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Two-photon exchange between atoms with allowance for parity nonconservation leads to a P-odd potential 
that is expressed in tenns of the vector and tensor polarizabilities of the atom, does not depend on the 
velocity, and decreases like some power of the distance. This interaction splits the energies of the crystals with 
right-.and left-helical spin structure. 

PACS numbers: 34.20.Fi 

1. Spatial parity nonconservation in atomic phenom- ever, there i s  every reason for expecting parity-vio- 
ena is  being studied a t  present by many groups. The lating nonlocal forces to appear in the two-photon a p  
first  experimental success in this field was reached in proximation. It i s  natural to call them P-odd van der 
Novosibirsk, where a weak interaction between elec- Waals forces. 
trons and atoms, due to neutral currents, was dis- 
covered by observing the optical activity of atomic 2. The interacting atoms considered will be assumed 

to be  a t  r e s t  and separated by large distances. In 
bismuth vapor (Ref. 1, see also Refs. 2-4). Neutral 

analogy with the calculation of ordinary van der Waals currents a re  not the only source of P-parity violation. forces (see Ref. 14) we seek the potential energy of a 
Parity nonconservation in nucleon interaction leads to P-odd interaction of two atoms in the form 
the appearance of multipoles of "wrong" parity in the 
electromagnetic vector potential of the nucleus. The u ( R )  = i<S(R)  ) / t ,  (1) 
resultant unusual interaction of the electron with the where (S(R)) i s  the S operator averaged over the wave 
nucleus is one more reason for parity nonconservation functions of the states of both atoms, given the co- 
in atoms.= However, both the weak interaction and the ordinates r, and r, of their nuclei, a s  well as  over the 
induced electromagnetic interaction a r e  of the contact photon vacuum. It i s  equal to 
type. 

A peculiar phenomenon takes place in p-mesic atoms. 
The radiative corrections to the weak interaction of 
the muon with the nucleus lead there to the appearance 
of a nonlocal increment in this interaction.= The radius 
of this "long range action," however, i s  limited by the 
Compton wavelength of the electron. 

It is  shown in the present paper that parity violation 
leads, on account of two-photon exchange, to P-odd 
forces that have a power-law dependence on the dis- 
tance. 

It i s  useful to explain qualitatively what distinguishes, 
in this sense, the two-photon and one-photon exchanges. 
Owing to nonconservation of spatial parity, a helical 
spin structure and toroidal currents appear in the sys- 

The field produced by these currents i s  ob- 
viously localized inside the system. This is also the 
cause of the locality of the P-odd electromagnetic inter- 
action in the one-photon approximation. (For a more 
rigorous proof of this fact see Refs. 5 and 9-13). In 
the case of two-photon exchange (see Fig. 1) the inter- 
mediate states of the interacting systems, say atoms, 
differ from the initial and final ones. Upon restruc- 
turing of the system, the field produced by the toroidal 
currents emerges to the outside. This is  perfectly 
clear even in the classical approach, since a change of 
the magnetic field inside a toroidal winding leads to the 
appearance of an external field simply by virtue of Max- 
well's equations. The experimental proof that off- 
diagonal P-odd matrix elements of the current give r ise  
to an external field is the circular polarization of the 
radiation, discovered in Refs. 1. In this situation, how- 

Here T i s  the T-product symbol and V ( t )  is the time- 
dependent electromagnetic-interaction operator, which 
can be written in our case in the form 

V=-E(r,)d,--E(rz)d,-H(r,) p i - H ( s )  pz; (3 

E and H a r e  the operators of the electric and magnetic 
fields; d and p a r e  the dipole (electric and magnetic) 
moments of the atoms. We use a system of units in 
which E = c = 1. Averaging the operator (2) over the 
photon vacuum and taking (3) into account, we obtain 
for i ts  P-odd part 

< S ( R )  >='/,I dt,dt,dt,dt&F(R, t , ,  t,, t,, t,) ; 
R=r,-a, F ( R ,  t l ,  . . . , t~ )=(TEc( t I , r I )Hh( t2 ,  r J )  

X<TE, (t, ,  r,)E,(t,, r , )  ) < ~ d : ~ ) . ( t ~ ) & )  (~ , ) ) (TK,! ' )  (t2)dF' ( t , )  > 
+<TH,(~ , ,  rI)EI(t2,r2))<TEl(t,,s)Em(t&, r , )  )(TKI" (t:)d:' ( t ~ ) )  

x<~d; ' ( t , )dy '  ( t , )  >+(TE, (ti ,  r,)E,(tr, s ) ) ( T H l ( t , ,  r2)Em(th,r1)> 

x < T ~ : "  (t,)d,!," ( t , )  ) ( ~ d : l ) ( t , ) ~ Y ~  (tr) )-!-(TEt(t1,rI)S(tz, r2)) 

X(TEl ( ts ,  r,) H,,,(t,, r , )  >(TdjeL ( t , )  K?' (t ,)  ><Td/ '  (t,)d:" ( t , )> .  

FIG. 1. 
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We confine ourselves, naturally, to terms linear in p. 
It i s  convenient to express the mean value over the pho- 
ton vacuum in terms of the Green's function D,,(w, R) 
of the photon in the mixed (w, R) representation: 

d o  (TEi ( t l ,  r , )  Hk(tr, r,)  )=-E,.,v.~ - o D i , ( o ,  R )  e-"'ll-'*), 
2n 

We use a gauge A,= 0, in which 

We expand the mean values over the states of the atoms 

in Fourier integrals 

Besides the usual polarizability 

the answer contains the P-odd polarizability 

In these expressions wno = En - E,, where E, and En a r e  
the energies of the ground and excited atomic states. 

