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The renormalization of the spectrum of a two-dimensional Wigner crystal WC is considered. The 
renormalization is due to the interaction between the electrons that make up the crystal and the oscillations of 
the medium. This interaction is substantially nonlinear in the WC phonons. The long-wave phonons are 
therefore strongly renormalized (in contrast to the renormalization due to the internal anharmonicity of the 
crystal). The renormalization is calculated with allowance for the non-Born corrections. It is shown that 
above Wigner-crystal Debye temperature the relaxation has the same character as in the case of electrons that 
do not interact with one another. At low temperatures the expressions for the relaxation parameters contain 
explicitly the velocity of the transverse sound of the WC, and the long-wave high-frequency conductivity is 
inversely proportional to the cube of the frequency. 

PACS numbers: 63.20.Kr 

Wignerl has indicated in 1934 that in the presence of a 
homogeneous neutralizing background the electrons can 
form a crystal. To this end the potential energy of their 
Coulomb repulsion must exceed greatly the kinetic en- 
ergy. The latter reduces to two inequalities: T << e2/ro 
and ro>>a,, where ro is the average distance between 
the electrons and a, i s  the Bohr radius (the tempera- 
ture i s  measured in energy units and i t  i s  assumed that 
the dielectric constant E =  1). 

It was noted in Refs. 2 and 3 that the crystallization 
conditions a re  easier to satisfy for electrons on the in- 
terface of liquid and gaseous helium placed in a capaci- 
tor, and on the semiconductor surfaces in metal-in- 
sulator-semiconductor (MIS) systems. The parameter 
ro/aB i s  very large (r,/aB2 lo4 for electrons on helium). 
The neutralizing charge is located on the metallic elec- 
trode; its distribution adjusts itself to the electron dis- 
tribution and i s  not rigid a s  in most other systems. 
Wigner crystallization on a helium surface has already 
been observed in experiment4 The thickness of the 
electron layer in the indicated systems is small and 
the transverse motion is quantized. At sufficiently low 

The renormalization of the long-wave WC modes due 
to the interaction with the MO differs qualitatively from 
the renormalization due to the internal anharmonicity of 
the crystal, which decreases rapidly with decreasing 
wave vector for phonons of the acoustic type.? The dif- 
ference i s  due to the following: first, the wave vector 
q of the MO can greatly exceed the maximum wave vec- 
tor kmm-ril of the WC phonons, since ro >> a,; second, 
since the interaction with the MO is three-dimensional, 

(b; and b, a r e  the creation and annihilation operators 
of MO with wave vector q, and r, a r e  the coordinates of 
the electrons that make up the WC), i t  can turn out to 
be essentially nonlinear in the WC phonons. 

The coordinates r, a r e  expressed in terms of the pho- 
non creation and annihilation operators 4, and a& in the 
standard manner: 

temperatures and densities, the electrons fill only the 
lowest energy level and behave in many respects like Here +, i s  the polarization vector of the WC phonon of 
two-dimensional (20) particles; in particular, they branch j with wave vector k (it i s  assumed that the me- 
crystallize like 2 0  particles. We note that the two- dium i s  isotropic and that ( A , , ( =  ( A,,I, +,= e,,). 
dimensionality conditions were satisfied in Ref. 4. We 
shall therefore consider hereafter 2D -electron sys- 
tems. 

The relaxation of a Wigner crystal (WC) is unique: it 
is not effected through the crystal boundaries, but is 
due to volume forces-the interaction of the electrons 
with the medium. Recognizing that ro >> a, we can re- 
gard the medium (semiconductor o r  helium) a s  con- 
tinuous. Interaction with the oscillations of the medium 
(MO) leads to damping and to a shift of the frequency of 
the natural modes of the MO. We analyze below the re- 
normalization with respect to the long-wave modes. It 
can be experimentally investigated by measuring the 
absorption spectra of the electromagnetic field. Experi- 
ments of this kind were already performed for 2 0  plas- 
ma in MIS and on 

The nonlinearity of H i  in 4, and 4, is obviously large 
i f  the mean value q2u;(u,, = r, - R,) at typical q is  not 
small. For 2 0  crystals a t  finite temperatures, the 
mean squared displacement (u:) diverges, s o  that the 
nonlinearity of H, in u, must be taken into account in 
all  orders of perturbation theory.'' The previous cor- 
responding analysis was carried out in the Born approx- 
imation in H i  for the high-frequency branch of a 2D 
crystal in a quantizing magnetic f ield8 It was shown 
that the renormalization of the spectrum contains no 
divergences connected with the divergence of the mean 
squared displacement of the electrons. The authors of 
a recent paperg have reached an analogous conclusion. 
They have analyzed in the Born approximation the light- 
absorption peaks observed in Ref. 4 at frequencies close 
to the MO frequencies, with wave vectors equal to the 
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WC reciprocal-lattice vectors. We do not consider 
these peaks below. 

