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A theory is constructed of the nonlinear interaction between two electromagnetic fields having arbitrary 
intensities, in a medium with a homogeneously broadened absorption (amplification) line; the theory agrees 
well with experiment. Simple approximate expressions are obtained for the positions and widths of the 
mulitphoton resonances. The existence of a narrow absorption extremum near zero detuning of the field 
frequencies is predicted. A simple analytic dependence of the nonlinear absorption coeficient on the ratio of 
the field amplitude is obtained at equal field frequencies. This dependence agrees well with experiment. An 
analytic equation is derived for the nonlinear absorption on the line wings. 

PACS numbers: 42.65.B~ 

8 1. INTRODUCTION sions a r e  obtained for the density-matrix elements. 
In part icular ,  the expression for  the absorption coeffi- 

The  interaction of two waves in a nonlinear medium cient of the test  wave at  52=0 i s  
is one of the basic problems of the theory of multi- 
mode l a se r s  and l a s e r  spectroscopy. This  question KO i+L-I, 
was f i r s t  considered by Rautian and Sobel'man,' who "(O'=Z ~ : ( ' - [ ~ + ~ ( I , + I , ) + ( I , - I ~ ~ ~ ~  (1) 

investigated theoretically the absorption of a weak test  where = 4.1rd2NowlttyabE:/zc is the linear absorption 
wave in the presence of a s trong wave that perturbs a coefficient a t  the line center ,  II and I, a r e  the dimen- 
two-level system. It was shown that the absorption of  sionless wave intensities, =(dE,,,lh)l (d is the 
the test  wave depends in nonmonotonic fashion on the transition matrix element, y i s  the line width, and No 
difference w, - w, = 52 between the wave frequencies ." is the level-population difference and is determined 
In the symmetrical  situation, when the frequency wz of only by the pumping and by the relaxation). As shown 
the perturbing wave coincides with the center  wo of the in 84, Eq. ( I )  describes well the experimental results.') 
absorption line, the maxima of the msorption of the 
test  wave a r e  located at 52=*52,, where 52, is the opti- The theory predicts, a t  close values of the wave 
cal-nutation frequency (the Rabi frequency). amplitude, the appearance of a new singularity in the - .  

With increase of intensity of the test  wave, a s t ruc-  
ture  in i t s  absorption spectrum was observed in Ref. 4 
and called there subradiative structure.  In addition to 
the principal maximum at  101 = SZR, new maxima ap- 
pear a t  1 0-1 = nR/n  (n = 2,3 ,4) .  These maxima a r e  

absorption s t ruc ture  near ze ro  detuning. At E l  < E 2  the 
singularity takes the form of a sharp  peak with a width 
l e s s  than y . Thus, at  E = 0.8E2 the width of the peak 
is l e s s  than y /2. At E > E , a sharp  dip appears.  This  
singularity was observed in experiment. 

. ... -- . 
due to multiphoton transitions .4 Simple approximate equations were  derived, describ- 

Later  experiments5 have revealed an anomalously 
strong dependence of the absorption near 0= 0 on the 
ratio of the wave amplitudes. When the ratio p =El /E,  
or" the test  and perturbing wave amplitudes changed 
from 0.0 to 1 . I . ,  the absorption changed by severa l  
t imes.  The theory developed in Ref. 4 does not ex- 
plain this effect, s ince i t  is valid in two limiting cases ,  
p << 1 and p >> 1. The hopes expressed in Ref. 4 to be 
able t o  interpolate the iormulas in such a way that they 
would be valid also at  p = 1 were  not realized. 

In the present paper we develop a theory that de- 
scr ibes  the subradiative structure a t  comparable field 
intensities. We solve the equations for the density ma-  
t r ix  of a two-level system in a field of two waves. The 
amplitudes of the modulation of the level populations at  
the frequency C2 and at  i t s  harmonics n 0  a r e  obtained 
in the form of continued fractions that a r e  expanded in 
s e r i e s  that converge rapidly even a t  comparable inten- 
si t ies .  At 0 = 0 ,  the situation simplifies: both waves 
have the same frequency and simple analytic expres-  

ing the positions and widths of both the single-photon 
and multiphoton resonances. In particular, the posi- 
tion of the resonance is described a s  before by the 
expression for aR /n ,  with the following simple approxi- 
mate expression obtained for  52,: 

Qn= (dlh) (E,2+E2') ," (2) 

which i s  valid a t  a rb i t ra ry  ra t ios  of the wave ampli- 
t udesE l  andE,.  

