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We consider the corrections that must be introduced in the hydrodynamics equations for antiferromagnets to 
account for spin fluctuations. Expressions for the fluctuation contributions to the energy and momentum 
densities, as well as to the energy flux density and the stress tensor, are obtained on the basis of a general 
equation for the correlator matrix. This yields the fluctuation contributions to the equations that describe 
acoustic oscillations in antiferromagnets. Two frequency ranges of the sound oscillations are considered, low 
and high; the latter becomes significant near the antiferromagnetic transition point. In both ranges, the 
nonlocal contributions to the equations and the corrections to the dispersion laws of the sound oscillations are 
analyzed on the bask of the solution for the correlator matrices of the fluctuating quantities. The calculations 
are carried through to conclusion within the framework of the isotropic model. It is shown that the 
fluctuation corrections to the equations increase near the phase-transition point. 

PACS numbers: 75.50.Ee, 75.25. + z, 75.80. + q 

INTRODUCTION 

Andreev' has shown that nonlocal corrections to the 
equations of the hydrodynamics of a classical liquid, 
necessitated by long-wave fluctuations, exceed the Bar- 
nett terms. He calculated explicitly the nonlocal fluc- 
tuation contributions to the hydrodynamics equations. 
The same question was considered for  the case of 
superfluid He by Khalatnikov and the authors.' Just  a s  
in a classical liquid, the fluctuation corrections to the 
equations of the hydrodynamics of He11 turned out to be 
small for numerical reasons, with the exception of the 
temperature region near the X point, where the fluctua- 
tion contribution to the equations increases. The same 
should be expected in the vicinity of any second-order 
phase transition. 

We consider in this paper fluctuation corrections to 
the hydrodynamics equations for  antiferromagnets. The 
fluctuation corrections can be revealed in experiment 
by the corrections to the dispersion laws for the long- 
wave oscillations. Spin waves have gaps in their spec- 
trum; in addition, there is no direct method of measur- 
ing their dispersion law, s o  that a measurement of the 
corrections to the spin-wave dispersion law is a t  pres- 
ent doubtful We have therefore focused our attention 
to the calculations of the corrections to the equations 
for the acoustic variables, paying particular attention 
to the region near the antiferromagnetic-transition 
point. 

~ z ~ a l o s h i n s k 6  and Kukharenko3 have proposed a La- 
grangian formalism for the phenomenological descrip- 
tion of the long-wave oscillations of antiferromagnets. 
An alternate and more convenient Lagrangian formal- 
ism was formulated by Andreev and M a r ~ h e n k o . ~ ~ ~  This 
formalism, however, is not convenient for a descrip- 
tion that includes the magnetic-moment density. We 
shall use for  this purpose a Hamiltonian formalism 
equivalent to the Lagrangian formalism of Ref. 5. This 
Hamiltonian formalism yields nondissipative nonlinear 
spin-dynamics equations, s o  that particular attention 
should be paid to the dissipative terms in the equations. 

The state of a magnet is macroscopically character- 
ized by the density of the spin S and by an order pa- 
rameter J, that has the spin degrees of freedom. A 
classication of the possible types of order parameter 
in crystalline magnets was presented by Andreev and 
M a r ~ h e n k o ' ~ ~  on the basis of symmetry considerations. 
Not a l l  degrees of freedom of the order parameter, 
however, can be described hydrodynamically. The hy- 
drodynamic degrees of freedom a r e  rotations of the o r -  
de r  parameter inspin state, which a r e  responsible for 
the Goldstone excitations-the spin waves. Thus, for a 
weakly inhomogeneous state of a magnet we can write 

Here $, ig the homogeneous value of the order param- 
e ter  and S is the spin operator. The rotation angles 
together with the density of the spin S a r e  the hydrody - 
namic variables that describe the spin degrees of free- 
dom of the magnets. 

