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1. INTRODUCTION 

Einstein regarded the phenomenon of universal gravi- 
tation a s  a manifestation of the Riemannian geometry of 
real  space-time.' However, one can also interpret Ein- 
stein's theory of gravitation a s  a variant of the theory 
of gauge fields in Minkowski space.' Particularly in- 
structive is the analogy between the gravitational field 
and the Yang-Mills field.= For our purpose-calcula- 
tion of the asymptotic behavior of scattering amplitudes 
in gravitation-it is helpful to dwell on this analogy in 
more detail. 

The Yang-Mills and gravitational fields describe 
massless particles with spins S = 1 and 2, respectively 
(gluon and graviton), which for fixed momentum have 
only two degrees of freedom corresponding to helicities 
is. Nevertheless, for relativistic invariance it is nec- 
essary to introduce the four-component vector potential 
Au(x) a s  the gluon field and the symmetric tensor 
AP(x) with ten independent components to describe the 
graviton.  h he field Au is, in addition, a Hermitian 
traceless matrix in the case of the group SU(n) acting 
on an n-dimensional complex space.] To eliminate the 
redundant components, it is assumed that the f ree  (lin- 
earized) equations for the fields A' and Auv have solu- 
tions grouped in classes connected by the "truncated" 
gauge transformation 

where ~ ( x )  is an arbitrary n x n matrix, and xV(x) is an 
arbitrary vector field. Solutions belonging to the same 
class a r e  assumed to be physically equivalent. It is 
readily verified that by means of the gauge freedom ( I )  
solutions corresponding to f ree  particles with momen- 
tum p (pZ= 0) can be reduced to the form 

where the polarization tensors eu(p) and eu"(p) a r e  a 
certain linear combinat ion of the independent tensors 

which describe gluons and gravitions with helicities 
*S [el and e2 a r e  a pair of orthonormal spacelike vec- 
tors orthogonal to p; (a,  b )  =a,bv6u" = a,b, -a  b]. In the 
Yang-Mills model, the vector potential A" for a f ree  
gluon is also proportional to a Hermitian traceless ma- 
trix, which corresponds to the internal degrees of free- 
dom. 

The projection operators onto the physical subspace 

spanning the tensors (2) can be written in the form 

where Nu is the timelike vector with components (1,0,  
0,O). 

The attempt to construct Feynman propagators of the 
gluon and graviton with momentum p in accordance with 
the formula D(p) = Alp2 leads to a Lorentz noninvariant 
result due to the dependence of A", on the vector Nu. 
However, it can be seen that the contributions to the 
projection operators of the last term in Eq. (3) for Au" 
do not contain singularities with respect to Po and can 
therefore be compensated by introduction into the theory 
of an instantaneous (Newtonian) interaction. The re- 
maining noninvariant terms a r e  proportional to the vec- 
tor p and lead to a vanishing contribution in the sum of 
the Feynman diagrams provided the gluon and graviton 
interact with conserved tensors (a vector current for 
the gluon and the energy -momentum tensor for the 
graviton). Thus, if the above conditions a re  satisfied, 
the gluon and graviton propagators can be taken to be 
the tensors 

which corresponds to a definite (Feynman) gauge. The 
operator 51 is the projection operator onto the unitary- 
spin part  of the gluon wave function. For the group 
SU(n), 

The irkvariance of the linearized Euler-Lagrange 
equations with respect to the transformations (1) makes 
it possible to construct an action in a unique manner 
for both gauge models in the quadratic approximation: 

L J I 

where the constant common factors a r e  chosen in ac- 
cordance with Eqs. (4); the arrow above a derivative 
symbol indicates which of the functions A'" o r  A"'"' on 
which the derivative acts; in a differential operator, 
symmetrization with respect to the substitutions k* v 
and p'= V' is assumed. The matrices A, can be ex- 
pressed in terms of (n2 - 1)-component vectors in the 
internal unitary SU(n) space in accordance with 
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Ap='/~IaVUn, [h, Ibl = Z ~ f . a ~ l , ,  Sp (h.hb) ~26.6, (7 

where A, is a generalization of the Gell-Mann matrices, 
and f,, a r e  the structure constants of the group SU(n). 