If the inequalities T << e2/ro and ro >>a, a r e  satisfied, 
the relation between T and the characteristic Debye 
temperature 8, of the WC 

@,= (ef lro)  (a./r,) " (a.=h21mea), (3) 

is obviously arbitrary. The physics of the relaxation 
processes differs in the cases T >> 8, and T << @,. We 
propose here a method for going outside the framework 
of the Born a p p r o x i m a t i ~ n ~ ' ~  and for calculating a t  dif- 
ferent values of ~ /8 ,  the damping r,, and the shift P,, 
of the WC modes of not too low a frequency, such that 

rk, ,  I P ~ , I K ~ ~ ~ .  (4 

The results for the long-wave high- frequency conduc- 
tivity of the WC a r e  valid also when (4) i s  violated. 

In Sec. 1 we obtain a general expression for the 
Green's function of the WC oscillations. This equation 
is simplified in Sec. 2 for an actual case when the MO 
phase velocity is  small compared with the speed of 
sound in the WC. In Secs. 3, 4, and 5 a r e  determined 
in explicit form rkl, P,,, and the conductivity of the WC 
at  T >> 8, and T << a,, respectively. The results  a r e  
discussed in Sec. 6. 

1. CALCULATION OF THE GREEN'S FUNCTIONS 
FOR WC OSCILLATIONS 

The total Hamiltonian of the 20 electrons that make up 
the WC and interact with the medium i s  of the form 

(51 , , 

I-H,+H.+Hi,  Ha= z o r p r j + a r j ,  H.= z o , b q + b q  ( h = l ) .  
k j  I 

Calculation of the renormalization of the mode {kj) re- 
duces to an analysis of the equal-time Green's function - 
Q r , ( o ) = < ~ k , ;  x - ~ ~ ) . ,  ( 2 , ;  i 2 ) ) * - - i  j dteisl< [?, ( t ) ,  k ( 0 )  1) (6) 

0 

in the resonant region of frequencies w- y,. The func- 
tion Qkj(w) is the analytic continuation, into the region 
of imaginary frequencies, of the temperature Green's 
function 

(7) 
1IT 

Gt j (o . )=-  d~e '"~' (xr j ( - i r )x - r f i )  ), o,,=2nnT, Gk,(o.)=Qk,( io , ) .  

It i s  also possible to express in terms of Q,, (w) the 
diagonal component of the long-wave conductivity of the 
WC (see, e.g., Ref. 10): (8) 

Re d,(k, a ) = - o e Z P S  (er*),)' Im Qrj (o+ie ) ,  e++O, k<NC, C 
i 

where N i s  the electron density and S is the a rea  of the 
system. 

To calculate Q,,(w) with allowance for the interaction 
i t  i s  convenient to separate explicitly in H, the terms 
containing the operators x,,: 

H,-H,'"+HI'~'; H?'= z vqcqp:"' ( k j ) ,  a=l, 2, (9) 
9 

(1) 
P .  ( k j ) =  [ 1- (qes ) '~r i~-r j lp ," ;  pq' ( k j )  = z exp(iqrnT+ikR.) ; 

Representation of H, in the form (9), (10) does not mean 
expansion in powers of the displacements of an electron 
from a WC site. The expansion i s  only in terms of one 
Fourier component of the displacement. Since the am- 
plitude A,, i s  small, Akj ES-"~, the terms quadratic in 
x,, have not been written out in (10) (except for the term 
-x,,x,,) and terms of higher degree in %,; in the sta- 
tistical limit S their contribution to Q,,(w) (as well 
a s  to any other Green's function) tends to zero  in ac- 
cordance with Wick's theorem. 

The term Hi1' describes the decay of the considered 
oscillation {kj) into MO, a s  well as, generally speaking, 
of several other WC modes. The term H,"' has a struc- 
ture  that i s  unusual for phonon-interaction problems: 
one of i ts  terms i s  proportional to x,, r,, as", and the 
other does not contain S in the denominator a t  all. Since 
these terms can be convoluted, the contribution from the 
term -s j  x,, turns out to be finite [the contribution of 
the term -xi, left out of (10) vanishes because the co- 
efficient of x:, contains the momentum k explicitly, 
while p; does not depend explicitly on k]. 

The equation of motion for Q,,(w) can be easily ob- 
tained by differentiating ([%,(t), x,,(0)1) twice with re- 
spect to time, with allowance for (5), (9), and (lo), and 
carrying out the Fourier transformation (6): 

(~'-ot;)Qrj(~)=2~~[IArjl~+A(o)+B(o)]; 

The functions A(w) and B(w) correspond toJhe terms 
HI')  and H : ~ '  in (9), with p; in the operator B replaced 
by pQ [this replacement, according to (9) and (lo), adds 
to the function B(w) terms of order A:, and At,, which 
vanish in the limit a s  S -a ] .  The function B ( d )  can be 
calculated exactly by using the fact that pQ i s  a sum 
over the electrons, i.e., i s  an operator additive with 
respect to the size of the system, and the operators 
a;, and 4, do not depend on the dimensions of the sys- 
tem. The mean v a q e  of the product of the arbitrary 
additive operators XI,, factors out1': 

Relation (12) holds also if one of the operators i s  in- 
dependent of the size of the system. consequently 

~ : f ) = l ~ r ~ l ' < B ) = - l ~ t ~ l ' ~  (gerj)'Vq<cqpq) 
il 

[a proof of (13) i s  given in the Appendixl. 