$2. SOLUTION OF THE DENSITY-MATRIX 
EQUATIONS IN A BlCHROMATlC FIELD 

To  determine the absorption (amplification) coeffi- 
cient and other characterist ics  of the response of a 
nonlinear medium to the action of a high-frequency 
electromagnetic field it is necessary to know the po- 
larization (the average dipole moment) of the medium 
P =d(pa, + p,). The elements of the density matrices 
pab and p, =p& a r e  obtained in the semiclassical  ap- 
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proximation from the solution of the following density - 
matrix equations: 

where 

The difference between y,, and (y, + y  ,)/2 makes it pos - 
sible t o  describe phenomenologically the dephasing col- 
lisions in the model of homogeneous absorption-line 
broadening; A, and X, represent  the pumping of the 
atoms to the levels a and b per  unit time. 

We seek the stationary solutions for  the elements of 
the atomic density matrix in a two-frequency radiation 
field. Ju s t  a s  the known stationary solution for  a mono- 
chromatic field, these solutions will not depend on the 
initial conditions. We change over to the slow variable 
a =pa, exp (iw2t). The system (3a) changes accordingly 
in the" rotating field" approximation into the following 
system of equations 

In Ref. 4, a system of equations s imi l a r  to (3b) was 
solved under the conditions w2 = w, and y, = , in the 
zeroth order  in the sma l l  parameter  a / / G 2 r < <  1 at  
p<< 1 o r p > >  1 (p=  IG,I / IG, ( ) .  In the present paper 
the system (3b) is solved without any additional approx- 
imations whatever .3' 

We seek the solution of the system (3b) in s e r i e s  
form: 

Substitution of the s e r i e s  (4) in Eq. (3b) leads to an 
infinite system of linear algebraic equations: 

where d,=a, - b, (n = 1 , 2 , 3 , .  . .); d o  =d$= 2(ao - bo); 
6,, is the Kronecker symbol; at  n=O it i s  necessary to 
substitute in the left-hand s ides  of the equations 2ao in 
place of a, and 2b,  in place of b,. 

Substituting in (5c) and (5d) the expressions obtained 
from (5a) and (5b) for on and on,  we obtain a, and b, 
and their difference. We then obtain the following. r e -  

currence relation4': 

dn+iGz'G,B,+i+dnFn+dn-iGzGseBB 

=r (h/y.-hblyb) 6n0, 

where 

n>O, d-,=d,*, ~=2~.yd(r.+rb). 

2 (yo-inQ) (yb-inQ) 
F. = 

r.+yb-2inQ 

We note that B,, = Bf and Fo =F$.  

To  solve (6), we define the quantity 

From (6) we obtain 

The recurrence relations (10) a r e  easi ly solved for  the 
continuous fraction: 

f l*+a 
I-- 
I-. . . 

m=l ,  2,3, .  . . . 
According to Ref. 7 ,  any continuous fraction can be 

converted into a s e r i e s ,  which in our case  takes the 
form 

D*+, . .  . Dm+,,- D,+, Dn+lD,+, Dm+,Dn+zLk+~ - - X , , = l - - -  -- ... . . . , 
QnQn+t Qn+rQn+z Qn+~Qn+s Qn+m-tQn+m 

(12) 
where na 1, 

The convergence of the s e r i e s  (12) will be discussed in 
93. 

To complete the solution of the system of equations 
(3b), we determine a, and o n  from (5a), (5b), (8), (9) 
and ( l l ) ,  (12): 

Knowing a,, we can  determine pa,, and consequently 
also the polarization P of the medium: 

We have thus obtained the response of the medium not 
only a t  the frequencies of the perturbing and test  wave 
w2(ub) and wi = w2 + Q(u,), but also a t  a l l  frequencies of 
the combination tones u2 + n o .  

We note the following circumstances. 