The quadratic forms written down in (6) a r e  degener- 
ate due to the symmetry (1). Nevertheless, in the mo- 
mentum representation one can invert the correspond- 
ing operators in the space orthogonal to 0,. The prop- 
agators obtained in this manner differ from (4) by the 
substitution 

i.e., by terms which vanish if the field sources a r e  
conserved: 

These sources ar ise  on the right-hand sides of the 
classical equations a s  a result of variation of the terms 
of higher order in A' and A"" than the ones written 
down in (6). If the equations a r e  to have nontrivial so- 
lutions, A" +O,AwV + 0, they must be self-consistent 
(which requires conservation of j ,  and O,,). For this, 
it is necessary to require invariance of the complete 
Lagrangian with respect to some transformation that 
generalizes (1) to the case of large fields A' and Aw. 
For infinitesimally small parameters x and x u ,  we can 
restrict ourselves to the corrections linear in A" and 
A"" on the right-hand side of Eqs. ( I ) ,  identifying them 
with global SU(n) transformations and translations in 
the coordinate space: 

A9(x)  -+ArU(x) = A u + a P ~ + i g [ ~ ,  A @ ] ,  

A" (x) -A'" (x) =Ap' (2) +(lL'~'+ d l ~ ~ + l ) i ( ~ ~ a ~ A ~ ~ ,  
(8) 

whereg and H a r e  certain constants. In Eqs. (8), it is 
possible to change the coefficients of the derivatives 
BUx and a?", introducing in them a dependence on the 
fields. This corresponds to a possible reparametriza- 
tion of the potentials: B M =  f(Au),  BUY = q(AUv). If the 
symmetry transformations a r e  chosen in the form (8), 
then on the basis of the expressions (6) it is possible to 
construct the action uniquely in the form of an expan- 
sion in the couplings constants g and n for both gauge 
theories: 

where R is the scalar curvature,' which depends on the 
metric tensor g W ( x ) ,  which itself is  expressed in terms 
of the field AUv(x) by1' 

f ( x )  =6"-2xA" ( x )  . (10) 

In the presence of other fields, the Lagrangians for 
them a r e  constructed in such a way that the theory is 
invariant under the transformations (8) augmented by 
corresponding SU(n) rotations and Lorentz shifts of the 
new fields by the small  quantities g~ and 2nxP. In par- 
ticular, the corrections to Eqs. (9) for small  gA' and 
nAw due to the interaction with the other fields have 
the form 

where 4 and T:,, a r e  the unitary current and the ener- 
gy -momentum tensor calculated in accordance with 
Noether's theorem in the absence of Yang-Mills and 
gravitational fields. 

Quantization of the gauge theories in the framework 
of the noncovariant Hamiltonian approach4 leads to a 
very cumbersome perturbation theory. A manifestly 
Lorentz invariant approach to the construction of a 
Feynman diagram technique was proposed in Ref. 5. R 
is well known that gravitation is  a nonrenormalizable 
theory. Formally, this is due to the nonvanishing di- 
mensionality of the coupling constant n and the possibil- 
ity of constructing generally covariant (gauge invariant) 
counter terms with high derivatives of the fields A"". 
Supergravity apparently has the same  shortcoming.' 
Therefore, it could be that Einstein's theory of gravi- 
tation is the low-energy limit of a future (possibly, 
nonlocal) yield theory. Investigation of the high-energy 
asymptotic behavior in gravitation could ass is t  in the 
construction of this theory. 

In the present paper, we calculate the amplitude of 
particle production in multireggeon kinematics due to 
the gravitational interaction in the t r ee  approximation, 
and also with allowance for the infrared-divergent ra-  
diative corrections, which lead to reggeization of the 
graviton. The method of calculation is based on consid- 
erable use of analyticity and unitarity and is a further 
development of the dispersion approach used earlier7 to 
find the high-energy behavior in Yang-Mills theory. As 
we shall show below, to find the asymptotic contribu- 
tions in the framework of perturbation theory it is not 
essential to know the actual form of the Lagrangian (9) 
in gravitation but is sufficient to use only the general 
principles on the basis of which it is constructed. It 
will be found that the analogy noted above with the 
Yang-Mills model is helpful 

2. ELASTIC AMPLITUDES I N  THE BORN 
APPROXIMATION 

The use of the expressions (4) and (11) leads to the 
following expressions for the scattering amplitudes of 
a AB-A'B' process realized through exchange in the t 
channel ( t  =(pA -pA,)') of a gluon and a graviton, re- 
spectively: 

6"' 
F~~ =- - (-g)i, ( P A ,  PA. )  (-g)ii* (pa,  PB,) 9 

t 
1 

(12) 
& = - (6"'6w'+6s*'6vu'--6"8"") (-x)'T,(pA, PA. )  TC,Y* (pa ,  pa*),  

2t 

where yu(pA, pA,) is the unitary current in the momentum 
representation [a labels the n2 - 1 components of the 
gluon wave function in the internal space of the group 
sU(n)]; T,(pA,pi) is the matrix element of the energy- 
momentum tensor in the same representation. For a 
point scalar  particle with mass m,  