We shall be interested in the corrections to sound- 
wave dispersion laws, and must therefore describe the 
acoustic a s  well a s  the magnetic degrees of freedom. 
In place of the traditional elasticity-theory variables 
we shall use others, more convenient for the descrip- 
tion of nonlinear hydrodynamic processes.' Besides the 
specific entropy o and the momentum density g, we 
consider the quantities xu ( k  = 1,2,3),  whose meaning 
is that the equation xu = const (for one index) determines 
the position in space of some atomic plane of the crys- 
tal.'' If al l  three quantities xu a r e  fixed, we obtain 
equations that describe some point of the crystal. i. e., 
the shear  vector u is defined implicitly by the equation 
xu ( r  +u) = const. Under the natural conditions that X, 

= r ,  in the undeformed state, we can write down the 
connection between xu and the strain tensor: 

Here R ,  = r ,  +u,  is the observation point. 

For  all  the pairs of variables listed above we can 
write out expressions for the Poisson brackets in the 
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following form (V  means differentiation with respect to 
the variable r,) 

{ ~ T A ( ~ I ) ?  ga(r2))-gdr,) vh6(r , - r2 )+V, (gA6(r , - r2 ) ) ,  

(g(rt), S = ( ~ Z ) )  =sa(rt)  V6(rl-r2), {g(r,),  a(r2))=-Va6(rl-rz), 

(g(rt).zp(r~))=-Vzv6(rs-r2). {g(rl),  0a(r2))=-V0a6(r,-rz), 

{sa(rt) , so(r:)) - - E . Z # I ~ I ~ ( ~ I - ~ % ) ,  (3) 

Expressions (3) a r e  obtained from the representations 
of all  the variables listed in (3) in terms of normal co- 
o r d i n a t e ~ . ~  

On the basis of (3) we can now obtain the nondissipa- 
tive hydrodynamics equations for antiferromagnets. Let 

E=E(a, g, S., V I , , . ~ , ,  VO,) 

be the energy density." The nondissipative hydrody- 
namics equations a r e  then 

u S, - = - V  (VS,) + - x s 
' I t  [I: I. 

Here v = a E / @  is the velocity, with v = g / ~  by virtue of 
Galilean invariance ( p  is the mass  density). The s t r e s s  
tensor is constructed in the following manner: 

d E  d E  
6.. i g . i - .  + - T.". + - v (9) 

11 S d S' ,0, a ' J A I ~  

From the system (4148) follows the energy conserva- 
tion law 

d K / d t - k  rq=o, (10) 

The energy f l u  density is here 

Equations (4) and (5) modify the equations obtained in 
Ref. 5, with account taken of the elastic motion of the 
crystal. Equations (6)-(8) a r e  equivalent to  the usual 
system of nonlinear equations of elasticity theory (with 
the addition, in the right-hand sides, of terms con- 
nected with the spin variables). When comparing (6)- 
(8) with the classical variables of elasticity theoryg one 
must bear in mind the relation (2), as well a s  the fact 
that, unlike in Ref. 9, the equations (6148) a r e  written 
in the laboratory frame rather in a frame connected 
with the crystal. 

Generally speaking, in magnets the exchange interac- 
tion which determines the spin-wave velocity c,, is 
stronger than the spin-orbit interaction, which deter- 
mines the gaps O, in the spin-wave spectrum. We there- 
fore have the inequality 

coP>Aa. (11) 

however, the exchange interaction may turn out to  be 
weak and (11) may not hold. We shall not consider such 
antiferromagnets, since the fluctuation corrections will 
certainly be smaller in this case. 

THE CORRELATOR MATRIX 

Equations (4)-(8) a r e  the nondissipative part of the 
equations for the corresponding mean values in the 
long-wave limit. It turns out that one can write out also 
the long-wave limit of the equations for the paired cor- 
relators of the quantities listed in (4)-(8), and it suf- 
fices for this purpose to know the form of the function E 
and the kinetic coefficients. These equations for the 
correlators a r e  written out in a way such that they yield 
the correct  hydrodynamic equations for the mean values. 
For  a general case, this program was in fact carried 
out in the Appendix of Ref. 2, where the fluctuating var- 
iables considered were cononically conjugate. We shall 
use these result below. 

