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The mass shifts of accelerated charges (the sources of massive vector and scalar fields) are studied in an 
approximation which is classical with respect to the motion of the charges but quantum with respect to the 
interaction of the charges with their self-fields. For uniformly accelerated charges, the mass shifts are 
expressed in terms of cylinder functions of the quantum parameter ,uc3/h , ,  which is essentially the ratio of 
the mass ,u of the self-field quanta to the acceleration w, of the charge. For a finite positive value of this 
parameter, both the imaginary and real parts of the shifts are nonzero and negative. In the limitp-4, the real 
part of the mass shift of a vector charge tends to the classical value - a h & ' ,  which was obtained by the 
author earlier [Sov. Phys. JETP 48, 758 (1978) and 53, 659 (1981)], while the mass shift for a scalar charge 
tends to zero. These and other properties of the shifts as functions ofp are considered on the basis of locality 
of the interaction, unitarity and causality. For the change A W(u2) in the self-action of arbitrarily accelerated 
charges, dispersion relations in the variablep2 are established. It is shown that Im A Wb2) is positive for real 
p2, and this makes it possible to interpret 2 Im A W( - k2) as the probability of emission of virtual quanta 
with any value of the square k of the Cmomentum. For ,u > 0, the real part Re A W(u2), which determines 
the mass shift, must be nonzero and positive "on the average." A representation that directly expresses 
A W(u 2, in terms of the slowing down of the proper time of an accelerated charge compared with the proper 
time of propagation of the virtual quanta of its field is obtained. 

PACS numbers: 03.70. + k, 03.65.Sq 

I. INTRODUCTION'' be t reated classical ly  if the quantum p a r a m e t e r  P = w,,/ 

By the clock paradox, we  understand in th i s  paper  the 
well-known asser t ion  of the special  theory of relativity: 
The proper  t ime of motion along a s t ra igh t  l ine between 
two timelike points is g r e a t e r  than the proper  t ime  of 
motion along any timelike curve  between them. The 
interaction of a charge with itself can be represen ted  as 
a process  of exchange of v i r tua l  self-field quanta pro- 
pagating along s traight  l ines  between the points of e m i s -  
sion and absorpt ion,whereas the charge itself,  which is 
accelerated by ex te rna l  fo rces ,  moves along a curve. 
Because of the difference between the proper  t i m e s  of 
the motion of the charge and the quanta, the self-action 
energy, o r  the se l f -mass  of the accelerated charge,  is 
different f rom that  of a n  unaccelerated charge moving 
along a s t ra igh t  line. 

In the p resen t  paper ,  we consider  the changes in the 
m a s s  of c lassical ly  moving accelerated charges  whose 
self-field is mass ive  (in con t ras t  t o  Refs. 1 and 2) and 
h a s  spin n = O  o r  1. A s  a resu l t ,  the m a s s  shif t  of an 
accelerated charge is a complicated function of the 
dimensionless  quantum p a r a m e t e r  

a= ( p / ~ , ) ~ =  ( p ~ ~ / t i w ~ ) ~ ,  (1) 

which is the square  of the ra t io  of the rest energy pc2 of 
a field quantum to the charac te r i s t i c  kinetic energy 
Ewo/c of the quanta emit ted by a charge with acce le ra -  
tion w,. The es t imate  

of the effective kinetic energy of the quanta follows f rom 
the differential emission probability obtained by Niki- 
shov and the presen t  author3 and generalized t o  the c a s e  
p+O. 

The motion of a charge with m a s s l e s s  self-field can 

m, which is equal t o  the  ra t io  of the charac te r i s t i c  
energy Ewdc of the emit ted quanta to the rest energy 
mc2 of the charge is smal l ,  i. e . ,  if the condition 0 << 1 
is satisfied ( see  Ref. 1, in which a quantum theory of 
the e lec t ron  m a s s  shift  w a s  developed). It  is obvious 
that  the corresponding condition f o r  the motion of the 
source  of a mass ive  field wil l  be s m a l l n e s s  of the effec- 
t ive total energy of the emit ted quanta compared with 
the m a s s  of the charge,  i. e . ,  p + wo <<m; see ( 2 ) .  
Therefore ,  the p a r a m e t e r  P must ,  as before, be 
smal l ,  and the m a s s  of the quanta m u s t  be s m a l l  com- 
pared with the m a s s  of the  charge: 