Here, PA, is a generator of the group SU(n); A and A' 
label the unitary indices of the initial and the final par- 
ticle. Thus, in the case of scattering of structureless 
scalar particles the expression (12) can be rewritten in 
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the form be readily found in the form of the expansion 

Note that there are corrections to these expressions 
corresponding to diagrams with gluon (and graviton) ex- 
change in other channels ( s  and u) ,  but they do not con- 
tain a singularity l / t  as t -  0. The residue at the pole 
l / t  is universal: it does not depend on the internal 
structure of the colliding objects. In particular, in the 
presence of spin the s-channel helicities of each of the 
scattered particles is conserved in the limit t - 0: 

Comparing the expressions (15) for the scattering 
amplitude FG in the nonrelativistic limit s - 4m2 (u - 0)  
with the well-known quantum-mechanical formula 

where V ( r )  = -Gm2/r is the Newtonian potential ( G  is the 
constant of gravitation), we can obtain Einstein's rela- 
tion between G and n: 

For gluons and gravitons, which are massless and 
structureless objects in the framework of perturbation 
theory, the expressions (15) are valid in the Regge lim- 
it 

The antisymmetry of F, and the symmetry of FG with 
respect to  the interchange s*n corresponds to the 
well-known dependence of the signature P, on the spin 
of the exchanged particle: P, = 

In what follows, we need expressions for the gluon 
and graviton scattering amplitudes, not in the helicity 
basis (15) but in the Lorentz covariant form 

where the matrices are given by 

Here, e i  and e y  are the polarization tensors of parti- 
cles with helicities *S [see ( 2 ) ] .  

The matrices rw' and r"v~*u'"' describe a rotation of 
the subspace spanned by e:(p) and ef"(p) in the plane 
formed by the vectors pB and q =PA -PA,. Indeed, by 
choice of the gauge one can make the polarization ten- 
sors orthogonal to the vector pB; in addition, the vec- 
tor pA must be carried by this rotation to the vector PA, 
=p, -q. For small q [see (17)],  the matrix of the ro- 
tation of the entire 4-space with these properties can 
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The relations 

p' (PA),--  (PA,)", U W U ~ ~ = S ~ * + O  ( q s )  , (21) 

which guarantee the fulfillment of the above properties 
for small q,  are readily verified. 

Projecting u""' onto the subspace orthogonal to the 
vectors pft and pi,  we obtain the required expression 
for P"" (c f .  Ref. 7 ) :  

which, in particular, has the transversality properties 

For a symmetric second-rank tensor, the rotation ma- 
trix corresponding to the transformation (20) has the 
form 

Projecting u""*""' onto the physical subspace spanned 
by the vectors e r  (this amounts to separation of the 
tensor components with indices CL and v transversal to 
the p,, pB plane, symmetrization with respect to them, 
and the addition of terms -6"" make the trace vanish), 
we obtain for the vertices I'"u*u'u' [see (18),(19)] the ex- 
press ion 

The tensor ruvl""' has the properties 

Below, we shall use Eqs. (22)  and ( 2 5 )  to calculate the 
inelastic amplitudes. 

3. INELASTIC AMPLITUDES I N  MULTIREGGEON 
KINEMATICS 

In renormalizable field theories at high energies, s 
>> m2, the main contribution to the total cross section 
of the inelastic process 2 - 2 + n comes from the kine- 
mat ic region7 

s ,+ ,=(po ,  +PD i+ , )2>q?-q?-  . . . -qnL (27) 

where pDo=pA,, pol,. . . , pDmI = pB, are the momenta of the 
particles in the final state, and qi =pA -p,, -pD1-. . . 
-pDi,l is the set of momentum transfers that in the 
case of chromodynamics are equal in order of magni- 
tude to the transverse momenta of the quarks in the 
colliding h a d r o n ~ . ~  From the conditions of reality of 
the final particles, we obtain a restriction on the prod- 
uct of the invariants s,: 
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I , b ,  . . s.+i=s f l ( m ~ . - p ~ : . )  -ql*, (28) 
( - 1  

where m i  a r e  the masses and pDt = q, - qi+, the momenta 
of the produced particles, and q is the characteristic 
transverse momentum. 

