o, is the annihilation c ross  section) on the momentum 
k, of the antinucleon in the c.m.s. The curves on Figs. 
3(a), (b), (c) were calculated from Eq. (A.3) of the Ap- 
pendix at A2 = 21.96, while those in Fig. 3(c) were cal- 
culated at A 2 =  19.52. Figure 3(a) corresponds to the 
existence of a quasinuclear state with binding energy 
E n =  150 MeV and an annihilation width r, = 4 MeV. 
Despite the small width of the level, the annihilation 
c r o s s  section reaches 65% of the unitary level for the d 
wave at a momentum k, = 200 M ~ V / C .  In the case of 
Fig. 3(b), the level binding energy is E,= 25 MeV, and 
i t s  width i s  r,: 10 MeV. Since this bound state i s  
closer to the NN threshold, a noticeable increase of the 
annihilation c ross  section takes place at low tempera- 
tures.  Thus, at a momentum k, = 200 M e ~ / c  i t  amounts 
already to 82% of the unitary limit. Figure 3(c) corre- 
sponds to the presence of quasinuclear resonance with 
energy E, = 7 MeV and total width r=  8.5 MeV. As ex- 
pected, the annihilation c r o s s  section has in this case 
a clearly pronounced resonant character. At reso- 
nance, at a momentum k, = 100 ~ e V / c ,  it amounts to 
30% of the unitary limit. Finally, Fig. 3(d) corre- 
sponds to the conversion (on account of annihilation) of 
the resonant state into a bound state that i s  very close 
to the NN threshold (E, = 1 MeV and r,= 15 MeV). 
The presence of such a near-threshold level leads to a 
considerable increase of the cross  section for annihila- 
tion of slow Z .  At a momentum k, = 100 M ~ V / C  it 
amounts t o  68% of the unitary limit. 

7. CONCLUSION 

The principal results  of this paper a r e  the following: 

1. Annihilation increases the binding energies of 
quasinuclear d states by several dozen MeV. Their an- 
nihilation widths, at any rate,  do not exceed 10 MeV. 

2. The total width of the quasinuclear resonances 

FIG. 3. Dependence of the annihilation probability v o ,  on 
the antinucleon c.m.s. momentum ki in the following cases: 
a) in the presence of a quasinuclear bound state with binding 
energy Ea = 150 MeV and an annihilation width r ,  (Fig. 4 
MeV (point 2 of Fig. 1 ) ;  b) the same at E, = 25 MeV and r, 
= 10 MeV (point 1 on Fig. 1 ) ;  c) in the case of existence of 
a quasinuclear resonance with energy E,  = 7 MeV and total 
width r= 8 . 5  MeV (point 1 on Fig. 2a); d) the same as a) at 
E, = 1 MeV and r, = 15 MeV (point 2 on Fig. 2a). The dashed 
curves shows the unitary limit for the d wave crz=lO*/ 
(rnikl). 
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may d e c r e a s e  as a resu l t  of annihilation, while the  
resonances  can  tu rn  into bound s t a t e s  c lose  enough t o  
t h e  NN threshold. 

3. The c r o s s  section f o r  NN annihilation a t  momenta 
k , 2  200 M ~ V / C  is comparable with the unitary l imit  f o r  
the  d wave. The  presence  of quasinuclear  s t a t e s  close 
to the NN threshold i n c r e a s e s  considerably the cross 
section f o r  annihilation a t  low energ ies  (up t o  2 50% of 
the unitary limit at a momentum k, = 100 MeV/c). Since 
the numerical  r e s u l t s  of the p resen t  paper  are physical- 

ly lucid and a g r e e  with qualitative e s t i m a t e s  ( s e e  Refs. 
4 and l o ) ,  the main r e s u l t s  are valid a l s o  f o r  o ther  o r -  
bital momenta 1 # 0. 

In conclusion, the author  is s incere ly  grateful t o  
V.E. Markushin and I.S. Shapiro f o r  numerous helpful 
discussions of the r e s u l t s  of the work  and f o r  reading 
the manuscript .  

APPENDIX 

We presen t  below equations f o r  the par t i a l  amplitude 
f f o r  elast ic  scat ter ing of an antinucleon N of a nucleon 
N and f o r  the annihilation probability vu, in the con- 
s idered model. 

We introduce the notation 

GiU(E) =I i. (p) )j(p)p2dp/[E+2(ml-".) -p2/m,,+iO]. (A.1) 
0 

Equation (A.l) yields the mat r ix  element  of the f r e e  
Green operator  of the channel n (in the absence of cou- 
pling between the channels).  The indices  k ,  j, and n 
can take on values 1 and 2. Substituting in  (A.l) expres-  
sion (2) for  5 ,  and integrating, we obtain 

where k n  is the momentum in channel n and is connected 
with the energy E by Eqs.  (1). 

The amplitude f is expressed in t e r m s  of the quanti- 
t i e s  i n  (A.2) with the aid of the Lippman-Schwinger equa- 
tion in  the following manner  

where  
D(E) = (I-gGIl1) (1-X2G,z2Gz~~)-gX%~22G~122 

N(E) =gf (1-XZG212G222) +XZE,21Gz22(1-gGtlt! 

+2gX2i+EiGmaGti2. 

The poles of th i s  amplitude are determined by the solu- 
tion of the algebraic  equation D(E)  = 0. The annihilation 
probability vo, is connected with the amplitude by the 
formula 

I) The question was considered, Is using the coupled-channel 
scheme, on the basis of the N / D  method, using the dis- 
continuity of the Born amplitude on the left-hand potential) 

cut in the complex energy plane. As shown by a special 
investigationi5 for the s states, the results of such calcula- 
tions differ greatly from the exact ones. The baryonium- 
level spectrum obtained by this method does not agree with 
the result of the exact solution of the Schrzdinger eigenvalue 
problem even in the absence of annihilation (see Ref. 10). 
The " Born N/D method" yields annihilation widths of the 
order of 100 MeV independently of the orbital momentum of 
the states. 

') Here and elsewhere we use a system of units in which A 
= c = l .  

3, It is concluded in Ref. 20 on the basis of a similar analysis 
that repulsion takes place between N and R. This erroneous 
conclusion is due to the fact that the authors used for the 
spectral density an incorrect expression corresponding to 
massless initial and final particles (in analogy with photon- 
photon scattering in electrodynamics, see Ref. 21). It is 
clear, however, that such a formula can be used only if 
s, t >> 4mi, i.e., in the ultrarelativistic region, whereas 
we a r e  interested in nonrelativistic energies. 

4, The change of the character of the pole trajectories when 
the energy- independent ratio of the imaginary and real 
parts of the optical potential is varied was investigated in 
the single-channel model in the case of 1 = 0 in Ref. 22 (see 
also Ref. 23 and the literature therein). 
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