Since V,cQpQ = (V,c, p-,)', the quantity Pif) i s  real. 
Thus, the interaction Hi2) leads only to a renormaliza- 
tion of the square of the natural frequency of the {kj) 
mode by an amount 2 yjP::? 
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In contrast to H!~', the interaction HI1' can be taken 
into account only approximately. When (4) is satisfied, 
we can confine ourselves to the second order in H:'), 
i.e., to the Born approximation 

A(a)=~A~~~'fdte~~'j'dT<[[~~"(T),i"~(t)],Z-k~(~) I>( .  
0 " 

&')(t) =exp(i%,t)i exp(-sot), lo=Ho+H, 

((. . .)# means that the averaging i s  carried out with the 
Hamiltonian &Lb). Taking only HI" into account in Hd, 
we obtain 

- 
---~NsIA~,I'~ (qekj)'l~ql'j dtei*'nq(k, t), (14) 

q 0 

n, (k, t) =:, (k, t) rp (a,, t) - c.c. 

Here NSS,(k, t) and cp(w,, t) a r e  the time-dependent 
correlation functions for the electron-density operator 
and for the MO without allowance for the interaction: 

From ( l l ) ,  (13) and (14) we obtain in the Born ap- 
proximation in HI'' the relation 

Q~,(a)=2a~j1Arj121{o'-otla-Zotj[Ptj(o)-irkj(o) I ) ,  (16) 

where 
(11 (0 (1) 

rk,(o) =-Im nk, (o+ie), Pk,(a) =Pt, (a) + Pk, , 
pi:' (a) = ~ e  II:;' (o+ce), e++O. (17) 

If the parameters r,,(w) and Ptj(w) a r e  small in the 
resonance region co- compared with wkj and depend 
smoothly on the frequency [the latter i s  needed also for 
the factorization (14) to be correct], i t  can be seen 
from (16) that the function ImQkj(w) is  Lorentzian near 
the maximum: 

Equations (16) and (17) a re  valid also in the nonresonant 
region, where I w - %, 1 >> rkj(w); this allows us to use 
them together with (8) to calculate the long-wave high- 
frequency conductivity of the WC. We note that the ex- 
pressions for r,, and P,, do not contain any divergences 
connected with the divergence of the mean squared dis- 
placement of the electron from the crystal site. 

2. ANALYSIS OF THE EXPRESSION FOR THE 
POLARIZATION OPERATOR 

The calculation of lI:j)(w) includes summation over 
the sites R, and over q. The summation i s  best carried 
out in one sequence or another, depending on the rela- 
tion between w and the frequency w,,, where q,= minG 
(G i s  the reciprocal-lattice vector of the WC). We con- 

sider below the case w >> w, and assume that the phase 
velocity of the WC phonons i s  much higher than the 
phase velocity of the MO, while the quantity q2 1 Val '/w, 
does not increase with decreasing q. It i s  more con- 
venient in this case to sum f i rs t  over q and then over 
% . 

We denote the term with n = 0 in Eq. (15) for S,(k, t )  

The function 2W(t) i s  equal to the difference between the 
temporal correlation functions of the displacement of 
the electron from the WC site at the instants of time t 
and 0 (it i s  assumed that the symmetrical tensor made 
up by the correlator of the displacement components 
i s  diagonal). The terms contributing to ~r:i)(w) a r e  - 
S,(t) with q s q, = u;' , where us i s  the displacement of 
the electron during a time t, equal to the duration of the 
scattering act, us - [- w (t,)] ' I 2 .  The contribution of the 
terms q S ril << q, i s  then small because the state densi- 
ties of the corresponding MO are  small. We note that 
a factor similar to e ~ p [ ~ ' ~ ( t ) ]  in (14) and (19) i s  well 
known in the theory of the Mzssbauer effect. In our 
problem it appears because, in analogy with the y- 
quantum momentum in the Mossbauer effect, the mo- 
mentum of the MO i s  transferred in the scattering pro- 
cesses described by (14) and (19) to the electron lattice 
a s  a whole, and not to some particular mode of the WC. 

The functions U/,(R,,, t )  and q21 V,I2 (the latter, by as- 
sumption) depend smoothly on q at q s q,. If the dura- 
tion t, of the scattering process and the group velocity 
of the MO a r e  small enough, 

the function ~ ( w , ,  t)  in (14) also varies smoothly with q 
a t  t 5  t, and q -q,. They a r e  therefore averaged out 
upon summation over q in (14). Accurate to terms 
-exp(- f q;/N), they can be neglected and lI,(k, t) in 
(14) can be  replaced by the operator 

In this replacement, no account i s  taken of the inter- 
ference of the scattering processes of the short-wave 
(q >>N1I2) MO by various electron, and of the associ- 
ated structure '(w) near frequencies w, (the latter 
i s  responsible, in particular, for the light-absorption 
peaks observed in Ref. 4). In the region w >> w,, this 
structure i s  practically completely washed out at T + 0. 

