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The phase diagram of the ANNNI (anisotropic next-nearest-neighbor interaction) model is considered in 
detail at temperatures lower than that of the transition to the ordered phase with the exception of a very small 
vicinity of the transition. The method employed has made it possible to determine exactly the sequence of the 
alteration of the magnetic structure near the degeneracy lines of the ANNNI model, as a function of the 
temperature and of the magnetic field. The stability of the phase diagram is discussed. The predictions of the 
theory are compared in the last section with the experimental data on the metarnagnet CeSb. 

PACS numbers: 75.30.K~ 75.50.Dd 

1. INTRODUCTION that paper, to which we shall  refer hereafter a s  FS, 

The properties of metamagnets with unusually com- 
plicated phase diagrams have attracted much attention 
in the last few years. These substances include com- 
pounds of cerium with elements of the fifth group of the 
periodic table. A particularly interesting and compli- 
cated phase diagram is possessed by cerium antimode 
CeSb (see Refs. 1-5). Structure investigations show 
that the phases of this substance a r e  made up of ferro- 
magnetic planes whose moments form a one-dimen- 
sional periodic structure with a rather long unit cell 
containing up to 30 atomic layers. The magnetic in- 
teractions in the CeSb lattice a r e  due to indirect ex- 
change, which, owing to the close values of the ener- 
gies of the localized 4f-shell electrons and the Fermi- 
surface s-electrons of the semimetallic cerium anti- 
monide, leads to a strongly anisotropic and Ising-like 
effective exchange (see Refs. 5-7). One can hardly 
expect the effective radius of these forces to cover 
much more than one o r  two nearest neighbors. This 
ra ises  the question of attributing the long magnetic 

they obtained exactly the ground state, followed by the 
energy and structure of the elementary excitations. In 
the low-temperature region the elementary excitations 
constitute a practically ideal gas, s o  that a virial ex- 
pansion is possible. 

In this paper we use a somewhat different approach 
within the framework of the very same ANNNI model. 
We propose a strong anisotropy of the exchange con- 
stant, assuming the interaction between the planes by 
much weaker than within the planes. ') This permits 
the use of high-temperature ser ies  in t e rms  of the in- 
terplanar coupling constants in almost the entire region 
of existence of the ordered phase. The relative simpli- 
city of the calculations within the framework of our 
model has made i t  possible not only to  confirm the FS 
result, but also to solve the more complicated problem 
of the behavior the same systems in a magnetic field. 
The present method is the most adequate for the de- 
scription of weak interaction induced between mag- 
netic planes by thermal fluctuations. 

periods to short-range forces. It is customary to ex- 
Besides the direct application to metamagnets, the 

plain this phenomenon a s  being due to strong degene- last  problem is vital for the description of the proper- 
racy of the ground state which is a random sequence of ties of intercalated compounds (see the review1'). 
ferromagnetic planes. This degeneracy can ar ise  a t  a These a r e  layered graphite compounds in which layers 
certain ratio of the exchange integrals. Weak pertur- of imbedded metal alternate with several  layers of 
bations lift this degeneracy. Periodic structures with graphite. It is natural to  describe the imbedded atoms 
long cells a r e  produced. with the aid of a lattice-gas model with a fixed chemical 

Bak and von BZhm8 described this phenomenon by us- potential o r  a fixed number of particles. This model is 
ing an Ising model with interaction of not only the known to be equivalent to an Ising model with a nonzero 
nearest neighbors. They -mvestigated this model by the magnetic field. Another complication ar ises  when a 
self-consistent-field method. A shortcoming of this comparison is made with magnetic system because the 
method for our problems is the need for an empirical imbedded atoms can occupy several  equivalent posi- 
choice of several exchange constants for the known se- tions inside the plane, just a s  in KC,. Such a system 
quence of experimental structures. can be described by using the Potts model. It is possi- 

ble that the same model can explain the spatial joining 
Fisher and SelkeQ*lo considered an Ising model with together of the charge-density waves in quasi-two-di- 

ferromagnetic interaction of the magnetic moment mensional compounds of the TaSe, type. la 
within a layer, and with interaction of the nearest and 
next-nearest neighbors between the layers. In the We proceed now to describe the ANNNI model. It is 
literature this model is abbreviated ANNNI (Aniso- specified by the Hamiltonian 
tropic next-nearest neighbor interaction). They %=Z0+%,, 
initiallyg investigated the ANNNI numerically by the 

(1) 

Monte Carlo method, and subsequently used an analytic z0=- ~ ~ ( r - r ' ) s , ( r ) s j ( r ' ) ,  (2) 
method suitable for the low-temperature region.'' In J , , , ~ .  
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where sj(r) = f 1, the index j pertains to  the number of 
the plane, and r is the coordinate of the si te inside the 
layer. The Hamiltonians and describe the inter- 
aplanar and interplanar i ~ t e r a c  tions, respectively. 
We assume in addition that the "effective" field h, pro- 
duced a t  the spin by the surrounding planes has two ex- 
change-interaction constants, I, =I,, and I, =I,,. 

In the sections that follow we obtain, under the pre- 
vious assumptions concerning the quantity, I ,  (I, >>Il, I,), 
a s  well a s  in a temperature region not to close to the 
temperature of the two-dimensional Ising transition (an 
estimate is given in Sec. 2), exact results on the se-  
quence of the phase alternation on the phase diagram. 
It will be shown that in a zero field, when the tempera- 
ture varies from zero to the transition point of the two- 
dimensional Ising model, the sequence of alternating 
magnetic phases is infinite. At a fixed nonzero mag- 
netic field, the number of transitions is infinite a s  be- 
fore, but their sequence is different. 

At zero temperature and zero magnetic field, there 
exist on the phase diagram two lines of multiphase 
points with inifinite degeneracy on them; this degene- 
racy vanishes instantly at nonzero temperature. In a 
finite magnetic field a t  T=O there exist on the phase 
diagram four multiphase lines that vanish at a finite 
temperature. At T # O ,  however, there appear three 
multiphase lines and an infinite se t  of a triple-point 
lines. 

In Sec. 12 we discuss the experimental results ob- 
tained for  cerium antimonide and compare them with 
the theory. 

2. PERTURBATION-THEORY SERlES FOR THE 
FREE ENERGY 

Consider the partition function of a layered system de- 
scribed by the Hamiltonian (1): 

If we disregard for the time being the interaction (3), we 
obtain a se t  of nonxeracting planes, each with its own 
order parameter s,(r) = s,. The order parameters in- 
troduced by us  can obviously take on only two values: 

The sequence of values of a, along a stack of N planes 
is, however, arbitrary (2N -fold degeneracy). 