Substituting (5) and (8) in (4) and carrying out trivial 
integrations with respect to time and frequency, we 
arr ive  at the following general expression for U(R) 

To make this equation more lucid and more detailed, 
we must dwell in detail on the structures of the ten- 
so r s  a,,(w) and @,,(a). 

3. If the level widths a r e  neglected, the polarizability 
tensor alk(w) must be  Hermitian. Its most general form 
is therefore 

Here j i s  the angular momentum of the system: 

Qik=jjk+jj,-2hd ( j+1) /3 ;  

the scalar a,(w), vector a,(w), and tensor a,(w) polar- 
izabilities a r e  real: 

a . ,o , c (o )  =a.z,:(m). 

From the vary definition (9) i t  follows that a,,(w) 
= ski(- w), SO that a,, ,(w) a r e  even functions of w, and 
a,(w) i s  odd: 

a, a r e  quite familiar characteristics of the system, the 
vector polarizability a, has become the subject of dis- 
cussions relatively recently (see, e.g., Refs. 15-18). 
Moreover, i t  i s  directly stated in the literature that 
this structure is not present in a,,(w). The reasoning 
is that the basis of the states of the system can always 
be chosen real, so  that no imaginary term can a r i se  in 
a,,(w). However, if the spin-orbit interaction i s  taken 
into account, the wave functions of states with a given 
angular moment j a t  1 + 0 cannot be chosen real  a t  all. 
Therefore if the fine structure of the level i s  resolved, 
the vector polarizability of a state with given j and with 
1 # 0 not only exists, but contains also a certain addi- 
tional smallness compared with a,, ,. Fine splitting of 
the excited levels gives r i se  to a, even in the state with 
1 = 0. 

The tensor @,,(w) differs from zero only because of 
parity violation in the atom. If we neglect the level 
widths, i t  follows from the definition (10) that 

Using the invariance to time reversal, we can readily 
show that 

where P,,(w) i s  the polarizability tensor in a state with 
inverted angular-momentum projection. [we note that 
expression (12) for a,,(w) satisfies automatically the 
condition ai,(w)= Z,,(W), that follows from the T-in- 
variance requirement.] The conditions (14) and (15) 
mean that in the expression 

the functions @,,,, ,(w) have the properties 

$.f..t(o)=$ .,., , ( a ) ,  (17) 
- -  Bl(o)=B.(-w) ,  B t  ( -0)  =-$, ( 0 ) .  (18) 

4. Substituting expressions (12) and (16) in (11) and 
taking (13) and (18) into account we can transform the 
P-odd potential U(R) into 

U ( R )  =U, (R)  + U , ( R ) ;  

Further simplification i s  obtained by considering the 
interaction a t  "short" (a  << R << h, - l/oy,) and "long" 
(R >> A,) distances. Here a a r e  the characteristic atomic 
dimensions and w, a r e  the characteristic atomic fre- 
quencies. 

Let a << R << X,. Since w - w,, we also have wR << 1. In 
this case 

1 - f [aY) ( a )  $11' ( 0 )  +$:I) ( a )  a! ' ) (0 )  ] 0 d o .  
'2ni (22) Whereas the scalar and tensor polarizabilities a, and 
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In the case R >> X, - l/w, the important  values are w 
<< w,, for  at w 2 w, the integrals  are cancelled out by  
the oscillating factor  exp(2iwR). The  polar izabi l i t ies  
can then replaced by the i r  values as w - 0: 

where the pr ime  denotes differentiation. The integra- 
tion i s  then elementary, and we obtain f rom (19) and 
(20) respectively 

Re note that i n  the region a << R << X, the P-odd  van 
der  Waals interaction tu rns  out to  have a longer range  
than the usual  interaction. 

5. The calculation of the discussed P-odd interact ion 
is a task even m o r e  complicated than in the case of 
ordinary van d e r  Waals  forces. A's imple es t imate  of 
the corresponding constant, however, can b e  obtained 
immediately. T h i s  constant contains two additional 
smal lnesses  compared with the usual van d e r  Waals  
one. First, the P-odd weak interaction gives rise to the 
factor (see, e.g., Ref. 19) 

where G = 10-5m;2 is the F e r m i  weak-interaction con- 
stant, m, is the proton mass ,  Z is the c h a r g e  of the 
nucleus, and R i s  the relat ivis t ic  enhancement factor, 
which i n c r e a s e s  rapidly with Z i n  heavy a t o m s  and 
reaches  values - 10 a t  2 -80. Second, the p resence  
one M1 amplitude i n  place of E l  yields a n  additional 
factor. In t h e  upshot, even f o r  heavy a t o m s  the P-odd 
constant amounts t o  only about lo-" of the usual van d e r  
Waals constant. 

T h e  interaction discussed should lead to a curious 
phenomenon, observation of which does  not s e e m  hope- 
less at present. T h e r e  are known crys ta l s ,  mainly of 
ra re -ear th  elements, which have a helical spin s t ruc-  
t u r e  (see, e.g., Ref. 20). Owing to the interact ions (21) 
and (22), the energ ies  of such  c r y s t a l s  wil l  b e  different 
fo r  right-hand and left-hand spin helices. This is in 
essence  the analog of the discussed difference between 
the energ ies  of the right-hand and left-hand molecules 
(or crystals) ,  due to weak in te rac t ion  Here,  however, 
the role of the  coordinate helix is assumed by  the  spin 
h e l i x  T h e  roughest es t imate  f o r  such  an energy dif- 

fe rence  per  unit la t t ice  site yields at 2 - 7 0  

AE-10' Hz. 

An accuracy  - lo5 Hz is qui te  usual in measurements  of 
spin-interaction constants  by  paramagnetic-resonance 
methods ( see  Ref. 21). 
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