When the total cross section is  calculated in the 
framework of the t ree  approximation of perturbation 
theory in the case of gravitation, the integrals over q: 
diverge in the ultraviolet region. (This is due to the 
fact that the coupling constant x has a nonzero dimen- 
s ionality.) Nevertheless, in the present paper we shall 
restrict  ourselves to calculating the inelastic ampli- 
tudes in the multireggeon kinematics (27), assuming 
that the radiative corrections result in a rapid decrease 
of the amplitudes with growth of the momentum trans- 
f e r s  qi ,  this leading to convergence of the correspond- 
ing integrals over qi(. As will be shown in the following 
sections, this assumption is to a large degree justified. 

We begin by considering the simplest inelastic proc- 
ess,  AB - A'DB', and we shall assume that in the case 
of Yang- Mills theory all  the particles participating in 
the reaction a r e  gluons, and in the case  of gravitation 
gravitons. In the multireggeon kinematics (27), (28), we 
have the following Sudakov expansion for the momentum 
of a produced particle: 

We shall recover the inelastic amplitude A,,, in the 
tree approximation by the dispersion method, using the 
properties of analyticity and unitarity in the q: and q; 
channels. We find f i rs t  the pole singularity of A,, a t  
q:= 0. In the Regge region s, >> q: (27), we can repre- 
sent the propagators (4) for  the gluon and graviton in the 
q: channel in the factorized form 

which from the point of view of a partial-wave expan- 
sion in the q: channel corresponds to the contribution 
from the state with "nonsense" helicity.' The indices p 
and o in Eq. (30) refer to the end which is joined to the 
lines corresponding to the particles A and A'. The cor- 
responding vertices a r e  tensors of the type (13), which 
.give factors s and s2 when contracted with p$ and Pip:: 
r: (PA,  PA')P*~=S (-g) l%xII* , ~ O ~ ( P A ,  P I * )  PB~PC-~ILX~~~A~W , (31) 

the result (31) in the considered limit qf- 0 being, a s  
we have noted above, universal [i.e., it is valid for a 
particle in any representation of the group SU(n) and 
with any spin S]. Note that using Eqs. (30) and (31) we 
can derive the expression (15) independently for the 
elastic amplitude in the Regge limit ( s  = -u >> -t). To 
calculate the pole contribution in qf from the amplitude 
A,,, we must know the elastic amplitudes for the chan- 
nel s, in the mixed tensor -helicity representation. 
They can be obtained by comparing the expressions (15) 
and (18): 

where c, and c, a r e  the indices of the unitary compo- 
nents of the gluons in the q: and q; channels, respec- 
tively, and D and p, 6 a r e  used for the unitary and Lo- 
rentz components of the wave function of the produced 
particle. 

Using (30)-(32), we obtain for the pole singularity of 
A,, in q: the expressions 

where the tensors Ci and Ci6, calculated using Eqs. (22) 
and (25) have the form 

A similar calculation of the pole singularity of A,, 
in qi leads to the expressions (33) with the substitution 
C, - C,,, where 

Our next task is to construct the inelastic amplitudes 
A,, from the residues a t  the poles a t  q:= 0 and q;= 0 
found above using the analyticity properties with re- 
spect to the invariants s,, s,, s ,  qf, q; inherent in the 
Feynman diagrams. We shall seek these amplitudes in 
the multiperipheral form [cf. (33)]: 

TY 
A,:- -2~g6r~~,,T~,~qi-~gC'(qa, q t )  ~e.$~r-~8r,r,.g~~,~, 

(36) 
~ A : = s ' x 8 x ~ ,  q ~ - ' ( - x ) C ' ~ ( q ~ ,  Q I )  Q ~ - ~ x ~ A ~ A ~ .  , 

where CP and CP6 may differ from C,(34) and C,,(35) by 
terms which vanish a t  q:= 0 and q;= 0, respectively. In 
addition, we can add to C, and C,, tensors that vanish 
on the physical polarizations of the particle D. It is 
easy to find a particular solution for the effective ver-  
tices CP and CP6 with the given properties: 

For the case of Yang-Mills theory (see Ref. 7), the 
amplitude -42, (36) with emission vertex 

(38) 
satisfies the required analyticity properties (there a r e  
Feynman diagrams with the same s ingularities), and 
the value of the amplitude does not depend on the gauge 
of the polarization vector of the produced particle by 
virtue of the relation 

It a lso  follows f rom (39) that in calculating the cross 
section we can sum over a l l  four polarization vectors 
of the particle D, obtaining thereby a manifestly rela- 
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tivistically invariant result. A more general quantity- 
the imaginary part of the elastic amplitude with mo- 
mentum transfer q # 0-can be expressed by virtue of 
(39) in terms of a contraction of the vertices C: 

The nonuniqueness of the construction of the ampli- 
tude A,,, by the dispersion method is due to the possi- 
bility of adding to the vertex C (38) a term proportional 
to q:q; On dimensional grounds and because of analyt- 
icity, the maximally possible contribution can come 
from corrections -q:qi~AI~: and -q:q~p,/s~, which a r e  
small  in the considered kinematic region (27) compared 
with the terms in formula (38). Note that a change in 
C(q2, q,) by terms proportional to the momentum p, of 
the particle leads by virtue of the relation (39) to the 
same physical results. 