We now expand the exponentials in Eq. (4) in powers 
of %/T: 

where Z,(T) is the partition function of the two-dimen- 
sional Ising model. The bar denotes independent sta- 
tistical averaging in each plane. 

where F, is the free energy of the two-dimensional Is- 
ing model, and the angle brackets denote irreducible 
mean values o r  cumulants. The problem reduces to 
one-dimensional, and the free energy plays the role of 
the effective Hamiltonian of a one-dimensional system 
of spins a,, the ground state of the Hamiltonian corre- 
sponding to a definite temperature-dependent phase 
state of the substance. 

In first  order in the small  quantity I,(,,, the incre- 
ment AFl to the free energy NF, of the system of inde- 
pendent planes is 

where N, is the number of si tes in the layer. 

Expression (6) can also be rewritten in the form 

where Fi, is the self-consistent field acting on the aver- 
age spin in the plane j and produced by the remaining 
planes. Thus, the principal term in the expansion of 
the f ree  energy is the usual self-consistent field ap- 
proximation. 

We consider now the second-order contribution. Each 
factor included in the irreducible mean value (R:) 
contains a product [see Eq. (3)] sj(r)h,(r) of spins be- 
longing to different planes and independently averaged. 
We represent graphically the product sj(r)hj(r) by two 
close points. The aggregate of all the connected topo- 
logically nonequivalent second-order graphs is shown 
in Fig. 1. The corresponding irreducible mean value 
(fl) is the form 

The contribution corresponding to graph l a  [first two 
terms of (8)l does not depend on the signs of the layer 
magnetizations. At the same time the graph l b  (the 
remainder of (8; )) has two free ends. It is conse- 
quently proportional to the product of the spontaneous 
moments of different planes, and i ts  contribution A F ,  
to the free energy (5) is equal to: 

where 

is the susceptibility of the two-dimensional Ising model. 

The physical meaning of (9) is the following: the self- 

- . 
a b 

FIG. 1 For the free energy we obtain 
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consistent field changes slightly the moment of each 
plane, and the energy (9) is due exactly to this change. 

Comparing (9) with (7) we see that the high-tempera- 
ture expansion is valid under the condition 

~ I t ( r ) a i .  (10) 

This condition holds starting with zero temperature up 
to  temperatures separated from the Onsager phase- 
transition point by an interval of the order of 

The contribution A F ,  to the free energy contains 
paired products of four types (o,oj+,,o,o ,+,, ojoj+,,u,o,,) 
with order coefficients XI: <<I,. In this small contribui 
tion i t  is necessary to take into account only that part 
of AF: whose effective radius exceeds the effective 
radius of the self-consistent field, i. e .  , exceeds two: 

The remaining terms lead to a small renormalization of 
the coefficients in (6). 

We proceed now to third-order perturbation theory. 
Figure 2 shows four types of connected graphs that de- 
pend on the signs of the layer magnetizations. The con- 
tribution corresponding to Fig. 2a is special. It con- 
tains spin couplings of the type ojoj+, and u,uj+,, which 
were missing from the preceding order. Their contribu- 
tion to the free energy is 

Direct calculation shows that the spin-interaction radius 
generated by the contributions of the other graphs of 
Fig. 2 does not exceed four. Allowance for them will 
lead therefore only to a small deformation of the phase 
diagram, without changing i t  qualitatively. 

To determine the phase diagram of the considered 
model i t  suffices to know the sequence of the longest- 
range spin couplings. This sequence is easy to calcu- 
late. In first, second and third orders it is given in 
Eqs. (6), (12), and (13). In the n-th order of the high- 
temperature series we obtain 

3. GROUND STATE OF THE ANNNI MODEL IN A 
ZERO MAGNETIC FIELD 

We shall show here how to minimize in succession the 
free energy (5). The f i rs t  step is to find the ground- 
state structure of the ANNNI model. 

Consider the f i rs t  order of the free-energy expansion 
(6). In the absence of a magnetic field i t  is convenient 
to change from the spin se t  {uj) to new coupling variable 

- - -  

C_C_ - - I . . .  - .  C_C_ 

a b c d 

FIG. 2. 

{rj} : rj =ujoj+,, which take on, just a s  uj, two sets  of 
values (* 1). In the new variables, Eq. (6) becomes 

It is necessary next to determine which arrangement of 
the rj couplings along the stack of planes minimizes 
AF,.  We note that to this end i t  suffices to know the 
probabilities of the appearance of all possible combina- 
tions of couplings between neighboring planes. The 
number of these combinations is four: ++, +-, - +, 
and - -. The total energy of an arbitrary configuration 
of all  the interplanar couplings is 

Here N+(N,) is the number of positive (negative) couplings 
between the planes, and N++, N+-, N-+, N__ a r e  the num- 
bers of the corresponding pairs of neighboringcouplings. 
Obviously, these numbers, referred to the total number 
N of the planes determine the probabilities of the ap- 
pearance of definite couplings o r  pairs of couplings be- 
tween the planes. We shall denote hereafter the pro- 
bability of some configuration by the symbol of this 
configuration in parentheses, e. g. (+), (+-), etc. 

Not all  the probabilities defined above a re  independent. 
They a r e  obviously connected by the relations 

It follows from (18) and (19) that 

In addition, the probability normalization condition (17) 
yields the relation 

Thus, out of the six probabilities considered above, 
only two a re  independent. It is convenient to choose 
them to  be 

It follows then from (20) and (21) that 

(+-) =(-+) = ( I - p - q ) / 2 ,  (23) 

and from (18) and (19) we can determine the probabilities 
of the individual couplings: 

(+) = ( i + p - q ) / 2 ,  (-) = ( i - -p+q) /2 .  (24) 

We shall need later an expression for A F ,  in terms of 
p and q: 

fs=AFi/NtN= (J1+2J2)p+ (211-1,) q, (25) 

where J,  ,,, =Zl(,,s2. 