1. A spatial s t ruc ture  is significant for  the optical 
fields. In the expression for  the Hamiltonian V ( t ) ,  the 
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form of the field was not specified. This makes it pos- 
sible to use Eqs. (14) and (15) to solve a number of 
problems involving interaction between fields and a 
medium with homogeneousiy broadened absorption line. 
If I E ,  ( does not depend on the spatial coordinate z , and 
cp,=k,z +I), (i= 1,2),  we a r e  dealing with the field of 
two waves, traveling in the same direction in the case 
( k, - k2 I << I k, 1 and in opposite directions a t  1 k, + k2 ( 
<< I k, 1 .  Another possibility is to assume that the phas- 
e s  9, a r e  independent of z ,  and that the field amplitude 
a r e  periodic functions of z: I E  , I  =E,, I sink,z( ; in this 
case we a re  dealing with a field of two standing waves. 

2. The combination tones that occur at the frequen- 
cies wn=w2 + n o  have wave vectors kn=k2 +n(k, -%), 
where n is an integer, positive o r  negative [see (15)]. 
The amplitudes of these waves in a strong field a r e  
comparable in order  of magnitude with the amplitudes 
E l  and E z  if the dispersion relation I k,, 1 = W,&;'~/C is 
satisfied, where c, is the dielectric constant of the 
medium without the contribution of the resonant tran- 
sition. This equality i s  satisfied in the case  of waves 
traveling in the same direction. Therefore when two 
such waves propagate in an extended nonlinear medium, 
the combination tones must be taken into account. 
Another situation ar ises  when the waves propagate in 
opposite directions. The dispersion relation does not 
hold for them. An approximate estimate (see Ref. 8, 
p. 160) an approximate estimate yields the following 
definition of the ratio of the amplitude of rhe combina- 
tion tone E m  to the amplitude of one of the fundamental 
waves E j  ( j=1 ,2 ) :  

where Pm and Pj a r e  the polarizations of the medium 
for the combination and fundamental waves, a, is the 
absorption coefficient of the j -th wave, and A is the 
wavelength. Since usually CY,A << 1 we find even at IP,,,/ 
P,( =1 that I E  ,/E , I  << 1. Consequently, in interaction 
of opposing waves the combination tones can be disre- 
garded. Thus, the problem of propagation of two 
strong opposing waves in an extended nonlinear medium 
is closed and must be solved with the aid of the res-  
ponse, obtained in the present section, of the medium 
at the frequencies w1 and w2. 

$3. MULTIPHOTON RESONANCES IN THE 
ABSORPTION COEFFICIENTS OF THE TEST AND 
PERTURBING WAVES 

The absorption (amplification) coefficients of traveling 
waves a re  defined in terms of the-imaginary part of the 
polarizability of the medium: 

Substituting (7), (9) and (11) in (14), and substituting 
(14) in turn in (17), we obtain the following expressions 
for the absorption coefficients K,: 

Analysis of Eq. (18) shows that it generalizes a large 
number of physical situations. At E 1 = E 2 = 0  we obtain 
the linear absorption coefficients, at E ,= O,Ej # 0 (s 
# j )  we obtain the nonlinear absorption coefficient of the 
j-th wave, determined by the first  term in the curly 
brackets of (18). Substituting I j = O  in (18) (in this case 
XI  = 1),  we obtain the coefficient of absorption of a weak 
wave in the presence of a strong one.'" 

The symmetry of the problem of wave interaction in a 
nonlinear medium i s  determined by the relations that 
follow from (18) between the absorption coefficients K, 

[Kj= K,(f1,f2,Zl,I2),j=1, 21: 

Kz(f1, f 2 ,  11,  I z )=Kt ( - j 2 ,  - f , ,  I%, I , ) ,  

KZ(f<, f t ,  I , ,  2 2 )  =Kt ( f , ,  f , ,  Iz, I f ) .  

As expected, the absorption coefficients become equal 
a t  equal intensities I, =I2 and at equal distances of the 
wave frequencies from the line center I f ,  1 = I f2  I . In 
experiment, the frequency of the perturbing wave w2 
coincided with the absorption-line center (f2 = 0,  f l  =f), 
and the frequency of the test wave was scanned between 
the principal maxima. In this case the spectra of K1 
and K2 a r e  symmetrical about the line center, and can 
be represented after a number of transformations in 
the form 

The quantities Dl and X1 a re  determined by Eqs. (11) 
and (12). The extrema of the absorption coefficients 
K, and K2 a r e  determined by the extrema of the term 
f Im (DIXl). The maxima of DIXl a r e  determined, ac - 
cording to (13), by the maxima of D, (n = 1 ,2 ,3 , .  . .). 
It is easiest to obtain the maxima of D, by determining 
the poles of D,. According to (11) and (7), the poles of 
D, a r e  the roots of the equations F,_, = 0 and F,= 0, 
which take in the case f 2  = O , Y , = ~  b=y the form 
[ ( x - i n f )  (I - lnf)+I , l  [ I - i ( n + l )  f ]  [ I - i ( n - l )  j ]+I , ( l - inj )z=O 