In the case of gravitation, the vertex CP6 in the form- 
ula for AC,, cannot be equal to the tensor Cp"37), 
since the term - 2 q : q ~ p ~ p ~  + p ~ p ~ ) / s , s ,  in this tensor 
contradicts the requirement of there being no simultan- 
eous singularities in the overlapping channels2' s ,  and 
s,. To avoid this contradiction, we use the nonunique- 
ness in the recovery of the amplitude from the poles in 
the q: and qi channels. We add to Gp6 a term chosen in 
a particular manner and proportional to the product of 
q: and q; in order to eliminate the above term: 

The vector N introduced here is determined by the 
formula 

The term we have added is chosen to make the vertex 
Cp6(q,, q,) satisfy the transversality property 

which follows from the gauge invariance of the theory. 

The nonuniqueness remaining after fulfillment of the 
requirement (43) is associated with the possibility of 
adding to CP6 terms of the form 

which do not change the physical content of the theory 
because the graviton polarization tensor e,, is trans- 
versal  and traceless. We fixed CP6 by imposing on the 
effective vertex the additional requirement 

which makes it possible to use the tensor 6pp'666' instead 
of the projection operator AP'"*P6 (3) in the summation 
over the graviton helicities. Note that in the calcula- 
tion of the inelastic amplitude A,,, by means of the 
Feynman diagram technique a term of the form (44) is 
added to the tensor Cp6. 

Using the relation (40) and the equations 

Ndqz, qi)CP(q--q*,q-qi) = (46) 

-2 ( Q I ' Q I . P { ~ -  [(4-41)1'+ (9 -~1) r ' l l  (q,-qz).LZ), 

we obtain an expression for the contraction of the two 

tensors CP6 (41): 

We shall need this expression later when discussing 
the imaginary part  of the elastic amplitude with mo- 
mentum transfer q # 0. The following limiting expres- 
sions for the vertices CP and CP6 a r e  helpful: 

from which by virtue of the transversality of the polar- 
ization tensors of particle D it follows that for fixed q: 
the differential cross section decreases rapidly with 
respect to q: in the ultraviolet region q;>> q: ( a s  in the 
X q 3  theory). 

In the general case of the inelastic amplitude A,,,, 
in the kinematic region (27) the calculations a r e  com- 
pletely analogous. In the t ree  approximation, the re-  
sult has the multiperipheral form [cf. (36)] 

The proof of the expressions (49) is based on the 
method of mathematical induction (cf. Ref. 7). Suppose 
the expressions (49) a r e  valid for all  n<n,; then the 
singular part  of the amplitude A,,,,, in the channel qf 
can be expressed in terms of the product of the known 
amplitudes A,.+, and A,,,_,, in which the initial par- 
ticles a r e ,  respectively, A, c i  and c , ,  B. In the ampli- 
tude A,,, a t  the vertices (38) and (41) it is necessary to 
make the substitution p, - -9, (when s is replaced by 
-2p,qi= 2pA pDi-,); in addition, the symbol 1 here de- 
notes orthogonality to the p,, qi plane. However, it is 
readily verified that in the region (27) the difference 
between the old and new vertices C is unimportant. 
Similarly, in the amplitude A,, ,+,,-, it is possible to 
use the vector p, instead of the vector qi in the vertices 
CP and CP6. Vertices corresponding to the particles Di-l 
and Di a r i se  in the form (34) and (35), but a t  the pole a s  
9:- 0 they can be replaced by the expressions (38) and 
(41). Thus, formulas (49) have the correct  analytic 
properties in the direct channels si and satisfy the sin- 
gle-particle "unitarity conditions" in the crossed chan- 
nels q:. The nonuniqueness of the vertices in the am- 
plitude A,, ,, reduces, a s  above, to unimportant cor- 
rections of the type (44). 