The problem was thus reduced to minimization of a 
linear function of the variables p and q. The range of 
these variables is limited by inequalities that follow 
from (22) and (23) 

p + q i l ,  p 2 0 ,  q 2 0 .  (26) 

This region is the triangle shown in Fig. 3. The func- 
tion f, has a t  the vertices of this triangle, with coordi- 
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FIG. 4. 
FIG. 3. 

nates (p, q) equal to (0, O), (0, I), and (1,O). Each point 
can be set  in correspondence with an ordered phase. 
Thus, "ferroW ordering of positive couplings corre- 
sponds to the point (1,O). The same ordering but of 
negative couplings corresponds to the point (0,l). Fi- 
nally, a t  the point (0,O) we have an "antiferro" ordering 
of the couplings. In the language of the usual spins, the 
structure +++ . corresponds to the ferromagnetic 
state t 4 4 .  - . o r  t  t t  . (the F phase). In the case of 
the structure -- - . . . we obtain an antiferromagnetic 
ordering of the spins (AF), tt4t - . - , Finally, the most 
interesting phase L(2,2) in the FS notation] corresponds 
to the structure +- +- . . . . 

To determine the region of the existence of each 
phase, we substitute the values of the probabilities a t  
the corner points in relation (25). Table I lists the 
values of the free energy, reckoned from the energy of 
the (2,2) phase. 

Comparison of the energies f, allows us to determine 
the phase diagram of the ANNNI model on the (J,, J2)  
plane (Fig. 4). 

We shall show that the phase separation lines J2 = I  J, I/  
2 on Fig. 4 a re  infinitely degenerate. We consider for 
the sake of argument the half-line 5, = -J1/2(J1 <O) on 
which the phases (2,2) and F coexist. 

Indeed, i t  is seen from (25) that on this line the mini- 
mum off, is reached a t  (- -) = q = 0 and a t  arbitrary 
p = (++) in the interval 0 -(p c 1. The remaining pro- 
babilities a re  easily expressed in terms of p: 

. . 

(+-)=(-+) =(I-p)/Z, (+)=(l+p)/Z, (-)=(I-~)/2. (27) 

Thus, along the line J, + 25, = 0 (J, < 0) the same ener- 
gy is possessed by all the 7, configurations that do not 
contain the element - -, or  by all the a, configurations 
that do not contain the combinations t t t  and t t t .  Such 
a high degree of degeneracy makes the structure unsta- 
ble to free-energy increments containing more remote 
couplings. We know these increments to arise in the 
next orders of the high-temperature expansion [ ~ q .  
(14)]. They lead to the appearance of new structures 
with long periods in a low vicinity of the degeneracy 
line. We shall analyzing the splitting of this line in the 
next section. 

TABLE I. 
I 

Phase I 
I 

A similar degeneracy takes place on the line J, - 25, 
= 0 (J, >O). The situation is different on the equilibrium 
line of the F and AF phases: J, = 0, J, s 0. On this 
line p + q = 1 and consequently (+ -) = (- +) = 0. The 
remaining probabilities a r e  expressed in terms of p: 

In this case we have degeneracy in the variable p. 
Since, however, (+ -) = (- +) = 0, the configurations 
that correspond to this degeneracy constitute a two- 
phase system in which macroscopic pieces of the phases 
F and AF a re  separated by a flat boundary. Since 
there is no continuous degeneracy on this boundary, 
the contributions of the next higher orders produce only 
a slight shift of the equilibrium line of these phases. 

4. SPLITTING OF DEGENERACY LINES I N  A ZERO 
MAGNETIC FIELD 

In a small vicinity of the degeneracy line J, + 25, 
= 0 (J, <0) the minimum of the free energy will corre- 
spond a s  before to q =O.  Therefore the free energy f 
can be expressed in first  order in the form [see (25)l 

where 5 = 25, + 5,. Positive 5 correspond to p =0, i. e., 
to the (2,2) phase, and negative to p = 1, i. e., to the 
F phase. 

We shall consider the substantial contribution F, to 
the free energy in the second order of the high-temper- 
ature expansion 

We must now introduce the probabilities of different 
configurations comprising groups of three and four 
successive couplings. Since q = 0, only the probabilities 
of the following triads (+++), (++-), (+-+), (-++), 
(-+-) differ from zero. These five quantities and the 
pair probabilities a re  connected by the four obvious 
relations 

It is clear therefore that there is only one independent 
probability of some one triad. It is convenient to intro- 
duce a s  the independent probability (+++) =r .  All the 
remaining triad probabilities are  easily expressed in 
terms of p and r :  

1 4  

(++-) = (-++) =p-r, (+-+) = ( l - p ) / 2 ,  (-+-) = ( 1 - 3 p + 2 r ) / 2 .  (.. J , 
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FIG. 6. 

FIG. 5. 

the same manner a s  the susceptibility X .  
A similar analysis for the tetrad probabilities shows 

that we must introduce one more independent variable, 
which we choose to be (++++) = s. The nonzero proba- 
bilities of the remaining tetrads are: 

(+++-) = (-+++) = (+++) - (++++) =r-s, 

In the next higher order we must investigate the equil- 
ibrium lines of the phase pairs F- (3,3) and (3,3)- 
(2,2). On the first  line there is a first-order transition 
since the probability (+++-) = 0. It remains to ascer- 
tain what happens on the (3,3) - (2,2) equilibrium line. 
Just a s  in the investigation of the ground state, i t  can 
be shown that the (3,3)-(2,2) equilibrium line is an in- 
finite-degeneracy line. The same energy is possessed 
by all  the configurations with q = r = s = 0, i. e. , those in 
which there a re  no sections with two adjacent negative 
and three adjacent positive couplings. This degeneracy 
is lifted by the terms of the next perturbation-theory 
order. 

We write down now the contribution (29), of interest 
to  us, to the free energy per lattice site, in terms of 
the variables introduced by us,': 

Successive application of perturbation theory leads to 
the following result .3) In the m-th step, the degenerate 
line is the equilibrium line of the phases (2,2) and 
(3,zm) in the FS notation. The unit cell of the (3,2'") 
phase consists of a triad of spins of equal directions 
and of m dyads of spins in the case of odd m: 

ttTJ4tT.-..iJ. 
m pairs 

In the case of even m the cell is dMbled. In the next 
step, this line is split. In the gap of width -h4)m+2J, 
there is produced the phase (3, 2""). The equilibrium 
lines of the phases (3, 2") and (3, 2m+1) a re  first-order 
transition lines. 