In the calculation of P:.) we shall assume the electron 
density to be low enough to make the restructuring of 
the MO spectrum by the interaction in the WC small (at 
any rate in the case of short-wave MO with q-q,). The 
oscillations of the medium act then a s  a thermostat for 
the electrons, and all the terms -NSI V,1 can be  
neglected compared with the terms - I V,I2, since their 
ratio i s  proportional to the ratio of the number of elec- 
trons to the number of the atoms of the medium. In 
this approximation 
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In contrast to (14), the time-dependent density correla- 
tion function is calculated here with the total Hamil- 
tonian BY: 

If the interaction with the MO i s  weak enough, i t  suf- 
fices to calculate the correlator in (21) with the Hamil- 
tonian &Po: 

Using the Kubo identity i t  i s  easy to show that the ex- 
pression obiained in this manner for P:;' i s  equal to 
-R~II:~'(O). At q,>>rG1 it  takes the form 

From (14), (17), and (21) we have r,,, P,, a 1 A,,12. 
The value of I A,,1 increases rapidly with decreasing 
y,. For phonons of sufficiently low frequency, the 
spectrum renormalization due to the interaction with the 
MO is therefore strong. 

3. RENORMALIZATION OF WC SPECTRUM AT 
HIGH TEMPERATURES 

In the case of high temperatures T >> B,, w,, the inte- 
gral with respect to time of (14) with allowance for (20) 
is evaluated by the saddle-point method. The integrand 
K( t )  has a maximum near t = t, = i/2T. Since It, 1 << qf , 
i t  suffices to expand U/ (t) in powers of y , t  up to quad- 
ratic terms. Then 

(we have used here the relation x,, I A,, I2yj = m-'). 

Substituting (24) in (20) and then in (14) and (17) we ob- 
tain for the damping 

We have discarded here the corrections - W,/T due to 
the inelasticity of the scattering by the MO [it is seen 
from (25) that q, = ( 8 m ~ ) " ~ ] .  It i s  important that many 
(-T/@, >> 1) WC modes take part in the scattering, and 
the main contribution i s  made by the short-wave modes 
whose state density i s  high 

The very fact of Wigner crystallization of the electrons 
is reflected in (15) only by the coefficient I A,, 1 '. It i s  
easy to verify that y is equal to the average frequency of 
the collisions with the MO for a gas of nondegenerate 
electrons. The reason is  that the scattering by the MO 
is due to the electron motion, but a t  T >> 8, the momen- 
tum distribution of the electrons that constitute the WC 
is Maxwellian, a s  in a gas.2' 

It follows from (18) and (25) that in the absence of a 
magnetic field the damping of the {kj) mode does not 
depend on k or j: 

In the approximation (20), (23), and (24) the formula 
(17) for the frequency renormalization reduces to the 
form 

At q2 >> 8mT the expression in the curly bracket is pro- 
portional to q-4. It i s  assumed throughout that I V,I '/w, 
increases with q more slowly than q2, so  that there i s  
no short-wave divergence in (26). The contribution of 
the small q to Pkj(w) does not diverge i f  q21 V,1 '/w, is  
finite a s  q - 0 [strictly speaking, if q21 V,1 '/we does not 
tend to zero  a s  q -0, then (26) diverges logarithmical- 
ly, but this divergence must be cut off a t  q2-m.w2/T, 
since Eq. (26) was derived under the assumption that 
w2 << q2T/m]. 

It is  seen from a comparison of (25) and (26) that a t  
T >> 0, the damping of the WC phonons exceeds con- 
siderably the renormalization of their frequency. In 
this case I?,, does not depend on q,, and P,, q,. For 
low q,, the criterion (4) i s  violated, the renormaliza- 
tion of the spectrum i s  large, and Eq. (18) does not 
hold. If o >> y and w >> y, , we obtain for the conduc- 
tivity of the WC from (a), (16), and (25) 

This equation coincides with the expression for the 
high-frequency conductivity of nondegenerate and non- 
interacting electrons quasielastically scattered by MO. 

4. RENORMALIZATION OF WC SPECTRUM AT LOW 
TEMPERATURES 

In the region T << 8,, the Wigner crystallization is 
manifest not only in the presence of an additional os- 
cillation mode compared with a 2 0  plasma, but also in 
the character of the mode renormalization on account 
of the interaction with the MO. We consider the re- 
normalization of phonons for which 

At w > T the duration of the scattering act  [the region 
of integration with respect to t in (14)] is t, s w-' < T-'. 
The ratio v(t,) of the contribution of the thermal fluc- 
tuations to the mean squared displacement of an electron 
during a time t, to the contribution of the quantum fluc- 
tuations i s  

Using the dispersion law for long-wave longitudinal 
( j  = 1 )  and transverse ( j  = t) WC modes: 

i t  i s  easy to show that v(t,) - T ~ ~ / W ,  < T/W, - T/B, << 1. 
Accordingly, accurate to corrections -T3t2/wP, 
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i.e., the contribution of the thermal fluctuations to W ( t )  
can be completely neglected a t  w, >> w > T. 