Let (p, /3) be a complete se t  of canonically conjugate 
variables. The equation for the correlator (p,(rl)BB(r,)) 
is of the form 

Here I is the collision integral, and the Hamiltonian 

By going to the limit r, - r, -00 in (12) we can obtain 
equations for the mean values (p) and @). The first  two 
terms in the right-hand side of (12) yield the nondissi- 
pative parts of the equations, and the collision integral 
determines the kinetic terms. However, besides these 
usual terms, Eq. (12) yields also the fluctuation correc- 
tions to the equations for the mean values. We write out 
these corrections with the pair correlations taken into 
account. 

We introduce the matrix of irreducible pair correla- 
tors  

( 
(6p.(r,)6pp(r2) > (6p.(r1)6P~(r2)) 

) t6p.(r1)6p8(r2)) (6p.(rt)6$,(r?)) ' 

We change over to the variables r = (r, + r,)/2, r, - r, and 
take the Fourier transform with respect to the latter. 
We denote the corresponding matrix by A(r,q). The 
contributions made by the pair correlators to the equa- 
tions for the mean value a r e  expressed in terms of the 
matrix A a s  follows: 

a i aD 
- ( p ) - - T ~ p j d ~ ( - - 4 ) .  3 t  - 

d P  

Here d+= d3q/(2n)3 and the matrix 

Here a is the atom dimension. For various reasons, If no account is  taken of the correlators, the expres- 
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I - 
sions for the energy and momentum densities in terms 
of the mean canonically conjugate quantities a r e  of the 
form 

E-Efp ,  A i!--~vB. 

momentum g. Accordingly, the right-hand sides of the 
equations for  these quantities should be expressed in 
t e rms  of the same variables. As for expressions (16) 
and (18)-(26), they make it possible to  express both the 
right- and left-hand sides of the equations for x,, E ,  
and g in t e rms  of the mean values of the canonically 
conjugate variables. Allowance for  the contribution (16) 
and for the absence of a fluctuation contribution to the 
mean values x u  (which a r e  themselves canonically con- 
jugate) allows us to express the s t ress  tensor and the 
energy flux density in terms of the mean xu ,  E, and g: 

When the pair correlations a r e  taken into account the 
following a r e  added to  these equations 

here 

Now, taking into account (14) as well as the equation ob- 
tained for the matrix A in the Appendix of Ref. 2, we 
can find the fluctuation contributions to the energy flux 
density and to the s t ress  tensor3': 

Here T = ( 8 ~ / 8 o ) / ~  is the temperature, IT, and Q, a r e  
the nondissipative expressions (9) and (111, and the de- 
pendence of (27) on a is equivalent to the dependence on 
the energy density. To obtain an explicit dependence on 
E it is necessary to invert the function E(o). 

SPIN DYNAMICS 

The spin part  of the energy density takes in the quad- 
ratic approximation the form 

Here 

Here x is the susceptibility tensor, p determines the 
spin-wave velocities, and 4 determines the gaps in the 
spin-wave spectrum. In the isotropic model 

In the case 51>> w,  where 51 is the characteristic f re-  
quency of the fluctuations (i.e., in the integrals that 
contain the matrix A), and w is the frequency of the 
hydrodynamic motion, the matrix A is a sum of terms 
that pertain to each oscillation mode and a r e  character- 
ized by a distribution functions n, (Ref. 2). In this case 
expressions (16) and (18)-(20) assume the much sim- 
pler form 

E n = Z j  dd.n. ,  (22) 

Here A is the gap in the spin-wave spectrum, and c,, 
and c, a r e  respectively the longitudinal and transverse 
velocities of the spin waves. 