Thus, in the 3-dimensional space of the variables 
(p ,  r, S) the free energy in the vicinity of the coexis- 
tence line of the phases F and (2,2) takes the form 

where 5' is the deviation, renormalized by a quantity of 
the order of x J ~ ,  from the interphase boundary 5=0. 
The free energy is now a function of two parameters. 
The first  (a) is not zero near the degeneracy line and 
remains practically costant. The parameter 5' rever- 
ses  sign on going through the degeneracy line. There- 
fore, by finding all the corner points of the manifold 
( p ,  r ,  S) we can determine the free energies of all the 
stable phases a s  functions of 5' a t  fixed a. 

The (5, T) plane has a multicritical point 5 = T = 0 
from which an infinite number of first-order transition 
lines emerge and condense towards the line that bounds 
the region of existence of the (2,2) phase (Fig. 7). The 
sequence of phase transitions upon variation of 5 is the 
following: 

F+ (3, 3) -+(3, 2) + (3, 27 +...-. - (3, 2") +v-- (2, 2). 

To determine the corner points we must solve simul- 
taneously inequalities that follow from Eqs. (32): 

The region defined by inequalities (34) is shown in Fig. 
5. It has four corner points. The phases correspond- 
ing to these points, the ordering of the couplings and 
spins, a s  well a s  their energies (33) a re  given in Table 
11. 

Figure 6 shows the free energy the four extremal 
phases a s  a function of 5'. It is easily seen that the 
coexistence line of the phases (2,2) and F is split and 
an intermediate phase (3,3) appears in the gap between 
its two parts. The width A[' of the region of i t s  exis- 
tence is 4a= 4xIg l  and depends on the temperature in 

These results were f i rs t  obtained by FS using a some- 
what different method. 

We point out also that an analysis of the splitting of 
the degeneracy lines of the phases A F  and (2,2) re- 

TABLE 11. 

U r, 8 )  I Phase I Coupling sequence I Spin sequence f 

+++... 
('12, 'I&, 0) FIG. 7. 
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duces to the foregoing analysis by making the substitu- 
tion Jl --Jl and reversing the signs of all  the 7, COUP- 

lings. The free energy is invariant to this transfor- 
mation. 

5. PHASE DIAGRAM IN  A MAGNETIC FIELD. 
FIRST-ORDER PERTURBATION THEORY 

We assume the external magnetic field H to  be weak 
(H << T) and include i t  in the Hamiltonian component %P, 
used to construct the perturbation theory: 

In first-order perturbation theory, the only term of the 
expansion of the effective Hamiltonian (i. e . ,  of the 
free energy) in terms of the field is 

All the remaining perturbation-theory terms containing 
h can generally speaking be comparable in magnitude 
with those in which h is replaced by h,. They have, 
however, a smaller effective radius, and a r e  therefore 
of no importance. Only in the limit of a strong mag- 
netic field (h >> J l ,  J,) does our reasoning become incor- 
rect. But in such magnetic fields only the ferromag- 
netic state remains on the phase diagram. 

We begin with the case of "moderate" fields: 

In this case i t  i s  necessary to introduce into the first-  
order effective Hamiltonian the field correction (35), 
Then 

F,=NI C (-ho,+liopj+*+Jzopj+z). (37) 
J 

The method of finding the ground state of the effective 
Hamiltonian (37) is the same a s  before. The magnetic 
field, however, violates the symmetry of a l l  spins rela- 
tive to inversion. We must therefore consider the pro- 
babilities of sequences of spins, and not of couplings, 
s o  that the space dimensionality of the configurations 
investigated in a given order increases. Naturally, 
when considering the ground state of the effective Ham- 
iltonian we must use the probabilities of spin sequences 
of length not larger than three. Expression (37) is re- 
written with the aid of these probabilities a s  follows: 

j=~,/~~,=-h((t)-(+))+~~((tt)+(++)-(t+)-(+t)) 

+ 1 , ( ( t t r ) + ( t + t ) + ( r + r ) + ( J t 4 ) - ( t r r ) - ( t r l )  (38) 

where the symbols in the parentheses denote the proba- 
bilities of the corresponding sequences. 

Four of the eight probabilities of three-spin sequences 
a r e  independent. It is convenient to choose them to be 

(tt)-p, ( + + ) = q ,  ( t t t )=r ,  (+++)=s .  (39) 

All the remaining probabilities a r e  expressed in terms 
of p ,  q, r ,  and s: 

(t+)-(+t)=(l-(tf)-(++))/~=(l-~-~)/Z, (40) 
( t)=(t+)+(t t )=(l+p-q)/2,  (+)=(1--p+q)/2; (41) 

(tt+)=(+tt)=(tt)-(ttt)=p-r, (++t)=(t++)=q-s,  
(42) 

FIG. 8. 

The free energy (38) per  lattice site is given, apart 
from an inessential constant, by 

From the definition of the probabilities (39)-(42) follow 
the inequalities: 

It is at  the corner points of the manifold ( p ,  q, r ,  s) that 
we must seek the extremal values of the energy. It is 
not difficult to find all the corner points, of which there 
a r e  six: 

(0, 0, 0,O) - the phase AF; 

(1, 0, i,O)and(O, 1,0,  1) -the phases Ft and F+; 

(%, 0, 0, 0) and (0, -- '/a, 0, 0) - the phases (2, I) tand(2, I) 4; 

('14, '14, 0, 0) - the phase (2, 2). 

The arrows indicate here the directions of the total 
moment. The structure of the state ( 2 , l )  is. . . 4 t t  t t t  ... . 

Not all  the corner points a r e  on a par. Obviously, 
we can disregrad the phases F t  and ( 2 , l ) t  a t  h>O, 
since their energies a r e  always higher than the energies 
of the phases F t  and (2, I )+,  respectively. For a fixed 
magnetic field h >O the phase diagram takes in the 
f i rs t  order of the high-temperature expansion the form 
shown in Fig. 8. Comparing the diagram of Fig. 8 with 
the phase diagram for zero  magnetic field (Fig. 4) we 
can discern the following changes. The ferromagnetic 
phase extends over a larger region. The equilibrium 
line of the phases (2, 2) and AF split in two and phase 
( 2 , l )  appeared in the resultant gap. A new equilibrium 
line of the phases F and ( 2 , l )  appeared. The equili- 
brium lines a r e  described in this approximation by the 
equations 

6. EQUILIBRIUM LINES OF THE PHASES AF AND 
( 2 , l )  t 

We shall show that the AF-(2,1)4 phase coexistence 
line is not split. Along the line joining the corner 
points corresponding to the phases AF and (2,114 we 
have r = q = s = 0 and the nonzero probabilities (39) and 
(42) a r e  given by 

With the aid of (49) i t  i s  easy to find the probabilities 
of the successive spin tetrads: 
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TABLE 111. 