T h i s  m e a n s  that  the p a r a m e t e r  A m u s t  not be too s m a l l  
o r  too large:  ~ / m  << k1I2 << These  are the conditions 
under  which the r e s u l t s  of the p resen t  paper  are valid. 
In the region (3),  which is c lass ica l  with r e s p e c t  t o  the 
motion of the charge  but quantum with r e s p e c t  to  its 
interaction with the self-field, the r e s u l t s  do not de- 
pend on the spin of the charge but do depend strongly on 
the  spin of its field. 

In the second sect ion of th i s  paper ,  we  find the m a s s  
shif ts  of uniformly accelerated s o u r c e s  of mass ive  vec- 
t o r  and s c a l a r  fields. The  shif ts  are expressed  expli- 
citly in t e r m s  of cylinder functions of the variable  Al l2  

and a r e  analytic functions in the complex plane of 
with a cut  along the positive r e a l  axis. The r e a l  p a r t s  
of the shif ts  a r e  nonzero and negative on the positive 
r e a l  axis X >O and vanish on the negative axis h <O, 
having a discontinuity at the point A = O  in  the c a s e  of a 
vector  field o r  a discontinuity of the derivat ive in  the 
c a s e  of a s c a l a r  field. The imaginary p a r t s  of the 
shif ts  a r e  negative not only on the half-axis A>O, 
where  -2 Im Am is equal t o  the probability of emission 
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of quanta in unit proper time, but also on the half-axis 
A<O. This makes i t  possible to interpret -2 Im Am for 
any real  A a s  the probability of emission of virtual quan- 
ta with arbitrary square 122 = - A 4  of the momentum. 

In the third section, we show that these properties of 
the niass shifts of uniformly accelerated charges a r e  
not fortuitous but a re  a consequence of very general 
analytic properties of the variation of the action a s  a 
function of pa for arbitrary motion of the charges. 
Namely, because of the causal properties of the pro- 
pagation of the self-field, the change AW(p2) in the ac- 
tion is analytic in the half-plane Im p2 <0, and because 
the charge is pointlike (locality of the interaction) and 
i ts  trajectory timelike (causality of the motion of the 
charge) the real  part of the change in the action vanishes 
on the half-axis p2<0,  which leads to symmetry and 
analyticity of AW(p2) in the entire complex plane of p2 
cut along the half-axis p2 2 0. The dispersion rela- 
tions for AW($) and the positivity of i t s  imaginary part 
for p2 >O have the consequence that Im AW(p2) i s  also 
positive for p2 <O and makes i t  possible to interpret this 
quantity a s  the emission probability of spacelike quanta. 
With regard to  Re AW(p2), for IL >O i t  is necessarily 
nonzero and positive "on the Cauchy average. 

In the fourth section, for trajectories with constant 
curvature and constant torsion (in particular, trajec- 
tories of an electric charge in an arbitrary constant 
electromagnetic field), the change in the self-action of 
a scalar field can be represented a s  the mean value of 
the relative slowing down (z - u)/z of the proper time u 
of motion of the charge compared with the proper time 
z of propagation. of the field quanta between the emission 
and absorption, and the change in the self-action of a 
vector charge can be represented a s  the mean value of 
the proper rate of change of the slowing down: d(z - u)/ 
du. In other words, the changes in the selfiaction of 
the charges a r e  a direct manifestation of the clock para- 
dox, according to which the slowing down and the rate of 
slowing down of the proper time of an accelerated charge 
a re  positive: 

The function AW(pZ), determined for charges with 
massive self-field, is also important in quantum elec- 
trodynamics, and not only because i t  makes i t  possible 
to examine the phenomenon of mass shift from a more 
general physical position (dispersion with respect to 1).  
Although in electrodynamics the main contribution to 
the shift is given by the p - +O limit of AW1(p2), the 
polarization correction to i t  is determined by the 
function AW1(p2) a s  a whole due to the interaction be- 
tween the virtual photons and pairs in the vacuum (see 
Sec. 5). 