4. RADIATIVE CORRECTIONS TO THE INELASTIC 
AMPLITUDES 

The formulas for the production amplitudes of soft 
gluons and gravitons and the radiative corrections to the 
amplitudes of the Regge processes due to virtual parti- 
cles with small transverse momenta have a universal 
form. We recall that the amplitude of accompanying 
emission of a soft photon in the two-particle process 
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AB-A'B' a t  a high energies s1I2 and fixed t-m:,, is 

where Qi a r e  the charges of the particles, ew(k) is the 
polarization vector of the y photon with momentum k, 
and A(s , t )  is the amplitude of the main process. The 
region of applicability of the expression (50) is'' 

In the case of Yang-Mills theory the amplitude of 
gluon production in the two-particle process in the kine- 
matic region (51) has the form (50) with the substitution 
Q , - ~ T ~ ,  where Tf is the generator of the group SU(n) 
in the representation corresponding to particle i. In 
what follows in this section, we shall consider only 
gravitation, since for Yang-Mills theory the generali- 
zation of the expressions found below is trivial (see  Ref. 
7). For the amplitude for  emission of an additional soft 
graviton in an arbitrary process m - n we have the rep- 
resentat ion 

where A,,, is the amplitude of the main process on the 
mass shell, and I),  = il depending on whether the final 
o r  initial particle emits the graviton. The expression 
(52) is gauge invariant by virtue of the energy-momen- 
tum conservation law CI),~,  = 0. 

Obviously, for the validity of the expression (52) it is 
necessary that the invariants on which the amplitude 
A,-, depends essentially should vary little a s  a result 
of emission of the graviton. This condition is a lso  suf- 
ficient, a s  can be seen in each concrete case by consid- 
ering the many-particle imaginary parts of the ampli- 
tudes A,,, +, with respect to the invariants ( p ,  + q,k)'. 
These imaginary parts a r e  small  because the graviton 
interacts with the conserved energy-momentum tensor 
(cf. Ref. 10). 

We consider now the special case when the main proc- 
ess is an inelastic collision with the production of n ad- 
ditional particles in the multireggeon kinematics (27). 
The emission of a graviton does not change the kine- 
matics of the main process if the transverse component 
of its momentum k is sufficiently small. Moreover, if 
its Sudakov parameters in the expans ion k = crp, + BpA 
+kl satisfy the condition [see (29)] 

it is readily verified that the expression (52) simplifies 
a s  follows: 

where (p+  6) denotes the terms obtained from the given 
terms by means of the indicated substitution. 

Note that for  an inelastic graviton-graviton collision 
formula (54) in the region (53) follows from the expres- 
sion (49), since the effective graviton emission vertex 

(41) has the property 

Coa(qi-k, q , )  =q;'yPa (q,-k, q , ) ,  I kLzl <qxz. (55) 

The representation (54) can be readily generalized to 
the emission of any number r of gravitons: 

For a virtual graviton in the region of integration 
(531, we can modify the propagator a s  follows, 

since in the integral in the principal value sense the 
large contribution -Ins is lost. Then for the lowest 
radiative correction to the process 2- 2 + n  we obtain 
from Eq. (56) (for r = 2) the factorized expression 

Here, the factor 1/21 is needed to compensate the 
double counting of the same Feynman diagrams in our 
procedure, in which the emission and absorption of a 
graviton a r e  taken into account independently. 

Substituting y,, in Eq. (59) and introducing the Sudakov 
variables, we obtain 

Using the b function to calculate the integral over cr and 
calculating the logarithmic integral over fi in the inter- 
val BDf, << ( f i  1 << fiDf [see (53)] and averaging over the 
angles m the k, plane, we obtain 

Integrals of the type (62) must be truncated below by a 
fictitious quantity such as a graviton mass,  this being 
replaced after calculation of the cross  section by the 
energy resolution Aw. 

The contribution of an arbitrary number of virtual 
gravitons can be calculated similarly. At the same 
time, it is easy to show that the expression (61) is taken 
into the argument of the exponential, a s  a result of 
which we obtain 

i. e., if A,,,, has the multireggeon form 

then a s  a result of integration over the region of small 
transverse momenta of the virtual gravitons there 
a r i ses  a universal correction to the Regge trajectory: 
A d q f )  = w(gf), -12,2<< -9:. 