To write down the equation for the matrix A,  we must 
know the form of the kinetic terms in the hydrodynamic 
equations. It is known that these terms can be obtained 
with the aid of the dissipative function R.  In our case 
we a r e  interested in the dependence on the spin vari- 
ables 

The dissipative contributions to the right-hand sides of 
the equations for the spin variables a r e  of the form 

dS, 1 d R  + - G  C _ _  

d R  
d t  2 a (aEIaS,) 2 d ( V  d ~ l d s , )  ' 

dt), i a R  
_c-- 

d t  2 d (6%/6t),) ' 

In the isotropic model 

aQ. aha. n: =P,,&+ ZI d r d r % + Z  d l v * ) ~ n a *  (25) 
aq, . 

ha. ~ , n  - z J ~ T Q .  - n.. 
aq 

The index a numbers here the different oscillations 
modes, 51, a r e  the eigenvalues of the matrix JD and 
have the meaning of the dispersion laws of the long- 
wave oscillations, ( ), denotes averaging over the eig- 
envector of the matrix JD having an eigenvalue 51, and 
normalized in accordance with the Appendix of Ref. 2. 

We a r e  interested in the matrix A,, of the paired i r -  
reducible correlators of the spin variables. We consid- 
e r  the equation for A,, in the presence of long-wave 
acoustic motion, which leads to the appearance of dis- 
equilibrium in the matrix A,,. It turns out that to  ob- 
tain this equation for A,,, it suffices to know the equa- 
tions for the spin variables in the approximation linear 
in these variables, and consequently it suffices to use 

We shall be interested in the spin-fluctuation correc- 
tions to the acoustic equations. The variables describ- 
ing the acoustic oscillations a r e  chosen to be the mean 
values x, and the densities of the energy E and of the 
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relation (3) for {s,, 8q) in the zeroth approximation in 
8. In this approximation, S, and 8, turn out to be ca- 
nonically conjugate variables, with S, the generalized 
momenta and 8, the generalized coordinates. Expres- 
sion (28) for the energy density can now be regarded as 
its dependence on the canonically conjugate variables 
(for the spin degrees of freedom). 

The sound-wave dispersion laws can be represented 
in the form 

o.=c,q-rf' .ql.  (32) 

Here c, is  the speed of sound, and the second term in 
(32) determines the damping decrement of the sound 
wave. In the limit c,,q>> A [which exists by virtue of 
the inequality (1111, a similar expression holds for the 
spin-wave dispersion law, and the corresponding coef- 
ficient of q 2  will be designated r,,. In the isotropic 
model 

~ _ = U . > ( ; , ~ C - = ~ ; , ~ X ) .  1' =tr.r)(;,zc I +  ( c ~ + C , ) ~ X ) .  (33) 

We consider f irst  the case of low frequencies w<<S1, 
where w is the frequency of the hydrodynamic motion 
and $2 is the characteristic frequency of the spin fluc- 
tuations. As already noted, the matrix A,, reduces in 
this case to a number of distribution functions n,. Let 
q be the characteristic wave vector of the spin fluctua- 
tions. We consider the region c,,q >> A (if the inequality 
is reversed the fluctuation corrections a r e  small). In 
this case we can disregard the gaps in the spin-wave 
spectrum. The condition imposed on q, the inequality 
SZ >> w, and the necessary condition q>> k ( k  is the wave 
vector of the hydrodynamic motion) yield the following 
inequalities for the frequency of the hydrodynamic mo- 
t ion: 

csPZ c: A."=r.P - ->a>>- 
p ' I;, csvz 

The region of the existence of the integral (34) is en- 
sured by the inequality c:,>> A,,I',,, which means weak 
damping of the spin waves a t  frequencies not greatly 
exceeding the gap, and by the experimental condition 

c a p -  cs. 

In the presence of long-wave hydrodynamic motion, 
the distribution function I?,, for each spin-wave mode 
acquires a nonequilibrium increment 

n,,=nO+6n. (35) 

With account taken of the dispersion law t2, = T/c,,q, an 
equation for the function rl was obtained in the Appendix 
of Ref. 2 and takes the form of the usual kinetic equa- 
tion. The solution of this equation for long-wave motion 
with frequency w and wave vector k is 

Allowance is made here for the dependence of the spin- 
wave velocity on the direction of the vector q ,  and ni is 
a unit vector in the direction of q.  