2. MASS SHIFTS OF UNIFORMLY ACCELERATED 
SOURCES OF MASSIVE FIELDS WITH SPIN UNITY 
AND ZERO 

We proceed from the fundamental concept of the ac- 
tion W, which determines the amplitude eiW for the 
vacuum persistance probability in the case of a given 
s ~ u r c e . ~ . ~  The mass shift of a classically moving 

charge that is the source of a massive vector field is 
determined by the change in i t s  self-action, i. e . ,  the 
difference between the self-action of the charge in the 
external field and in the vacuum (symbol 1;): 

Here, j,(x) and ~ ~ ( 7 )  a re  the current density and coord- 
inate of the charge, and AC is the causal propagator of 
the quanta of its field. For  a uniformly accelerated 
charge, the expression (5) leads to the integral1*' 

~ r n , ~ '  =%s, ( I ) ,  S, ( I )  - 
2n 

0 

where X = (p/wJ2 and w, i s  the acceleration of the 
charge in i t s  res t  frame. Note that the factor awd2n  
is purely classical; Planck's constant occurs in the 
parameter A -p, since the propagation of the self- 
field, in contrast to the motion of the charge, i s  
treated quantum mechanically. 

Applying a direct and inverse Mellin transformation, 
i t  is possible to express the integral Sl(A) in terms of 
the modified cylinder functions I,,(%) and Kn(x): 

1 I 
Re S, (h)  =-nxz [I, ( x )  K, ( x )  + 10 ( X ) K I  (XI + KO ( I ) ]  +nx. 

(7) 

The function Sl(A) is analytic in the complex plane of X 
cut along the real  positive axis because of the logarith- 
mic and root singularities a t  the point A = O .  For  Sl(A), 
the real  axis is a Riemann-Schwarz symmetry axis: 

Therefore, the values of Sl(X) below and above the cut 
differ by the signs of the real  parts. The value given 
in (7) is the limit of Sl(A) a s  the cut is approached from 
below-it is this branch that determines the integral (6) 
in accordance with causality considerations (p2 - 11' - 
ic). On the negative real  axis, the function Sl(X) is 
purely imaginary and equal to 

where X =  (-A)"', and Jn(x) and Nn(x) a re  Bessel and 
Neumann functions. In more detail, the analytic struc- 
ture of the function S,(X) can be represented by the 
everywhere convergent ser ies  

in which 

y = 1.781.. . , and the prime denotes the derivative with 
respect to k. The leading nonvanishing terms of this 
series in the limit A - 0  were obtained in Refs. 1 and 
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2, in which the photon mass was regarded a s  a small  
parameter in the theory. They correspond to k = 0 and 
a r e  written out explicitly. At the point A=O, the func- 
tion S, has a discontinuity -T ,  which generates the 
classical shift - (uEwJ2c3 of the mass  of a uniformly 
accelerated charge in electrodynamics. 

For A>> 1, the functions S,(A) have the asymptotic ex- 
pansion 

For  A >> 1, it  is however more convenient to use the 
asymptotic expansions and for negative A when -A>> 1 the asymptotic behavior 

Note that Im S,(A) decreases exponentially a s  X -- + m 

with coefficient and argument of the exponential which 
do not depend on n, the spin of the self-field, whereas 
ReS,(A) in the limit A -  + m and ImS,(h) a s  A--00 de- 
crease a s  1 h1''f2 with the same coefficient proportional 
to 2n+ 1, the number of polarization states of the self- 
field. Since the spin of the field has a quantum origin, , 

i t  is natural that the dependence on i t  appears only in 
conjunction with powers of the parameter h'lt2, which is 
proportional to E. In the quasiclassical region A>> 1, 
this dependence on the spin of the field is weak, while in 
the quantum region, A << 1, i t  is strong and qualitative 
[see the ser ies  (10) and (18)]. For  example, for A>> 1 