(n=O, 1, 2 , .  ..), x-yly-. 
(21) 

We denote the roots of Eq. (21) for a certain arbitrary 
n by f A o .  The real part ~ e f A * )  of the root determines 
the position of the n-th extremum corresponding to the 
2n - 1 quantum r e ~ o n a n c e . ~  The poles of Dl a r e  deter- 
mined by the relations 

n=O, f,"." =* i [ i+I , / (x+z , )  1 ,  (22) 
n = l ,  fJ+if [ (3+11) /2+x] - f  [ (1+3x)/2+Z,+II]-i[x+I,+I,]/2=0. 

The roots of (23) at I ,  << 3 a re  given by 
(23) 
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At x = 1 and I, - 0 we have Ref :lv2) =*I:", and the position 
of the principal maxima is determined by the Rabi fre- 
quency Q1 =G,. Thus, the roots f:' '' determine the 
evolution of the position and the widths of the symme- 
trical single-photon resonances with increasing inten- 
sity of the test field, and in the case x = 1 Eq. (24) (as 
follows from calculations by Eq. (20) and from the ex- 
periments (see Figs. 1-3) determines fairly well the 
position of the single-photon resonances also at I, 2 3. 

For  n a  2, we solve Eq. (21) approximately. At n 
>> 1, Eq. (21) takes the form 

[ (x- inf)  (1-hf) +Z,+Z,] (1-inf) 

The roots of this equation a r e  

The roots f,!'12' determine the positions and widths of 
the 2n - 1 photon resonances. The values of Re f,!" at 
x = 1 a r e  compared with the experimental values and 
with those calculated from Eq. (20) in Table I . ~ '  From 
the table and from the comparison of f,!'12' with the 
curves of Fig. 1 and 2 it i s  seen that the positions of 
a l l  the resonances a r e  described, with an e r r o r  not 

FIG. 2. The same as Fig. 1 for I2 = 141.61. 

FIG. 1. Nonlinear absorption coefficientKi/~, at I, = 34.81. 
a) p = 1 .l; b) p = 1; c) p = 0.9 ; 1) experimental curve, 2) theo- 
retical curve calculated from Eq. (20). 

larger than lo%, by the simple formula QR/n, where 
OR is given by Eq. (2) in the case y =yab.  

An interesting question is that of the number of steps 
of the continued fraction FI [see ( l l ) ]  o r ,  equivalently, 
the number of terms (12) for XI which is sufficient to 
calculate the absorption coefficient (20) with the re- 
quired accuracy. It is necessary that al l  n* allowed 
resonances appear on the calculated absorption curves. 
Since each n-th resonance corresponds to a pole 
of D,, which appears for the first time in the n-th term 
of the ser ies  (12), the minimum number of terms in 
the se r i e s  is n*, where n* is determined by equation 
(27). If we take, with a certain margin, n* + 1 terms 
of the ser ies  (12), then it appears that this number 

FIG. 3. Nonlinear absorption coefficient Ki/Ko at p = 0.8, 
calculated from Eq. (20). 1) I, = 23.6; 2) I2 = 34.81; 3) 1, 
= 47.6. 
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TABLE I. Position of multiphoton maxima of the absorption 
coefficient for the case 1 2 =  141.61,~ = 0 .8 ,  n =1, n is the 
number of the maximum. f, is the position of the maximum of 
K, calculated with a complter using Eq. (20) .  fp-value ob- 
tained from (26) .  f,-value obtained in experiment. 

suffices to describe the behavior of the coefficients K1 
and K2 in the entire region in which they a r e  defined. 
Indeed, a l l  the D(0) a r e  equal at f =0: 

and accordingly the n-th term of the se r i e s  DIX1 at f = O  
is of the order of D n <  4". ~t f >> (II +Z2)/n we have 

and the n-th term of the se r i e s  DIXl is at f >> ZI +I2  of 
the order of 

(y21,12)n/(n! (o -oo)") ' .  