To calculate IJ::'(w) we must substitute (30) in (19) 
and then in (20) and (14), and expand S,(t) in a ser ies  in 
q2w(t). The terms of zeroth and first  order yield re- 
spectively lJ~,?,(w) and 17 :::,(w), where 

The imaginary part of T!&),(w+i0) determines the 
damping of the {kj) mode on account of the direct decay 
into MO. The corresponding damping does not depend 
on temperature and i s  equal to 

In the actual case w > w, [it i s  seen from (31) that q, 
= q-lf2] direct decays have low probability and the main 
contribution to the damping i s  made by the term 
n:;),(w) in n:;)(w): 

l-I$?(o) B rIk';) ( a ) :  
(11 

= r , . k j ( o ) ,  r , , k f ( o )  =-Im n,.k,(o+io) 

The damping r,,,, = r,,,,(qj) is due to the decay of the 
{kj} oscillation into a transverse acoustic phonon of the 
WC with wave vector k'= qj/c,. This decay i s  induced 
by the interaction with the medium and is  accompanied 
by creation or annihilation of an MO quantum. Decay 
into longitudinal WC phonons has low probability be- 
cause of the low phonon state density, and adds to r,, 
an increment of the order of ( q , / ~ , ) ~ r , ~ .  Also little 
likely i s  decay in a large number of phonons, de- 
scribed by the next terms of the expansion of 
e ~ p [ ~ ' w ( t ) ]  in (14), (19), and (20) in powers of w(t). 
In particular, decay into two transverse phonons gives 
r i s e  to a correction - (q,/w,)r,,,,. 

Since 7 C 1 / ~  in (23), Eqs. (19) and (30) can be used 
also to calculate Ei'. It i s  convenient to separate here 
the contribution of the WC phonons with relatively low 
frequencies q. ,, < T. It i s  small (- T /wp << 1) and can 
be  calculated by perturbation theory. Retaining in the 
expansion of L,(- i7) in terms of the "high-frequency" 
part w(-ir) only two terms [just a s  in (31), we obtain 
for the shift P,,(w) from (17), (23), and (31)] 

[the term P,,,,(w) was written out for the case w >> w,]. 

It i s  seen from (18) and (34) that Pl,,j/Po,,j - (G/w,) 

x ln(wu/;)< 1, i.e., the main contribution to the 
shift of the peak Q,,(w) and to the renormalization of 
q, i s  made by the term Po,,,. It is due to the virtual 
transitions a t  which only the number of the MO changes. 
The term PI,,, i s  due to transitions with creation or an- 
nihilation of an MO quantum and a WC acoustic phonon 
with frequency between Tj and q,. The contribution of 
the transitions with participation of longitudinal pho- 
nons, a s  well a s  of high-frequency phonons (q,,, - w,) 
whose state density i s  large, i s  small [-(~,/w,)~P,,]. 
The last circumstance ensures rapid convergence of 
the expansion of P,, in the number of phonons that par- 
ticipate in the virtual transition The cutoff parameter 
B enters in P,, under the logarithm sign. It can be 
shown that a t  T >> w, and a t  T << w, there a r e  in Pkj no 
terms of the order of (G /w,)P,,, that a r e  not propor- 
tional to ln(c+,/B). At T - w, the inequality 1n(qj/B) 
>> 1 must be satisfied if (34) i s  to be valid. 

According to (18), (33), and (34), in the region (28) 
the broadening rkj of the peak Q,,(w) i s  small compared 
with the shift P,,. The renormalization of the WC crys- 
tal corresponds then to dynamic "hardening" of the pho- 
nons: the increment 2qjPkJ(w) to 4, i s  positive a t  w, 
>> w >> w,; it i s  particularly significant and relatively 
large for low-frequency phonons. We note that the 
static phonon Green's functions Qtj(O) a r e  not renormal- 
ized in practice: i t  i s  seen from (34) that P,,,(O) = 0 
[it can be shown that when terms with n + 0 a r e  taken 
into account in (15) we have P,, (O)m 1 A,, 1 'k2 in the re- 
gion of small k, the proportionality coefficient being 
- exp(- q,2/4N)1. 

For the nonresonant long-wave high-frequency conduc- 
tivity of WC we obtain a t  w, >> T from (8), (16), and (33), 
in the absence of a magnetic field, the expression 

ezN Yz 
Re 1- [ ( 1 6 r n z s ' ~ ) - ' x  y'l V,Izerp(-qy') (2iiq+1) . I 

q 

This expression, just a s  the classical equation (17), 
yields a power-law frequency dependence of the conduc- 
tivity, but the exponents a re  different in the quantum and 
classical cases. 