We must now substitute n in the integrals (22)-(26). 
The integrals of no a r e  independent of w and k,  and r e -  
sult an inessential redefinition of the thermodynamic 

quantities. The same applies to the integral of b, with 
respect to large q, s o  that we take into account in the 
integrals (22)-(26) only the pole part  of (36). Thus, the 
integral with respect to the modulus of q reduces to 
taking the residue, after which we a r e  left with an inte- 
gra l  with respect to the angles, which depends generally 
speaking on the form of the functions c,,(n) and r,,(n). 
T o  estimate the numerical factors that a r i se  in the in- 
tegration we carry  out the integration for the case when 
c,, and r,, do not depend on the direction of q,  as is the 
case,  in particular, in the isotropic model. It is nec- 
essary  here to take into account the equation (JJ,), = 0, 
which holds because the energy density (28) contains no 
c ross  t e rms  in 8 and S. As a result, each spin-wave 
mode makes the following contribution: 

i + l  k 
Q,, = =(+)* T C -  k [ u ( 6  lo c-6 la T )  I.+ck 6 In T I , + h l , ] ,  

~n =Q nlc', 
i f 1  o 

(37) 

n,." ( F ) ' l l ~  { [ a  ( 6  ln c-6 ln T )  I,+ck 6 ln T I ,  + k d s 1 8 ~  

i a ln c +- (Is-Ir) (kcvL,+~,ckk) --En. 
2 I audh 

Equations (37) a r e  written in an approximation linear 
in the acoustic variables, 

and so  forth. In these equations Ii = Ii(ck/w), and the 
expressions for I, a r e  given in the Appendix of Ref. 2. 

FLUCTUATIONS NEAR A TRANSITION POINT 

We consider the situation near the antiferromagnetic- 
transition point. In this case both the gaps and the ve- 
locities in the spin-wave spectrum a r e  small. An im- 
portant role is therefore assumed by the high-frequency 
region, in which the inequality 

~ > n  
holds. It turns out that the inequality c,,q>> A is then 
automatically satisfied, since the characteristic wave 
vector (I i s  determined by the expres~ionq"(w/I', ,)~. 
Taking into account the need for satisfying the inequality 
q >> k, and requiring also weak damping of the sound 
wave, we obtain the following inequalities for the fre- 
quency: 

C , ~ / I - . ~ ,  ~ , ~ / r , ~ a ~ c . , ~ / ~ , ~ .  (38) 

The existence of this interval is ensured by the small- 
ness of c,, near the transition point. 

If w>> S 2 ,  the solution of the equation for the matrix 
A,, becomes more complicated, since A,, cannot be 
represented in terms of n,. The kinetic equation for the 
matrix A,, is  of the formz 

Here {,} a r e  Poisson brackets in q and r; G is the kin- 
etic-coefficient matrix; D is a matrix constructed in 
accordance with (15) from the spin part  of the energy 
density (28); 6A,, is the deviation from the equilibrium 
value 

A,=TD-1. 
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ergy density is Linearizing (39), we obtain, taking (38) into account, 
the following equation for a,,: 

I  + - (D-', TDJ+vq). 
2 (40) 

By virtue of ca t>>  q,I',,, the inequality (38) ensures 
the condition cq >> A. It is accordingly necessary to 
take into account in the expressions for D and G only the 
terms of principal order in q. In this approximation we 
have in the isotropic model 

r . ~ ~ , = p q z + r , l ~ l a ~ q z  o .a( o r,H611a~qz+reLti1Qo~2 1 . (42) 
Here 

The solution of (4) is a sum of terms determined by 
the eigenvectors of the matrix G. If the acoustic motion 
takes place with frequency w ,  each such term has a 
denominator in the form 

1/ (0+2ir$ ) .  