Similarly, for negative A when -A >> 1 

Besides the change in the mass of an accelerated 
source of a massive vector field, we consider the 
change in the mass of an accelerated source of a mass- 
ive scalar field, which is determined by the change in 
the self-action (5) with replacement of the product of 
the current densities by the product of the charge den- 
sities and the product of the 4-velocities by unity: 

while for A << 1 
Then the mass shift of a uniformly accelerated source 
of a massive scalar field is6 

As can be seen from the expressions we have obtained 
and Fig. 1, the functions S,(A) on the real  A axis have 
the following general properties: 1) Re S,(A) = 0 for 
A <0; 2) ReS,(A) <O for A > 0; 3) ImS,(A)<O for both 
A >O and A<O. We shall show that these global proper- 
ties a r e  a reflection of fundamental physical proper- 
t ies of the motion of the charge, i t s  field, and the in- 
teraction between them, namely, the locality of the 
interaction, unitarity, and causality. These proper- 
t ies a r e  expressed concretely in the pointlike nature 
of the charge, the timelike nature of i ts  trajectory, , 

conservation of the curent, and the decrease in the 
proper time of motion along a timelike curve compared 
with the proper time along a straight line. 

where, a s  before, A =  (p/w0)'. Calculation of the inte- 
gral So by the same method leads to an expression that 
differs from (7) by a decrease in all  the indices by 
unity and a change in the sign of the real  part: 

Re S , (h)  =nx2[I , (x )  K , ( x )  + I ,  ( z )  K ,  ( x ) ]  -nx, 

Im S,(h)  =x2 [Ko"x) - K i 2 ( x ) ] ,  x=h"'. 
(16) 

The function So(X) has the same analytic properties and 
symmetry a s  S,(A), and on the negative real  half-axis 
of A is equal to 

3. CONNECTION BETWEEN THE REAL AND 
IMAGINARY PARTS OF THE CHANGE IN  THE 
SE LF-ACTION 

Its  detailed analytic structure i s  represented by the 
everywhere convergent ser ies  

The change (5) of the self-action can be represented 
in terms of the Fourier transforms of the causal pro- 

in which 

r(k- 'I*)  
C - - 2nBZ ( k )  I'(k+l) ' 

and the prime again denotes the derivative with respect 
to k. 

As can be seen from the representations (10) and (18), 
both functions S,(A) have a t  the point A = 0 logarith- 
mic and square-root branch points, but, in contrast to 
S,, the function So is continuous a t  this point. FIG. 1. 
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pagator and the current o r  charge density in the form 
of the Hilbert transform of the function Aw(k2) 
r w(k2) I:, i. e. , the change in the function w(k2): 

The function w(k2) (the spectrum of the source) is ob- 
tained by invariant integration of the square of the cur- 
rent or  charge density over a 3-hypersurface with given 
k2, i. e . ,  with respect to 3-vectors k satisfying the con- 
dition k2 2 k28(k2); by k, we understand k,= (I? - k2)'12 
2 0. For  uniformly moving (um) vector and scalar 
charges i t  is 

urn 
w,., (k') =ra(k2)"9(k2)  r ,  (26) 

differing from zero only for spacelike momenta k2 >0, 
since a uniformly moving charge does not emit real  
quanta. Therefore, Aw(k2) = w(k2) for k2 < 0. The spec- 
trum w(k2) does not contain an ultraviolet divergence 
and by virtue of the subtraction i ts  change, i. e . ,  the 
function Aw(k2), decreases a t  large spacelike momenta 
k2 - + 00, s o  that the change in the action is finite. 2' 

The imaginary part of the change in the action is 
equal to the change in the spectrum at  the point k2 = - p2, 
and the real  part is determined by the integral of 
Aw(k2) over all real  k2 # - p2: 

The function w(k2) for k2 <O must be positive due to con- 
servation of probability: The probability that during 
the entire time r the source does not emit free quanta is 
equal to exp[-2 Im Aw(p2)] and must be less  than unity. 
Therefore and in accordance with (27) 

w( -py  =2Im AW(p2)>0,  

this being valid for any positive pa, since the form of 
the spectrum w(k2) does not depend on the mass of the 
free quanta. If allowance is made for conservation of 
the current, k,j,(k)=O, then i t  does indeed follow from 
(25) that for timelike k,, for k2 <0, the function wl(k2) 
is positive. For a scalar charge, w,(ka) is manifestly 
positive for all  k2. Therefore, for k2 <O the change in 
the spectrum is positive, Aw(k2) = w(k2) >O, for both 
vector and scalar charges. 