5. ALLOWANCE FOR THE NON-BORN CORRECTIONS 

It i s  seen from (31)-(34) that the renormalization of 
the WC modes increases rapidly (like l 4 , I 2 )  with de- 
creasing q,. Equation (18) does not hold for modes of 
sufficiently low frequency: the shift P,, (or the damping 
I?,, if T >> w,) exceeds the bare frequency q,. The 
characteristic frequency $2, that separates the regions 
of strongly and weakly renormalizable phonons i s  equal 
a t  w,>> T to the frequency of a phonon ( $ j )  for which 
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the shift and the bare  frequency coincide: 

In the case no>> w, of greatest interest, the parameter 
52, in the absence of a magnetic field [when (4j1 '= 1/ 
(2mNSqj)] i s  proportional according to (34) and (36) 
to the first  power of the constant of the coupling to MO: 

At T >> w, if i s  necessary to equate 52, to the damping y; 
52, is  here quadratic in the interaction 

The strong renormalization of the WC modes with fre- 
quency ql S 52, does not violate the conditions for the 
applicability of Eq. (16) for the phonon Green's function 
in the frequency region w >> 52,. Indeed, only the factor- 
ization (14) is approximate in this formula. It i s  valid 
i f  the interaction with the MO does not manage to "mani- 
fest itself" within a characteristic time t, equal to the 
duration of the scattering processes and determining the 
size of the region of integration with respect to t in (14) 
(i.e., the individual scattering processes a r e  sequential 
in time and a re  not superimposed on one another). 
From the definitions of 52, and t, i t  follows that in the 
cases considered in the preceding sections we have t, 
<< 52;' (t, = w-l and t, = T 'l at w, >> T and w, << T, respec- 
tively). The contribution made to W(t) by phonons with 
frequencies lower than 52, in the region t s  t, i s  negligi- 
bly small: of the order of 52:/wi a t  T >> w, and of the 
order of SZ$,/w,at T << LJ)  [we use here the bare phonon- 
dispersion law (29)]. The Born approximation (14) isvalid 
precisely because the contribution to the polarization 
operator ll$(w) of the strongly renormalizable low- 
frequency phonons is  small. 

It can be verified that when account is taken of the re- 
normalization the contribution of the low-frequency pho- 
nons to W(t) remains small. To this end we compare 
W(t) with the function ~ ( t ) ,  which is obtained from W(t) 
a s  a result of "dressing" 

Let us estimate G(t) a t  w, >> T (the case w, << T is easier 
and can be considered similarly) in the actual time in- 
terval w," << t << 52;'. The contribution to W(t) from the 
weakly renormalizable WC phonons with frequency ql 
>> 52, obviously agrees, accurate to terms -a:, with 
their contribution to W(t) and is described by Eq. (30). 
To estimate the contribution of the low-frequency 
( q j  s 52,) phonons, we break up the region integration 
with respect to w in (37) into the sections I wl Z w, and 
( wl< w,. The frequency w, i s  chosen such that a,<< w, 
< t'l. At I wl z w, >> no, qj the Green's function of the 
low-frequency phonon takes the form (16) and 

It follows therefore that thei t  contribution, connected 
with the region I wl2 w,, to W(t) amounts to -a:/ 

wpwi a at, i.e., i s  exceedingly small. In the region 
( wl< w, < t-l we can expand exp(- iwt) in (37) in a series. 
Applying the relation 

to  the linear term of the expansion, we find that the in- 
crement proportional to t made to @(t) by the low-fre- 
quency phonons and connected with the region I wl< w, 
is of the order of 52it/wp. The increments proportional 
to higher powers of t contain, besides SZ;t/w,, and addi- 
tional factor -(wit)" < 1. 

Thus the renormalization of the WC phonons, accurate 
to terms -a:, does not influence the function W(t) in the 
region t << 52,". Consequently, the scattering processes 
of duration t, << 522 can be treated in the Born approxi- 
mation, i.e., the factorization (14) and expression (16) 
for the phonon Green's function a r e  valid a t  a,<< w. 

Unlike the polarization operator lT$(w), which is de- 
termined by phonons of frequency q , l ,  2 w >> SZ,, the 
shift pi:', a s  seen from (34), contains a contribution 
of phonons of relatively low frequency -G. At 3< 52, 
the latter a r e  strongly renormalized, therefore to cal- 
culate P::) we must use the rigorous expression (21) 
rather than the formula (22) obtained in the Born ap- 
proximation. At q, >>N' '~ we can confine ourselves in 
the density correlator in (21) to the "single-site" mean 
values 

Expanding exp(iqr,) in terms of the normal coordinates 
xkj and expressing the mean values (&I(- i~)x,~(O)) in 
terms of the temperature Green's functions (7), we ob- 
tain 

We have discarded here mean values of the type 
(xtljl % ,)bkl ,...,n with n >  2. They lead to correc- 
tions - (Q,TW~)~ << I. 