We now show that the expression (58) also holds for 
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virtual gravitons with momenta -kf"q: when the main 
process is inelastic gravitational interaction in the 
multireggeon kinematics (27). We must here use the 
expression (49) for the amplitude A~+,,,+, in the kine- 
matics when two additional gravitons with momenta k 
and -k a r e  emitted from the line with momentum q, 
[see the inequalities (53) for B and a]. Instead of the 
expression (59), we obtain in this case 

1 1 x'i dlkq,-' 
p (qca) = - . - ---; J cp"qr-k, qi)Cv(qi, qi-k), (64) 

2 2 (221) V(qi-k)' 

where C,, is determined by Eq. (41), and it is assumed 
that Cp,CP6 is continued in an appropriate manner off 
the mass shell k2= 0. The additional factor $ in Eq. (64) 
compared with (59) is due to the need to compensate the 
doubled contribution which ar ises  a s  a result of re- 
placement of one of the propagators l /k2 and l/(q, - k)2 
in accordance with (57). In the product C,,CP$ we re-  
tain only the terms that have a singularity in sa or  sp, 
since the contribution of the remaining terms does not 
have a singularity in s and therefore does not contain a 
large factor Ins. In addition, we add terms propor- 
tional to k2 to achieve symmetry under the substitution 
k-q, -k: 

The corrections ic in the denominators a r e  introduced 
to ensure the correct analytic properties of the ampli- 
tude (a more accurate form of expression requires ad- 
ditional symmetrization of (65) with respect to the sub- 
stitutions a- -a and b- -8, and also allowance for the 
terms scrS in the denominator). 

Calculating the integral over a in the expression (64) 
from the residues for BD,_, << fl<< poi, we obtain for the 
graviton trajectory determined by the relation (61) the 
express ion 

Note that the contribution from the domains of integra- 
tion kf - 0 and (q - k,)'- 0 is equal to the contribution 
(62) obtained above. 

In the case of an arbitrary number of virtual gravi- 
tons, a formula of the type (63) ar ises  when allowance 
is made for the ordering of their Sudakov components 
a, and 8,. Taking into account the expression (49), 
which corresponds to the amplitude in the t ree  approxi- 
mation, we obtain the following expression for the in- 
elastic amplitude A,, in the multireggeon kinematics 
(27): 

Thus, due to the radiative corrections the graviton is 
reggeized, i.e., in the j plane there a r i ses  a Regge 
pole with trajectory 

which for q2= 0 passes through the physical point equal 
to the graviton spin: 

j (q2)  / i-0=2. (69) 

Note that to a good accuracy the trajectory (68) is 
linear, 

but it contains an infrared and an ultraviolet logarithmic 
divergence. As usual, the infrared divergence cancels 
in the calculation of inclusive cross  sections due to the 
emission of soft particles. Here, the fictitious gravi- 
ton mass which must be introduced into the propagators 
of the expression (66) is replaced by the energy resolu- 
tion Aw for the final particles. With regard to the ul- 
traviolet divergence of the trajectory for k2>> q2, its 
appearance indicates the occurrence of doubly logarith- 
mic terms -x2q21n2s, since it is known that in the sin- 
gle-loop approximation gravitation is renormalizable, 
i.e., a l l  divergences can be included in the renormal- 
ized coupling constant x. It could well be that in super- 
gravity too there is  no such divergence. 

To conclude this section, we discuss the occurrence 
of graviton reggization in the language of Feynman dia- 
grams. We consider the scattering of two particles A 
and B due to the exchange of two gravitons. At high en- 
ergies, the maximal contribution is due to the nonsense 
polarizations of the virtual gravitons, which leads to 
the approximation representation (30) for the propaga- 
tors DP6*"". Introducing the Sudakov variables, we can 
represent the scattering amplitude in the form 

d ( a s )  d ( $ s )  d2k,DD~"++'~ ( k )  DPlo:,II+*(q-k) 

xA,,.,,,,,(--sa, k,, q-k,)Au,v,pzv*(s$, k,, q-k,),  (70) 

where A (-so) and A(sB) a r e  the amplitudes for scatter-  
ing of a virtual graviton by the initial particles A and 
B[(pA -k)'= -sa,(pB +k)*=sfj]. 