We show that for k2 >O the function Aw(k2), which con- 
tains the nonvanishing subtractional term (26), is also 
positive. For this, we go over in (5) to the represen- 
tation 

where Hy' is a Hankel function, and z is the interval 
equal to [-(x - x ' ) ~ ] ~ ' ~  for (X - x ' ) ~  <O and -i[(x - x ' ) ~ ] ' ~ ~  
for (x- XI)' >O, i, e . ,  i t  is equal to the proper time or  
proper length (multiplied by -i) of the segment of the 
4-line joining the points x and x' . Then we obtain 

i 
AW, c P 2 )  = - c f dT dTi ia(T)ea  ( r z )  [ - YnP c p z ) ]  , (29) 

2 8nz o 

where the interval z = [-(x,(T) - x , ( T ~ ) ) ~ ] " ~  is real  and 

positive on a timelike trajectory of the charge. The 
term with 6(z2) is omitted, since i t  makes a vanishing 
contribution on subtraction. Continuing this expression 
analytically to negative values of p2, and using the 
connection Hi(-ix) = (-2/n)Kl(x) between the Hankel 
and MacDonald functions, and denoting p2 = -n2, p = -in, 
x > 0 we obtain the purely imaginary function 

For  a scalar charge, AVO(- x2) is also purely imagi- 
nary, since i t  differs from (30) by the substitution 
%it - 1. 

Thus, Re AW(p2)=0 for real  p2<0.  For  this very 
important property, the pointlike nature of the charge 
and the fact that i t s  trajectory is timelike a re  essential; 
for i t  is in this case that the interval z takes only real  
positive values. 

Formula (24) determines AW(p2) a s  an analytic func- 
tion in the lower half-plane of the complex p2. This 
analyticity is an explicit manifestation of the causal 
propagation of the field quanta. If we now note that 
Re AW(p2) = 0 on the real  half-axis p2 < 0, the function 
AW(p2) can be analytically continued through the nega- 
tive p2 axis into the upper half-plane of p2 by means 
of the Riemann-Schwarz principle, i. e.  , the relation 

Thus, the function AW(p2) is analytic in the entire com- 
plex p2 plane with cut along the positive p2 axis, on 
each side of which i t  has the same imaginary part and 
real parts of opposite signs. 

For  such a function, we have the dispersion represen- 
tations (Im p < 0) 

which enable us  to recover the function AW(p2) in the 
complex p2 plane from its real  o r  imaginary part given 
in the lower edge of the cut, which is the real  positive 
axis. In the limit Im p -0, the representations (32) go 
over into the Kramers-Kronig relations between the 
real  and imaginary parts of AW(p2) on the real  axis of 
F. 

In accordance with the second of the representations 
(32), Im AW(p2) is positive in the entire complex plane 
of p2 (or the lower half-plane of p) and, in particular, 
on the negative half-axis p2 = -x2, p = - in,  n >0, where 

The positive-definiteness of Im AW(p2) in the complex 
plane is a consequence of i ts  positivity on the real posi- 
tive half-axis p2 >0, the vanishing of Re A W ( ~ ~ )  on the 
real  negative half-axis p2<0,  and, of course, the ana- 
lyticity of AW(p2) for Im p2 < 0 (unitarity, locality, 
causality). 
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Since (27) holds for any real  p2, i t  follows from (33) 
that the change in the spectrum for spacelike k, is not 
only positive but is also related to the change in the 
spectrum for timelike k,: 

This connection cannot be seen from the representa- 
tion (24) and (25) and ar ises  a s  a result of allowance for 
the pointlike nature of the charge and the fact that i ts  
trajectory is timelike. Such locality and causality pro- 
perties can be formulated naturally in the "coordinateM 
representation; they a r e  manifested in the analytic 
properties of the functions that occur in the "momen- 
tum" representation. 