According to (7), (16), (31), and (34) we have, ac- 
curate to within the corrections -T/w, and w,/w,, 

The value of W(- i r )  can be easily calculated from (38) 
and (39) if T >> w,. At w,= 2 m T  >> w,, a s  seen from (34) 
and (36) we have qjPo,kj(iw,) =52: and, accurate to 
terms -52,/co, and T/w,, the "dressing" of the phonons 
reduces to a shift, independent of w,, of their frequen- 
cy. Therefore the function @(- i r )  has the same struc- 
ture a s  in the absence of the interaction with the MO 
[cf. (19)]: 

We shall show that the "hardening" of the low-frequency 
modes, which i s  obvious from (38a), leads to some de- 
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crease of the frequency shift of the high-frequency 6. CONCLUSIONS 
modes. The principal 
here [this allows us to 
is renormalized. 

term Po,,, in (34) i s  not changed 
use Eq. (38a), but the term PI,,, 

To calculate P,, in the "single site" approximation we 
must substituie (38a) in [Eq. (38) for E,(- i7) and then 
substitute MI;,(- i7) in (21) in place of the electron-den- 
sity correlator. If a,> T, i t  i s  convenient to calculate 
the integral with respect to 7 in (21) by expanding 
E,(- i r )  in a ser ies  in 

The zeroth term of the ser ies  yields 

Combining this expression with Re II :;:)(w) and recog- 
nizing that ; / = q  accurate to 52,/wp, we obtain for 
P,,,(w) the expression given in (34). We can similarly 
calculate the contribution from the ser ies  term that is 
linear in ;(- i ~ ) .  The corresponding increment to the 
shift, with allowance for II if&(w) takes the form 
P,,,,(w), except that & in (34) must be replaced by 52,. 
Since the corrections -52,/w, have been discarded from 
Po,,j(w) the term Pl,,,(w) need be taken into account 
only if ln(w/52,) >> 1. Obviously ln(o/52,) < l n ( w / ~ )  at w 
>> 52, > T, i.e., in the case 51, >> T the shift of P,,(w) de- 
creases  because of the hardening of the low-frequency 
phonons of the WC. In the case T >> 52, the shift remains 
practically unchanged. This i s  seen from (38a): the 
contribution of the phonons with 4, < T to @(- ii7) i s  
small. 

If w, 2 T, then (38a) is  valid only in the regions 7 << wil 
and T - 7 << 0;'. However, i t  i s  precisely the regions 
T 5 wil and T - T 5 w;' which contribute to the integral 
(21). Therefore a t  w, > T and ln(w/G)>> 1 we likewise 
obtain for P,,(w) the formula (34), in which now G 
= max(52,, w,). Consequently Eq. (34) i s  valid a t  arbi- 
t rary  W,/T if the parameter G is defined with the aid of 
the relation 

It is assumed here that l n ( w / ~ )  >> 1, and the corrections 
-G/wp not proportional to l n ( w / ~ )  a r e  discarded. 

The analysis in this section shows that the strong re- 
normalization of the low-frequency modes of the WC 
leads to a non-Born correction to the polarization opera- 
tor a t  high frequencies. The correction ar ises  at 52, 
> w, and 52, > T. It plays therefore an important role a t  
low temperatures and in interactions with low-frequency 
MO, even if the interaction is weak, i.e., the WC pho- 
nons of relatively high frequency a r e  weakly renormal- 
ized. According to (36a), (34), and (40) 52, is propor- 
tional to the first  power of the coupling constant with 
the MO, and enters in the final expressions under the 
logarithm sign. 

It i s  seen from the result of the paper that the mecha- 
nisms of the damping and of the mode shifts of WC at  
high (T >> 0,) and low (T << 0,) temperatures a r e  dif- 
ferent. In the former case many short-wave phonons 
of the WC participate in the scattering, and the damping 
exceeds the shift appreciably. The relaxation has here 
the same character and i s  described by the same param- 
eter a s  for an electron gas. In the latter case, on the 
contrary, the damping a t  4, >> w, i s  due to decay, in- 
duced by the MO, into transverse phonons, and i s  con- 
sequently essentially connected with the Wigner crystal- 
lization. Thus, a t  w, << 6, and T << @, the c r  ystalliza- 
tion can be revealed even by the spectrum of the longi- 
tudinal oscillations, and the transverse sound velocity 
c, can be determined. The parameter c, enters also in 
expression (35) for the nonresonant conductivity of a 
WC. The latter has a unique frequency dependence in 
the quantum case. 

The parameters l?,, and P,, increase with decreasing 
4, and the low-frequency phonons a r e  strongly re- 
normalized. These a r e  the causes of the main non- 
Born corrections: if the low frequency modes influence 
the weak renormalization of the considered mode of 
relatively higher frequency, the strong renormalization 
of the low-frequency modes must be taken into account. 