In the important region of integration 

-sa-s$--qz, liLz-q2 (71) 

the expression (70) can, after use of formula (30), be 
simplified a s  follows (cf. Ref. 8): 

where the factors p, and p, do not depend on s ,  

since the tensor Ap,l,p,2 contains terms proportional 
to (PA)~~(PA)~~.(PA)~Z(PA)~~. The asymptotic formula (72) 
has no bearing on the reggeization of the graviton, but 
is the contribution of the Pomeranchuk singularity in 
the lowest approximation of perturbation theory (this 
singularity is near the point j = 3). T o  obtain the ex- 
pression (58), which is proportional to s21ns,  it is nec- 
essary to consider in the integral (70) the region of 
large values of the invariants sa and s8 [cf. (71)]: 

sa>q2, s$>q2, ~ a p - - k , ~ - - q ~ .  (74) 
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At the same time, if we use the following representa- 
tion for the amplitude A(sa)  [see (l l)] :  

then in the region (74) it is small  x2 which a r e  impor- 
tant, which makes it possible to use a Wilson expan- 
sion. In the matrix element of the product of operators 
qIol(x) and T& (0) there is a contribution proportional 
to (A' I T:,(o) /A?, the graviton-matter interaction ver- 
tex. The coefficient of proportionality between A(scu) 
and (A' (T$(o) 1-4) is universal (it does not depend on 
the structure of the theory o r  the species of the parti- 
cles A and A'), and therefore it can be found from the 
amplitude for graviton scattering by a structureless 
scalar particle in the Born approximation, for which 
formula (13) holds for the energy-momentum tensor. 
For the scattering of point scalar particles, there a r e  
two Feynman graphs corresponding to tw o-graviton ex- 
change; they a r e  "squares" in the s and u channels (the 
contribution of the remaining diagrams does not con- 
tain singularities in one of the channels s, u,  o r  t). In 
the calculation of the logarithmic contribution -s2 ln s ,  
it can be assumed that the scattering amplitudes of 
scalar particles due to s ingle-graviton exchange, from 
the product of which our amplitude is constructed, a r e  
on the mass shell. Using formula (14) for F, with m2 
= 0, we obtain for the amplitude AL), (70) the expres- 
s ion 

A/:; -- -- 
id I d'k 

21 (2n)' (V+ie) ( (9-k) '+ ie)  

s l= (pA-k) ' ,  uI=(pA.+k)' ,  sz=(ps+k)',  u2=(pB.-k) ' .  

In the region of integration (74), we can use the ap- 
proximate formula 

i / s i + l / u , ~ 2 [  (qi-k', liL) -sap] /s:. ('77 
Subsequent integration over ly and f i  leads to the ex- 

pression (581, and p(q2) is determined by formulas (60) 
and (66). 

In conclusion, it should be noted that it is difficult to 
,generalize the approach based on the calculation of the 
contributions of Feynman diagrams to the case of the 
inelastic amplitude A,,, with an arbitrary number of 
virtual gravitons. 

5. TOTAL CROSS SECTIONS OF INELASTIC 
GRAVITON-GRAVITON INTERACTION 

To calculate the e b s t i c  amplitude A,, for the scat- 
tering of two gravitons, we can use the s- and u-chan- 
nel unitarity condition. The contribution to the s-chan- 
nel imaginary part  from the (n + 2)-particle intermedi- 
ate state in the multireggeon region (27) can be ex- 
pressed in terms of the product of the inelastic ampli- 
tudes (67) in accordance with the formula (cf. Ref. 7) 

Going over to the w representation 

do 1-e-'"" 
-8.- Az+z(s ,  t)=ua 2c 

sin no f e w ,  

we can write down for the elastic amplitude 

with arbitrary number of particles in the intermediate 
state the Bethe-Salpeter equation 

where the kernel of the integral equation K(k, kt) is de- 
termined by formula (47). 

The total cross  section of graviton-graviton scatter-  
ing can be expressed in terms of the imaginary part of 
the elastic amplitude (79) a t  t =0: 

where for  the amplitude f,(k) we have the integral equa- 
t ion 

Thus, we have shown above that in Einstein's theory 
the graviton is reggized, and the pomeron is a bound 
state of reggeons (in our approximation, there a r e  two 
reggeons). For the scattering amplitudes a t  high en- 
ergies in the general case  there ar ises  a reggeon dia- 
gram technique in which the interaction vertices of the 
reggeized gravitons and their trajectories can, in prin- 
ciple, be calculated by perturbation theory. It is possi- 
ble that the infinite number of counter terms needed to 
eliminate the ultraviolet divergences in gravitation 
could be fixed by analytic continuation of the partial 
waves f,(t) from large j and negative t. 

I thank A. A. AnseI'm for helpful discussions. 

' ) ~ o t e  that the indices of the derivatives in the expression (8) 
are raised by means of the tensor 8'. 

2 ) ~ o t e  that the poles of second order in st and s2 in cP6 do not 
contradict the analytic properties of the inelastic amplitude 
A2-3r  since these poles arise as a result of almost complete 
cancellation of the contributions of the poles of first order in 
s, and u , in the asymptotic region (29). 
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