The function Aw(k2) can be regarded a s  the mean num- 
ber of virtual photons with momentum square k2 emit- 
ted (and absorbed) by the source during the entire time 
over and above the quanta emitted (and absorbed) by the 
charge during this time in uniform motion. The posi- 
tivity of Aw(k2) means that acceleration of the source 
leads to an increase in the rate of emission and absorp- 
tion of quanta a t  a l l  k2. 

It can now be seen from the representation (27) that 
the enhancement of the exchange of spacelike quanta 
always makes a positive contribution to Re AW(p2), i.e., 
it decreases the mass  of the charge. In contrast, the 
contribution due to the exchange of timelike quanta may 
have any sign, but i ts  absolute magnitude is evidently 
less than the contribution of the spacelike quanta due 
to the exponential decrease of ~ w ( k ~ )  a s  k2 - --. 

In accordance with the f i rs t  of the representations 
(32), on the negative half-axis p2 = -x2, p = -in,  H. >0, 
we have 

2i dxx Re A  W  ( x Z )  
A W ( - x 2 ) = - j  

0 
x"+xZ 

Equating the right-hand sides of formulas (33) and (351, 
we obtain the important equation 

which shows that Re AW(p2) cannot be equal to zero o r  
negative for all  p >O. In accordance with (36), the 
functions x Re AW(x2)/n and Im AW(X') have the same 
positive mean values, equal to Im AW(-n2), a s  a result 
of averaging over x with probability density 2n-'n(n2 
+ x2)-l (Cauchy distribution7). The positivity of the 
function Re AW(x2) "on the average", which is equiva- 
lent to positivity of Im AW(- n2), i s  a consequence of the 
unitarity and causality. We recall that the positivity 
of Im AW(p2) for / - L ~  >O is a consequence of unitarity 
alone. 

If Im AW(x2) is bounded a t  the origin, then, letting 
x. tend to zero in the relation (36), we obtain 

0 

This means that the function Re AW(x2) vanishes fairly 
rapidly a s  x-0 and Re AW(O)=O. But if Im A W ( ~ ~ )  in 
the limit x -0 tends to infinity logarithmically, 

[a >0, and b(x2) is a function bounded a t  the origin], 
then i t  follows from the relation (36) that Re AW(x2) 
tends in the limit x - 0 to a nonvanishing positive quan- 
tity: 

These two types of behavior are ,  a s  i t  happens, exhib- 
ited by the changes in the action of uniformly accelera- 
ted sources of scalar and vector fields, for which 

4. CHANGE IN THE SELF-ACTION AND THE CLOCK 
PARADOX 

With a view to a further elucidation of the physical 
mechanism which is the basis of the integral (disper- 
sion) relations of the previous section, we return to 
the space-time description of the change in the self- 
action of an accelerated charge. We restrict  ourselves 
to trajectories for which the "distance" z between any 
two points is a function of only the %rc lengthv u = 7 - 7' 

between them: 

The trajectories of an electric charge in an arbitrary 
constant electromagnetic field have this property, for 
example (see Ref. 2). Then instead of (30) we obtain 

Since 

j du [ K f i t u )  az ("' ] -0, 
d u  z 

(43) 
0 

the expression (42) can be written in the form 

Hence, after integration by parts, we obtain 

Since K2(xz) >O and by virtue of the clock paradox 
zl(u) >l [see (4) and below], for negative p2 the imagi- 
nary part  of the change in the action is positive. More- 
over, since x2K2(x) is a monotonically decreasing func- 
tion of x, i t  follows that Im Awl(-n2) decreases mono- 
tonically with increasing x2. 

The property Im AW1(y2) >0  for p2< 0 is a conse- 
quence of the "clock paradox," according to which the 
proper time of motion along a straight line between two 
timelike points is greater than the proper time of mo- 
tion along a curve between them: z(u) >u. It can also 
be said that 

since the proper time of motion along the straight line 
which subtends the a rc  u + Au is greater than the total 
proper time of motion along the broken curve consisting 
of the two straight lines subtending the a rcs  u and Au. 
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Since for any trajectory and sufficiently small Au 

z(Au) -AU+~/~ ,~ ' (AU) '+ .  . . , (47) 

where 2 is the square of the 4-acceleration, it follows 
from (46) that zl(u) > l ,  which leads to positivity of 
Irn hW1(p2) for p2<0. Note that formula (47) is im- 
portant for the integral transformations made above. 