It is the residues determined by these denominators 
which contribute to the fluctuation corrections. In the 
approximation linear in the acoustic motion we obtain 

CORRECTIONS TO THE SOUND VELOCITIES 

It is impossible in the general case to correct the 
sound-wave velocities for the fluctuations. We confine 
ourselves therefore from the very outset to the iso- 
tropic model. In this case the acoustic part of the en- 

1 
E.= - g2+E, (o)  - (I'+E,)u,,+ (pclZ-P-E,)urz 

"p 

Here P is the pressure a t  u = 0, c, and c, a re  respec- 
tively the longitudinal and transverse sound velocities. 
This form of energy density corresponds to the follow- 
ing energy flux density and stress  tensor (in the linear 
approximation) : 

P+E, 
Q, = -g, ~,,"=l'6,k+2pc,lir,,+p(clz-2c,') it,.. 

P (45) 

The last expression takes into account the nonlinear de- 
pendence of the strain tensor u,, on vx,. Knowing ex- 
pressions (16)-(26), we can now write down the fluctua- 
tion corrections for the equations for the energy and 
momentum densities in accord with (27). Recognizing 
that the spin fluctuations do not alter the form Eq. (7) 
for x, ,  we know thus the fluctuation contributions to all  
the equations for the acoustic variables. These con- 
tributions allow us to find the corrections to the dis- 
persion laws of the sound waves; these corrections af- 
fect both the real parts of the spectrum and the damp- 
ing decrements. 

In the frequency range (34), the fluctuation correc- 
tions to the equations a re  given by expressions (37). 
Substituting (27) in them and linearizing with respect to 
the variations of the variables in the sound wave, we 
can obtain the corrections to the dispersion laws of the 
longitudinal and transverse sound waves. They a re  of 
the form 

We have written out here the contribution from one 
mode of spin waves with velocity c, and introduced the 
notat ion 

a In T a l n x  a In c, 
q,=--, *=- 

' 7=K' au,, a ~ , ,  

The corrections to the imaginary part of the spectrum 
are given by*' : 

Here a is the coefficient of wZ in the imaginary part of 
the wave vector. 

The expressions for the fluctuation contributions in 
the frequency region (38) a re  given in (43). Substituting 
them in (27) and linearizing with respect to the varia- 
tion of the variables in the sound wave, we can obtain 
the corrections to the dispersion laws of the longitudinal 
and transverse sound waves. The corrections to the 
sound-wave velocities take in this limit the form 

570 Sov. Phys. JETP 55(3), March 1982 

1 

V. V. Lebedev and A. I. Sukhorukov 570 



T h e  imag ina ry  p a r t  of t h e  s p e c t r u m  is now obta ined in 
a c c o r d  wi th  (47 1. 

W e  see that the  d e n o m i n a t o r s  of (48) con ta in  t h e  coe f -  
f i c i en t s  f. At  least f o r  r't and  r'," i t  c a n  b e  s t a t e d  that 
they tend to zero as t h e  a n t i f e r r o m a g n e t i c  t r ans i t i on  
point i s  approached .  T h e  f luctuat ion c o r r e c t i o n s  t h u s  
i n c r e a s e  when t h e  t r a n s i t i o n  point  i s  approached ,  a n d  
t h i s  obviously d o e s  not  depend  on  t h e  m o d e l  c h o s e n  by 
u s  and  t a k e s  place in any  case. T h i s  i n c r e a s e  g i v e s  
g rounds  f o r  hoping to o b s e r v e  t h e  e f f ec t  in expe r imen t .  

The group of transformations of the crys ta l  represents the 
atomic planes, and it can therefore he assumed thatx,  with 
respect to the index1 is the basis of the representation of 
the crys ta l  point group. 

The energy density E should be an invariant of the crystal  
point group, and this determines the possible contractions 
with respect  to the index p ;  E should a lso  be an invariant 
of the rotation group, and this determines the possible con- 
tractions with respect to the spatial indices. We note that 
in the presence of vector variables the dependence of E on 
V x ,  does not reduce, generally speaking, to a dependence on 
the s t ra in  tensor u,,, . 

3, It must be borne in mind he re  that besides that main con- 
tribution (16) to the energy and momentum densities, the 
fluctuation make a lso  contributions in the form of gradients. 

') It i s  assumed in (46) and (47) that cQ c, and c* cl .  
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