The peaks of the conductivity of the WC near the natu- 
r a l  frequencies have, a s  seen from (8) and (l8), a 
Lorentz shape. Explicit expressions for the broadening 
and the shift of the peaks can be easily obtained in the 
absence of a magnetic field [ I  A,, 1 = 1 / ( 2 m ~ ~ q , ) j  and 
if 

[for electrons that interact on helium with capillary 
waves (ripplons) we have n =  - 1 in a wide range of pa- 
rameters]. At high temperatures, according to (251, 
the broadening rkj and the average collision frequency 
y a r e  given by 

At low temperature (but a t  T >> w,), according to (33) 
and (34), 

(n+2)  IDT 
,,-'n+J', pkj= r k j  = 

64nmZc,ZNok, 

Since T -  ( w ~ w ~ ) - l a N - ~ / ~ ,  we have at low temperatures 
r kj a T N ~ / ~ ( " + ~ )  and the first  and second terms in P,, 
a r e  aN '314)(n * 2 '  and a T N ~ ~ ~  (nr l ) ln(qj /G)  respectively 
(the parameter 5 can depend on the temperature, den- 
sity, and the coupling constant). We note that the 
damping and the shift of the mode {kj} depend on k and 
j only via the frequency q,. 

Equations (42) and (43) can be used directly for elec- 
trons on helium. In the actual density region N - lo8 
cm-2 and a t  temperatures T 5 0.5 K the frequency w, 
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of the MO that a r e  important for the scattering i s  - lo8 sec'l. Usually T >> Rw,, and the inequality y, 
>> w, i s  satisfied for longitudinal phonons a t  k > 1 cm". 
A stronger lower bound on k i s  imposed by the condition 
rkj << qj, therefore the resonant absorption must be  in- 
vestigated at frequencies > 100 MHz, just a s  for a 2 0  
plasma (cf. Ref. 5). It i s  of interest also that, both a t  
T >> 0, and a t  T < Ra i ,  <<OD the broadening rkj for elec- 
trons on helium in-the absence of a magnetic field i s  
practically independent of the density. The use of re- 
lations (33) 'and (34) for WC in a magnetic field per- 
mits1° a qualitative explanation of the experimentsi2 on 
cyclotron resonance of 2 0  electrons on helium. 

APPENDIX 

To prove (13) it suffices to show that the function 

van i~hes  in the limit a s  S - a. The equation of motion 
for q ( w )  takes the form 

(a'-or,')% (o) =h,+U.Lxk,I +20kjI Ar,I '<&A 1, (A21 

where 

(the dot denotes differentiation with respect to time, 
k=- ~[x,&P]). 

It follows from (Al) and (11) that the operator A, i s  
additive, since it i s  a sum of single-electron operators, 
and (A,) = 0. From the expression for 4 it  i s  seen that 
A, = 0 in the limit a s  S --. For the functions { h x k j l  and 
(%A 1 in (A2) we can likewise set  up equations of mo- 
tion such a s  (A2) and express them in terms of other 
Green's functions, for which, in turn, we can se t  up 
equations of motion, etc. We shall show that all the 
inhomogeneous terms, i.e., the terms that a r e  not 
Green's functions, vanish in the corresponding chain 
of equations. The system of linear equations for -Al(w) 
i s  then homogeneous and has the trivial solution &(w) 
= 0. 

The first  of the Green's functions in the right-hand 
side of (A2) i s  similar in structure to &(w). The gen- 
era l  form of the equation for functions of this type in the 
chain of equations of motion for xl(w) is: 

According to ( l l ) ,  (Al), and (A4) a l l  the A, a r e  linear 
combinations of the products of the additive operators, 
and since (4) = 0, it follows with allowance for (12) 
that s'~(A,) = O  for all  p .  The operators 1\, do not con- 
tain the momentum k explicitly. Therefore the mean 
values of the commutators in (A4) a r e  zero. Indeed, 

expressing xkj in terms of the displacements u,,= rn 
- Ff,,, we obtain for the k-independent additive operator 
R = s n i n  ((n is the number of the electron) 

(the operator 2, for the n-th electron depends only on 
the coordinates and momenta of the given electron and 
of some of i ts  neighbors). Obviously, the estimate 
(A5) is valid if %, i s  replaced by k,, and also if 9 i s  
replaced by a product of k-independent operators and 
allowance i s  made for (12). Consequently A,= 0 a s  S 
-0'. 

The chain of equations for the functions 14, I Y ( % ~ I  
in the right-hand side of (A4) is of the form 

The operators 1\,,, constitute a linear combination of 
products _of additive operators, one of which is of the 
form En X, exp(- ikR,,), and the others a r e  independent 
of k. An estimate of the type (A5) with allowance for 
(12) shows that X,,,=O in the limit a s  S --. 

The quantities X, and X,,, determine a l l  the inhomo- 
geneous terms in the chain of equations for b,(o). 
Their vanishing proves that 4 (w) = 0. 

 he internal anharmonicity of a WC is determined by the 
relative electron displacements u, -%P.  Inasmuch as ' 

( (u, -u,,t)') << (qr far from the melting point, the Hamil- 
tonian that describes this anharmonicity can be expanded in 
powers of u, =u,,P, and the corresponding small renormaliza- 
tion of the long-wave phonons can be obtained in standard 
fashion by perturbation theory. 

 he author thanks B. I. ~hklovskii, in a discussion with whom 
this circumstance was noted. 
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