Thus, the se r i e s  DIXl decreases rapidly at smal l  f 
<< 1, just as at large detunings f >> Zl + 12, and i f  the 
ser ies  has n* + 1 terms it describes all  the multipho- 
ton resonances. 

The absorption-line wings f ;211 +I2 can be described 
by Eqs. (20) with XI = 1. The imaginary and real  parts 
of the expression for Dl take the form 

where 

A-I,Ia/[I,+ ( f + f ' )  ( i + I i ) l ,  
B= [l-f'(2+3/%) +I ,  (1-f') +I;] '+f' [3+1/%- (21%) fz+2 (1,+12)] ', 

c - I+  ("1,-ilx)f'+ ('"'-912%) f'+ ( i - 2 l x ) f  

+I, [i+"l~f'+'l~f'+'/zf'1 +Ir[i+"l~f'+3f'], 
F=1+1/x+ ('/Z+19/4x)f'+ (2+13/4x) f'+f 1% 

+ [ (7+3P) 11- (1+4$)121 PI4. 

At intensities II +I2 c 1 [in this case, according to the 
estimate (27), there i s  only one-photon resonance], 
calculations by means of Eqs. (20), using (28) at XI = 1, 
determine the absorption coefficients a t  any detuning 
away from the line center. 

84. COMPARISON OF THEORY WlTH EXPERIMENT 

To compare the theory with experiment, computer 
calculations were made, using Eq. (20), of the absorp- 
tion coefficient of the test wave Kl for the following 
cases:  ratio of the amplitudes of the test and perturb- 
ing waves p = 0.9, 1 .O, and 1.1 at perturbing-wave in- 
tensities I2 = 34.81 and 141.61 (Figs. 1 and 2). These 
figures show also the experimental curves in addition 
to the caculated ones.9 A comparison of these curves 
shows that the theory and experiment a r e  in good agree 
ment. The best agreement between theory and experi- 
ment takes place where the absorption coefficient IK! I 

is relatively large (p = 1 .I), and the worst agreement 
when l~~ 1 is small  (p =O.9). The apparent reason is 
that the absolute experimental e r r o r s  a re  equal in both 
cases. This suggests that the discrepancies between 
theory and experiment lie within the limits of the ex- 
perimental e r ro r .  

In addition to multiphoton maxima, calculations show 
that at the line center (f =0)  (see Figs. 2 and 3) there 
appears a narrow extremum, namely a maximum at p 
< 1 and a minimum at p > 1 [Fig. 2(c)], witha shape that 
is sharply peaked and different from a Lorentz curve. 
It follows from (24) and (26) that each of the D, has a 
pole at f =O. Thus, near f = 0  an interference of so r t s  
takes place between the resonances. The width of pro- 
duced extremum depends on the ratio p of the wave 
amplitudes. P.t p=0.8 the half-width of the maximum is 
hf =1/2-1/4 (see Fig. 3). 

55. ANOMALOUS CHANGE OF THE ABSORPTION 
COEFFICIENT WlTH CHANGE OF THE WAVE- 
AMPLITUDE RATIO 

~ x p e r i m e n t ~  has shown that when the ratio of the 
wave amplitudes near unit changes by *lo%, Kl(f) 
changes by several  times near f = O .  Kl changes by a 
factor of two at 1, = 34.81, and by 5-6 times at Z2 
= 141.6. It can be shown that the anomalously large 
change of K1 ,2(0) follows from Eqs. (20). A s  f -0,  the 
values of Dn determined by Eq. (11) become equal to 
each other and a r e  given by 

The quantity DIXl takes the form of a continued frac- 
tion 

D,X,  = 
D 

I - 
D 
D 1 --- 

I-. . . 
which contracts into the expression [l - (1 - 4 ~ ) " ~ ] / 2 .  
Accordingly, the expressions for KI(0) and K2(0) take 
the form6' 

Calculations in accordance with Eq. (29), in full 
agreement with experiment: account for the rapid 
character of the variation of the absorption coefficients 
K1(0) and K2(0) when the ratio p of the amplitude varies 
near p = 1. These changes of K1 and Kt have opposite 
tendencies. In accord with (19) we have K2(0,0,Z1,12) 
=K1(0,0,12,11). When p decreases from unity, K1 de- 
creases  and K2 increases, and vice versa  when p in- 
creases  from unity. Thus, for 1;" = 5.9 we have the 
ratio 

in experiment5'%his value amounted to approximately 
2. The anologous ratio for = 11.9 is 5.6; the ex- 
perimental value was 5-6. A refinement of the experi- 
mental value encounters difficulties involved with the 
accurate determination of the absorption coefficients 
of one field at a frequency that coincides with o r  is 
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close to the frequency of another field. 