Ph.r I V 0 1 t 

TABLE IV. 

Phase (P'u) I 
(22) 

. . 
An additional variable t is needed when the probabilities (++tt++)=(++tt+)-(++tt+t)=(++t)-~'+u=(1-7~'+4u)/4; 

of five-spin sequences a r e  considered ( t t + t t + t ) = ( t + t t + t t ) = u ,  (tJ+tt++)=(++tt++t)=(l-7p'+4~)/4; 

( t t + t t ) = t ,  ( t t + t + ) = ( + t + t f ) - p - t ,  ( t + t + t ) = ( i - 3 p ) / 2 ,  (tt+tt++)=(tStt++t)=(t++tt+t)=(++tt+ft)=p'-u. 
( 5 4 )  

( t + t t + ) = ( + t t + t ) = p ,  ( + t + t + ) = ( l - 5 p + 2 t ) / 2 .  
( 5 1 )  

The inequalities that follow from the definitions ( 5 4 )  of 
Using second-order perturbation theory we obtain, a s  the probabilities, 

before, the f ree  energy in the form of a linear function pr>u>0, 7p'-4u<l, 
of the variables p  and t: 

lead to the corner points for which the data a re  gathered 
f=%p+ at. in Table IV 

Here The free energy can be written in the form 

The set  of probabilities ( 5 1 )  determines the following 
inequalities that p  and t must obey: 

p>t>O, 5p-2tGl .  

These in turn lead to the corner points (P, t)  given in 
Table III. The phase ( 2 ,  13)4 is periodic with a period 
equal to five: . . . 4  4 )  t+ . . . . The dependences off on 5 
are  given in the last column of Table 111, from which 
i t  follows than in this order there is no splitting of the 
phase-coexistence line, although an additional degener- 

The coefficient a is found to be positive 

a = 1 2 ( ~ 1 , ) ~ 1 , > 0 .  

In the spirit of the FS notation, the form 
( m ; l ,  m;2, m ; 3 . .  . ) denotes a periodic spin structure con- 
sisting of n, groups each with m ,  parallel spins, n, 
groups each with m ,  parallel spins, etc. ,  with the spins 
of neighboring groups of opposite sign. In particular, 
the phase ( 2 3 ,  1)4 of interest to us  has the unit cell 
4 t + + t t + .  

acy parameter did appear. All the orders that follow 
An analysis of the free energies of the competing yield nothing because it is found that p  = t already in the 

phases shows that the equilibrium lines a re  split. A 
second order of the free-energy expansion. This means 

phase (Z3,  l ) t  is produced in the gap between the phases 
that the probability (4  t t  t + ) = O ,  i. e. , the transition from 

( 2 ,  l ) t  and ( 2 , 2 ) .  Further analysis shows that a the ( 2 , l ) t  structure into AF is of f i rs t  order. 
splitting of the equilibrium line of the phases 

7. THE (2,l)t-(2.2) EQUILIBRIUM LINE 
( 2 ,  2)-(2,"'+', l ) t ( m  2 1 )  takes place in the odd orders of 
perturbation theory. The sequence of the produced 
phases is 

We investigate now the stability of the ( 2 , l ) t - ( 2 , 2 )  
equilibrium line. On this line we have ( 4 4  4 )  = (+ t + ) ( 2 , 1 ) t + ( 2 5 , 1 ) t + .  .. - t (22m+i , l ) t+  . .. +(2 ,2 ) .  

= ( + t + ) = O .  According to ( 3 9 )  and ( 4 2 )  i t  follows there- 
fore that r=  s =O and q + 3 p  = 1 .  The nonzero proba- Thus, a magnetic field h that satisfies the condition ( 3 6 )  

bilities a re  excludes a whole set  of (2,", 1 )  states having zero mag- 
ne tization. 

( t t + ) = ( + t t ) - p ,  ( t + t ) = 4 p - I ,  ( + + t ) = ( f + + ) = l - 3 p .  ( 5 2 )  

It is convenient to make the change of variable 
P  = ( 1  + p 1 ) / 4 .  Then p' = 0  corresponds to the ( 2 , 2 )  8. THE F t-(2,2) EQUILIBRIUM LINE 
phase. 

The probabilities of spin tetrads and pentads a re  uni- 
quely expressed in terms of p'. A two-parameter de- 
scription is needed only for hexads of successive spins. 
The free energy in second-order perturbation theory 
is therefore of the form 

f=%pr, f =2Jz-1,-h-2 (XI , )  (J,-J,)+o(xI,"). 

In this case there exist only two stable phases, ( 2 , 2 )  a t  
P' = 0 and ( 2 , l ) t  a t  p' = 1 / 3 .  Only the third order can 
lead to a splitting of the degeneracy line. We present 
below the values of those spin hexad and heptad proba- 
bilities which depend on the second variable u on the 
( 2 ,  1 ) t  - ( 2 , 2 )  state-degeneracy line: 

We show now how to derive expressions for the pro- 
babilities of various spin sequences along the degeneracy 
line of the states F4 and ( 2 , 2 ) .  In Sec. 5  we obtained 
the corner points ( p ,  q, r ,  s )  for the phases Ft and ( 2 , 2 ) :  
( 1 , 0 , 1 , 0 )  and ( 1 / 4 , 1 / 4 ,  0 , O ) .  A straight line must be 
drawn through them. This line can be represented a s  
the intersection of the surfaces s = 0 ,  q = ( 1 - r ) / 4  and 
P = ( l +  3 r ) / 4 .  

Thus the single-parameter description of the degen- 
eracy line determines the nonzero probabilities of the 
three-spin sequences: 
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TABLE V. 

Phase I n. .. * I , 

It is obvious from (55) that, f irst ,  that the inverted 
spins can exist only a s  isolated pairs. Second, the 
number of positive spins that separate pairs of nega- 
tive spins is larger than unity. All these configura- 
tions a re  degenerate in energy. 