For  a scalar charge, we now obtain instead of (42) 

Since zlu) >u by the clock paradox, and the function 
x-'K1(x) decreases monotonically, the integrand is 
positive and, therefore, Im AW,(- x2) >O. 

However, i t  is convenient to represent formula (48) 
for a scalar charge in a firm similar to (45). For  this, 
we transform it by means of the relation (43) and inte- 
gration by parts, obtaining 

0 

It again follows from this formula that the function 
Im AW,(-x2) is positive, because z >u, and that it also 
decreases monotonically with increasing x2. 

Returning to the positive axis of p2 by means of 
analytic continuation of the representations (45) and (49), 
the contour passing below the point pa =0, we obtain 

f6(z) -1-ulz, f ,  (z) -dzldu-1. (51) 

Thus, the changes in the action for sources of scalar 
and vector fields can be regarded a s  certain "averagesv 
of the relative slowing down of the time, (z - u)/z, and 
the rate of slowing down of the time, d(z - u)/du; these 
a re  the two quantities that characterize the clock para- 
dox integrally and differentially. More precisely, 
AW,,(p2) a r e  the integral Meijer transforms (or  K trans- 
f o r m ~ ) ~ ~ ~  of the functions fn(z), which a r e  the relative 
slowing down and the rate of slowing down of the time 
on the trajectories of the charges. 

Since the Bessel and Neumann functions forming the 
real  and imaginary part of the function 

oscillate, i t  is difficult to draw from the representation 
(50) any conclusions about the signs of the real  and 
imaginary parts of AW(p2), although the imaginary part 
of AW must be positive for pa >O by unitarity, and i t  can 
be seen from the representation (25) that this is so. 
Of course, the functions AW(p2), which a r e  determined 
by the expressions (45), (49), and (50), satisfy the gen- 
e ra l  relations of the preceding section, s o  that for them 
a l l  the consequences that flow from these relations, in 
particular, positivity of Re aW(p2) "on the average," 
holds for them. 

For a uniformly accelerated charge, the functions 
f,,(z) a re  very simple: 

In the integral 

i t  is values z -p' which a r e  effective for the real  part  
of the mass  shift. From this, we can readily obtain the 
limiting cases (22) and (23) and the qualitative estimate 

It can be seen that the linearity of the shift in w, and th8 
fact that i t  is independent of p ar ise  only if the "er- 
turbation" fn(z) has a linearly increasing asymptotic 
behavior over the z interval. Such an asymptotic be- 
havior is possible only for fl(z), i. e . ,  for the source of 
a vector field, since f,(z) is always l e ss  than unity. 

In the representation (53), the mass shift of a vector 
charge acquires an ever greater formal similarity with 
the shift of a parity-degenerate level of the hydrogen 
atom under the influence of an external electromagnetic 
field E (we have the matrix element V12 -e&a, where a 
is the diameter of the atom) and a perturbation that 
lifts the parity degeneracy (matrix elements Vll and 
V22): 

see also formula (55.8) in Ref. 10. Indeed, for a uni- 
formly accelerated vector charge 

1 
Re Am, - --a 

2 [ ( 3+wf )" -PI ,  (55) 

s o  that the role of V12 and (Vll i v2,)/2 a r e  played, re-  
spectively, by w, amd p multiplied by a. It is however 
difficult to relate linearity of the asymptotic behavior of 
fl(z) to parity degeneracy. 

5. THE FUNCTION A W ( ~ '  ) IN ELECTRODYNAMICS 

Although the mass of a real  photon in electrodynamics 
is zero, the function AW(p2) ar ises  directly when one 
considers the radiation corrections. For  example, if 
one takes into account the polarization correction of 
second order to the photon propagator, then instead of 
the propagator, -i(k2 - it)" it is necessary to  use 

[see Ref. 11, Eq. (35. lo)]. Here, ml is the mass  of 
one of the particles of a lepton pair formed by a virtual 
photon in the intermediate state, and p2(x) is the 
Kffllbn-Lehrnann spectral density. Then for the change 
in the self-action of an accelerated charge we obtain 
instead of (24) 

where p2 is the square of the mass of the lepton pair 
produced by the virtual photon. Thus, in electrody- 
namics p =  0 in the leading term, but the second, pol- 
arization term contains the function AW(X~). 