An approximate estimate of the relative change of the 
absorption coefficients a t  z e ro  when p are close to 
unity (I 1 - pZ ( << 1)  yields 

As seen from (30), the value of this change depends 
strongly on the value of the total intensity of the waves 
Z,(l +p2) ,  the coefficient in (30) increases  rapidly with 
increasing intensity of the perturbing wave a t  a speci-  
fied amplitude ratio p. 

We note certain features of the absorption coefficient 
K,  of the test  field at  a= 0. When the conditions I ,  =I2 
<< 1 are satisfied we have 

Ki (0) =KO (l-1,-21,). (31) 

Equation (31) demonstrates the possibility of measur-  
ing the saturation coefficient by determining the slope 
of the straight line in the plot of kl(0)/Ko against I E ,  1 
o r  ) E , I ' .  At 11,1, >> 1 the absorption coefficient K1(0), 
regarded as a function of II at  a specified I,, has a 
maximum if the following relation holds: 

zim,=12+2 (1,) ">+2/, (21,) "+0 (I), 

KL-(O, It-, 11) =(KO/Zz) (2Z2)-"1. (32) 

In conclusion, we point out the analogy between the 
density -matrix equations (3b) and the Bloch equations 
in the theory of magnetic resonance. The system (3b) 
for "slow" matrix elements under the condition that the 
relaxation constants are equal y, =y ,=yab=y goes over 
into the Bloch vector equation with account taken of the 
relaxation and of the constant magnetic field: 

The following relations hold between the variables and 
the parameters of the system (3b), on the one hand, 
and the components of the magnetic moment M: 

M,=a+a', M,=i(a-a') , M,=p,-psb, ( 3 4 4  

between the components of the effective constant mag- 
netic field H,: 

I~H,=G,, yoH,,=O, yoHo.=02-oo, (34b) 

between the components of the effective circularly 
polarized alternating magnetic field HI at  the frequency 
a=wl -w2: 

'foHi*=Gc cos (Qt+v), yoH,,=Gl sin (Qt+v), H,.-O, (34) 

and also between the projections of the constant mag- 
netic moment M,,: 

Mo.=Mo,=O, Mo.=(a.-a,) fy. 

It is important that in our case  the fields H, and HI are 
not perpendicular, and to our  knowledge there are no 
published solutions of the Bloch equation (33) for such a 
case. The expressions obtained in the present paper 

can be used to describe magnetic resonance with fields 
(34b) and (34c). 

The authors thank N. A. Chigir' for  a helpful dis- 
cussion of the results  and for  their comparison with the 
experimental data. 

')1n particular, in a certain range of the detunings Cl the ab- 
sorption gives way to amplification. This effect was observ- 
ed in Refs. 2 and 3. 

2"I'he experiments were performed in the radio-frequency 
band on the Zeeman transition of the ground state 51so of 
cdtt3 atoms. 

3)In the experiment of Ref. 4, which was carried out in the 
radio band, there is only one relaxation constant y, but it 
would be very interesting to carry out a similar experiment 
in the optical band, where y,* yb + y,,. Having in mind the 
performance of such an experiment, we shall solve Eqs. (3) 
retaining the difference between the relaxation constants y,, 
yb, and yab, all the more since this complicates the solution 
only insignificantly. 

4)The recurrence relations (6) and (7) were obtained earlier6 
for the case of equal level widths ya = y,. 

5)~ultiphoton resonances condense as f - 0. The number of 
resolved maxima can be obtained from the resolution condi- 
tion: the distance between the centers of neighboring maxi- 
ma is larger than the sum of their half-widths: 

From this we get for the number of resolved maxima n* 

The dependence of n* on the summary intensity of the waves 
describes the experimental situation4*' with sufficient ac- 
curacy. 

"~xpression (29) follows also from the equations of Ref. 6,  
which were derived by another method. We note that the 
fields retain their individuality also when the frequencies 
are equal. Accordingly, Ki (29) coincides with the nonlinear 
absorption coefficient KO/@ + Zi) of a monochromatic field 
only if Z2 = 0. 
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