To determine the probabilities of long spin sequences 
i t  is necessary to introduce two more new variables: 
(444 4) = v and (4444t)= w.  The remaining probabilities 
a re  expressed in terms of r, v, and w: 

( t t t 4 ) - ( + t t t ) = r - v ,  (+tt+)=(1-5r+4v)/4, 

( . l i t t )=( t t++)=(t++t)=(l -r) /4;  
(56) 

( t t t t + ) = ( + t t t t ) - v - w ,  

( t t+J t )=( t++t t )=(I - r ) /4 ,  (+ttii)=(+itt+)=(1-5r+4v)/4, 

( t t t + + ) = ( + + t t t ) = r - v ,  (+ttt+)=r-2v+w. 
(57) 

From the condition that the probabilities (57) be posi- 
tive we get the inequalities 

r>v>w>O, r-2u+w>0, 5 r - 4 ~ ~ 1 .  (58) 

The corner points of the manifold ( r ,  v ,  w ) ,  obtained with 
the aid of (58), are  represented in Table V. The region 
of admissible values of r ,  v ,  and w is itself an irregu- 
lar  tetrahedron. Table V contains also the energies of 
the four competing states: 

f=Er+au+bw; 

a=-8 (XI,) I,>O, 

b=-4(x12) J,<O, (59) 
E-Jl+2Jz-h-2(~I~) (Jr+J,) 

+o (XI,').  

When investigating the dependence off on 5, a distinc- 
tion must be made between two variants. In the first  
(5, < 2 lJl() L F ~ ~ .  9(a)] the equilibrium line of the phases 
F t  and (2,2) is split. A new phase (3,2)t appears in 
the gap. 

In the second case 2 (Jll < J, there is no splitting [ ~ i ~ .  
9(b)J. A first-order transition takes place directly from 
F4 to (2,2). This result is not changed in the subse- 
quent orders of perturbation theory. The structure 
(4.2)t is always not favored. 

We turn now to Fig. 8. The point A on this figure is 
the intersection of the straight line 5, = 2 (Jl( with the 

Ft-(2,2) equilibrium line. It can be s h k  'that on the 
left of the point A the equilibrium line is split into an 
infinite sequence of states: 

Consequently a point lying on the line J, = 2 ( J ,  ( is 
multiphase a t  a magnetic field value h = 3 1 J, I. More 
accurately speaking, in a nonzero magnetic field there 
appears a line of multiphase points defined in first  or-  
d e r  by the equations 

It can be interpreted a s  a line in the three-dimensional 
space (P, T, h), where P is the pressure. 

9. THE Ft-(2,l)t  EQUILIBRIUM LINE 

The straight line joining the corner points corre- 
sponding to  the states F t  and (2, l ) t  is specified by the 
equations 

This leads to the following spin-triad probabilities 

To describe sequences of four and five spins i t  is 
necessary to introduce two more variables. We recog- 
nize here that only solitary negative spins a re  en- 
countered, while the positive spins come in groups of 
not less than two: 

( t t t t ) = x ,  ( t t t + ) = ( + t t t ) - r - x ,  

(61) 
( t t $ t ) = ( t i t f ) = ( i - r ) / 3 ,  (+tt+)=(1-4r+3x)/3; 

( t t t f t ) = y ,  ( t t t t + ) = ( + t t t t ) = x - y ,  

( t t t + t ) - ( t + t t t ) - r - z ,  ( t t+t t )=( i - r ) /3 ,  (62) 
(+ttt+)--r-2x+y, (+tt+t)==(t+tt+)=(1-4~+3~)/3. 

- 

The inequalities imposed on r ,  x ,  and y a re  

Relations (63) and (58) a r e  similar in form. The cor- 
ner points defined in (63) a r e  given in Table VI, to- 
gether with the free energy a t  these points. The latter 
takes the form 

An analysis similar to the foregoing shows that if 
5, >2J1 the phase degeneracy line is split, and a struc- 
ture (3.1)) is formed between the states F4 and (2 , l ) t .  
If, however, 5, <2Jl, not only (4,1)4 but also (3,114 
become energywise unfavored. The transition F t  - (2, 1)t  is then of f i rs t  order ((4444+)=0). Conse- 
quently the phase equilibrium line to the right of the 
point B on Fig. 8 remains continuous in all orders of 

TABLE VI. 

FIG. 9. 
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FIG. 10. 

perturbation theory. There is also a first order transi- 
tion between the phases F4 and (3. 1)4. 

Further analysis shows that the (2, 1)4-(3,1)4 phase 
equilibrium line is split in the following manner: Just  
a s  on the F4-(2,2) phase coexistence line, the straight 
line in question has a multiphase point (point B in Fig. 
8). There is no splitting on i ts  right, and on the left 
where is splitting into an infinite sequence of states. 
The limiting state for them is (3,1)4, and the general 
term of the sequence is ((3, 2, 1)4. This, however, 
does not limit the phase diagram in this region: each 
line that separates phase states, e. g., ((3, 2,1)4 
and ((3, I)'"", 2, 1)4, is split and a s t r ip  of a new phase 
((3, l)rn, 2,1, (3, 2,1)4 is formed. This new phase 
is bounded on one side by the multiphase point B, and 
on the other by the triple point with coordinates J, 
= (4m + 5)5,/2 and h=  (4m + 7)5,. Thus, we get an in- 
finite sequence of triple points that converge to the 
multiphase point C (Fig. 8). 

The character of the splitting of the equilibrium line 
between the multiphase points B and C is shown in Fig. 
10. 

10. PHASE DIAGRAM IN WEAK MAGNETIC FIELDS 

We consider the magnetic-field region bounded by the 
inequalities 

These fields must be taken into account alongside the 
second order of perturbation theory. The phase dia- 
gram that appears in first-order perturbation theory is 
changed little by these fields. We have in mind the fact 
that the produced splittings and displacements of the 
equilibrium lines a re  of the order of h. We point out 
that the region bounded by the inequalities (64) overlaps 
the previously investigated region of the magnetic fields 
described by the inequalities (36). In the general case 
we shall consider magnetic fields whose values a re  
bounded by the relations 

Such a magnetic field must be taken into account to- 
gether with the m-th order of perturbation theory. 
Therefore the phase diagram changes little compared 
with the contribution of the (m-1)st order in the ab- 
scence of a magnetic field. Each such field region [see 
(65)] overlaps with the preceding one. Considering 
ever larger m, we go over continuously to the case 
h=O. 