In the integral (57), i t  is values p2 -4112: that a re  
effective. Therefore, the parameter A, on which in 
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reality [in the approximation ( 3 ) ]  the function A W ( x 2 )  
depends, is of order  ( m , / ~ , ) ~ .  If m ,  = m ,  then A,,, -P" 
and we a r e  a t  the limit of applicability of the classical  
treatment of the motion of an accelerated charge; s ee  

( 3 ) .  But if the accelerated particle is significantly 
heavier than the particles of the virtual pair, as i s  the 
case, for  example, for  an accelerated muon and an 
electron-positron pair  then A - ( r n , / ~ , ) ~  << f i - 2  and 
classical  description of the motion of the heavy particle 
is valid. 

The polarization te rm in ( 5 7 )  has r ea l  and imaginary 
parts ,  which are determined by the corresponding pa r t s  
of the function A W , ( p 2 ) .  Twice i t s  imaginary part  is 
the probability of formation of a lepton pair  by an accel- 
erated charge. For  a uniformly accelerated charge, 
such a probability was found by Nikishov. l 2  In the gen- 
e r a l  case ,  i t  can be represented by the form 

j drh (z) Au, (-=I 
4mp 

( 5 8 )  

[cf. formula ( 6 . 3 7 )  of Schwinger's Ref. 131. 

When allowance is made for  the higher radiative cor-  
rections in the relations ( 5 6 ) - ( 5 8 ) ,  the function p, (x)  
must be replaced by the exact KP116n-Lehmann spectral  
density p ( x ) ,  for  which the minimal value of the square 
of the m a s s  of the intermediate state is equal to ze ro  
and not 4 m i ,  as for  p, (x) .  Therefore, in electrodynam- 
i c s  the function AW1(k2 )  always has physical meaning 
in the region of sufficiently smal l  positive k2. 

I thankwV.L. Ginzburg, N.N. ~ e i m a n ,  A.I. Nikishov, 
E. L. Feinberg, and I. S. Shapiro for  discussion and 
comments. 

Note Added in Proof (March 24, 1982). In Ref. 2, 
formulas ( 3 7 ) ,  ( 3 9 ) ,  and ( 4 0 )  were  obtained fo r  the 
electromagnetic m a s s  of a charge, the mass  being de- 
termined by the state of the self-field a t  the time t. 
The last of these formulas is a l so  valid for  the field 
mass  of a charge with a massive vector self-field 

(CI +O): 

field 1 
= T ~ [ - j d ~ * d a +  jdvd.(~..l~]. 

The variable mass  shift of the charge am;' = m:ieid 1 
for  the electromagnetic field is completely given by the 
divergence term [see ( 5 1 )  in Ref. 21, and fo r  a massive 
vector field by the f i r s t  te rm,  which reduces at large 

t t o  ( 5 )  if the potential is expressed in t e r m s  of the 
current .  

l ) ~ e  use a system of units in which l i = c = l  except when it is 
desirable to emphasize the quantum and relativistic nature of 
the quantities. The charge e is measured in Heaviside units, 
n =e2/4rzc. We use the notation a, = (a, ziz,,), a&, =a b 
-aobo. For the sources of the vector and scalar fields we 
use the expressions "vector charge" and "scalar charge." 

2)The self-action of a uniformly moving charge determined by 
the function (26) &verges linearly with respect to the momen- 
tum and leads to a divergent field mass * akg,"X/n ,  which is 
usually expressed in the form i a /2a  in terms of the cutoff 
radius a .  In a quantum treatment of the motion of a charge, 
the divergence of the field mass is different and depends on 
the spin of the charge. However, in both the classical and 
the quantum approach these divergences disappear from the 
physical observables, which are differences. 
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