We turn now to the region of magnetic fields bounded 
by the inequalities (64). We consider a s  the basis the 
Hamiltonian 

The perturbation now is 

Since pl does not contain a magnetic field, the de- 
generacy lines are,  a s  in Fig. 4 before, the lines Jl 
* 25, = 0. We consider first  the line Jl + 25, = 0 (Jl < O), 
where the phases F and (2,2) compete. The F phase 
can correspond to positive o r  negative magnetization. 
Consequently, we must consider the degeneracy plane 
of the three states F4, F+ ,  and (2,2). We use the pre- 
viously determined spin-sequence probabilities [ ~ q s .  
(39)-(42)]. In the (p, q, r, s )  space the sought plane 
should pass through the points (1,0, 1, O), (0,1,0,1) and 
(i, $, 0,O). The equations that define this plane a r e  

We present below a two-parameter representation of 
the nonzero probabilities of spin triads [cf. Eqs. (39), 
(4211: 

To construct the probabilities of four- and five-spin 
sequences i t  becomes necessary to introduce two more 
pairs of variables: rl=(4444), s ,= (+++t ) ,  r2=(44444), 
s ,=(++++t) .  Then 

( t t++)- (++t t ) - ( I - r - s ) /4 ,  ( + t t t ) = ( t t t O = r - T I ,  

( t + + + ) = ( + + + t ) = s - s , ,  ( t++ t )=( l - r -5s+4sI ) /4 ,  (69) 
( + t  t + )  = (1-5r-s+4r1)/4; 

( t t t t + ) = ( + t t t t ) = r , - r , ,  ( + + + + t ) = ( t + + + + ) = s , - a ,  

( t t f + $ ) = ( + + t t t ) = r - r , ,  ( + + + t t ) - ( t t + + + ) = s - s 1 ,  
(70) 

( I t  t t 4) =r-2ri+r,, ( + t  t ++) = ( + + t  t +) = (1-5r-s+4r,)/4, 

( t+++t)=s-2s ,+s, ,  (t + ( t t ) = ( t t  + l t ) = ( I - r - 5 ~ + 4 ~ , ) / 4 .  

It can be verified directly with the aid of Eqs. (66)- 
(70) that the free energy takes the following general 
form: 

~ = E ( T + S )  -h(r-s)  +a(r,+s,) +b (r2+s2), (71) 

where, a s  before, 5 = 5, + 25, and reverses sign in the 
vicinity of the degeneracy line, while the coefficients a 
and b can be obtained from (67) and (69), (70): 

a = - 8 ( x I ~ ) J ~ ,  b=-4(x12) h (J1<O). 

The range of variation of the variables (Y, Y,, r,; 
s, s,, s,) is given by the system of inequalities 
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TABLE VII. 

Its corner points, which contribute to  the non-negative 
moment of the state, a r e  listed in Table VII together 
with their free energies. The three last phases in Ta- 
ble Vll a re  energywise unfavored. Thus, the two in- 
equalities 

Phase 

(3.3) 
(33) t 
(4.2) t 
(4.3) t 
(4.4) 

become contradictory a t  b <O. Similar contradictions 
a re  revealed by examination of other pairs of inequal- 
ities 

The remaining four phases form on the (5, h) plane the 
phase diagram shown in Fig. 11. The phase-equilibrium 
lines in the right-hand half-planes a r e  defined by the 
equations 

e-h=O, ( 2 2 )  - ( 3 2 )  t ,  
E-h+5 (a+b)/4=0 (h>ho), (3,2) 

E+3h/2 (h<ho),  (3,3) - ( 3 2 )  t, 
p-3h/2+3(a+b)/2=0 (h<ho),  (3,3) -Ft, 

(r. pa. r,; a, s,, 8d 

( 0 0 0 .  0 0 0 )  
(i' i' i; i: i: I )  (4 b 0. %I. 0 0) 
(*/;a' 0: 0 f? 6) 
(1/,: Q, b; b,b, 0) 

*I,, @ l/7, 0.0) 
(11'; R i/', t/8, 0) 

where h, = (a + b)/2 >0. 

f 

0 
&-h+a+b 
El3 
(1-h)/5 
(2E-2h+a)lB 
(3E-h+a)/7 
(2t+a)H 

Only one of the foregoing phase-equilibrium lines is 
subject to splitting, namely the line 5 = h, where the 
phases (2.2) and (3.2) a r e  degenerate. But this de- 
generacy was already considered by us in another 
range of magnetic fields, xZ1Jl << h << T. Since both re-  
gions overlap, the splitting picture cannot change. It 
takes place in the same way a s  the splitting of the 
F- (2,2) phase degeneracy line on Fig. 8 to the left of 
the point A. On the remaining lines the phase transi- 
tion is of f irst  order, a s  follows again from the pre- 
ceding analysis. 

A more thorough investigation is needed for the vi- 
cinity of the point h = 0, 5 = 0. At this point, according 
to the phase diagram of Fig. 11, there coexist four 
different phases (2, 2), (3,2)4, (3,2).), (3,3). In the next- 

FIG. 12. 

order approximation, the phase diagram differs from 
that in Fig. 11 in the appearance of a small  section 
-(xZ,)~J, of the equilibrium line of the phases (3,2)4 and 
(3,2)t near 5 = h = 0, a s  shown in Fig. 12. Now the 
phases (2,2), (3, 214 and (3,2)+ compete in the vicinity 
of the origin. In the next perturbation-theory order, a 
rhombic region is produced in which the phase (3, 2,) 
exists and which borders with the str ips of the phases 
(3,2') and (3.1) (Fig. 13). In final analysis, the se- 
quence of phases produced near the origin is the same 
a s  a t  h = 0, but now the nonmagnetic phases occupy only 
small  rhombic regions which a re  smaller the longer 
their unit cell. 

The foregoing picture corresponds to the region of 
small h and to exchange parameters near the half-line 
5 = Jl + 25, = 0 (J, < 0). We proceed now to investigate 
the vicinity of the other degeneracy line 

Obviously, the same phase sequence appears in the 
vicinity of the point q = h = 0 a s  a t  h = 0, i. e. , the 
phases AF, (2, I ) ,  (2,, I),  . . . , (2"', I) ,  . . . , (2, 2). On the 
(q, h) plane the regions of existence of nonmagnetic 
phases (where m a re  even) a re  bounded and a r e  rhombs 
with sides -(xZ,)"'J,. The result obtained in third-or- 
der  perturbation theory is shown schematically in Fig. 
14. 

We call attention to the se t  of triple points that coin- 
cide with the vertices of the rhombs. The limit point of 
such a se t  a s  the point 5 = h = 0. 

11. STABILITY OF PHASE DIAGRAMS 

We have investigated the phase diagram of a system 
with two interplanar couplings were assumed to be of 
the same order. Inclusion of longer-range interactions 

FIG. 11. 
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FIG. 14. 

in the Hamiltonian (1)-(3) can in principle alter  radi- 
cally the entire phase diagram. In this sense, the dia- 
gram is unstable. It is obvious, however, that if the 
energies of the longer-range couplings a r e  low enough, 
some of the phase sequences obtained by u s  remain 
unchanged. 

The direct interplanar bonds Ik(k 23) can be taken into 
account in the same manner a s  in a magnetic field, i f  
they a r e  assumed to be small  enough. Namely, if the 
I, satisfies the inequalities 

( X I , )  "+LI1c  I II I << ( ~ 1 1 )  n-lI l ,  (73) 

such a coupling must be taken into account alongside the 
n-th order of perturbation theory. The radius of the 
fluctuation interaction between the planes, which appear 
in n-th order of the expansion of the free energy, is 
equal to 272. The inequality (73) determines n(k) a s  a 
function of k. If k < 2n(k)-1, the direct coupling I, is 
inessential. In particular, the phase-diagram stability 
region is determined by the system of inequalities 

1 Ik 1 < ( X I l )  (A-i)'211. 

In the case k >2n(k) the phase diagram, starting with 
order n(k), changes. If k = 2n(k) o r  k = 2n(k)-1, the 
phase diagram changes if the direct coupling leads to 
reversal of the signs of the coefficients of the linear 
function that represents the free energy. 

Obviously, the infinite number of phase transitions 
predicted by the theory cannot be observed in experi- 
ment. The most important hindrance to the appearance 
of excessively long cells is believed by u s  to be the 
presence of fluctuations in which one plane a s  a whole 
reverses the direction of its moment. It is always 
possible to choose this plane such that the free-energy 
loss per atom is of the order of 

( x I d l J s ,  

where I is approximately half the length of the unit cell. 
The total change of free energy in such a fluctuation is 

-N (xI , ) 'J i ,  

where N is the number of atoms in the plane. Com- 
paring this quantity to the temperature, we obtain the 
maximum length of a cell that is not destroyed by ther- 
mal fluctuations: 

1-In NI 1 In ( X I , )  1. 
The length I does not exceed about forty interplanar 
layers even a t  XI, - 1. 
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12. POSSIBLE INTERPRETATION OF THE CeSb 
PHASE DIAGRAM 

Even very simple elaborations of the picture described 
above, such a s  small direct  couplings between third and 
fourth neighbors, give r i se  to a rather cumbersome, 
albeit not complicated, picture of the phase diagram. 
Without presenting i t  completely, we consider only the 
case when I, and I, satisfy the following system of in- 
equalities: 

The resultant phase sequence is shown in Fig. 15 and 
has the following character: In the region of weak mag- 
netic fields, a sequence of first-order transition pro- 
ceeds and terminates a t  the phase (2,2): 

This sequence is surprisingly similar to the experimen- 
tal phase diagram obtained for CeSb in Refs. 1-3 (see, 
e. g . ,  the phase diagrams in Refs. 3 and 5). 

The free energy of the sequence of these phases, a s  
a function of the parameter 5 at  h=O, is shown in Fig. 
16. The same figure shows a plot of the free energy of 
the magnetic phase ( 2 , l ) t .  This plot is parallel to the 
analogous plot for the phase (22, 12). With increasing 
magnetic field, the free energy of the phase ( 2 , l )  de- 
creases. Thus, with increasing field, the phase 
(2', 12) vanishes first, next (Z4, 12), etc. In addition, 
the degeneracy line of the phases (2,2) and ( 2 , l ) t  
splits, with formation of a sequence of magnetic 
phases (2=, I)+, (Z5, I)+,  etc. With further increase of 
the magnetic field, the phase transition proceeds ap- 
proximately a s  near the F4-(2,l)t degeneracy line on 
Fig. 8. If the inequalities (74) hold, the topological 
phase sequence agrees well with experiment. The 
phase diagram plotted in the variables x and h is shown 
in Fig. 15(a). On changing to the variables T and h, the 

12: 7 Z, 
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diagrams becomes greatly deformed, since the suscep- 
tibility x(T) changes quite rapidly when T is close to 
To, and relatively slowly a t  low temperatures. The re-  
gions where the high temperature phases exist become 
therefore narrower on the phase diagram plotted in the 
variables T and h [ ~ i ~ .  15(b)], and those with the low 
temperature phases broaden considerably, in agree- 
ment with the experiment. Comparing the experi- 
mental phase diagram of CeSb with that obtained in our 
approach, we obtain estimates of I,, I,, and I,. The 
later can be obtained by expressing i t  in terms of the 
transition temperature with the aid of the Kramers- 
Wannier relation 

According to experiment, To = 16 K, hence I, = 7 K. The 
values of I, and I, can be obtained from the values of 
the magnetic field corresponding to the (2, I)+-F4 tran- 
sition. According to  this theory this value is 

In the experiments, HI z35  kOe. It is clear therefore 
that neither I, nor I, exceeds 0.5 K. The strong-aniso- 
tropy condition is thus well satisfied. 

The modulated states were classified experimentally 
in accord with the wave vector of the Bragg reflection 
corresponding to the maximum intensity. These wave 
vectors k,  measured in units of n/a (a is the lattice con- 
stant) agree with the analogous wave vector of the modu- 
lated structures obtained by us. Explanations a r e  
needed for the antiferromagnetic phase with k = 8/13 
and the ferromagnetic with k = 6/11, observed in the 
experiments. According to our interpretation, they can 
be represented in the form 

It is possible that these phases result from an even 
finer splitting than accounted for in our theory. 

A more careful comparison with the experimental 
data, however, reveals important discrepancies. The 
antiferromagnetic structures obtained by us in weak 
fields should have two Bragg reflections of comparable 
intensity, with wave vectors (1  + 1)/(21+ 1) and 1/(22+ 1) 
in units of n/a [the period of the modulated structure is 
2(22 +I)].  Thus, for example, a t  l =  1 (phase k =  2/3) the 
ratio of these intensities is 3:l. At large 1 their in- 
tensity become equalized and the distance between them 
decreases. The reflection that follows the principal 
one differs from them in intensity by a factor 9. No 
reflection corresponding to k = 1/ (21 + 1) is observed 
in the experimentally investigated CeSb phases having 
I ranging from one to five. 

The possible cause of this discrepancy is the crude 
model used by us. In a real  situation cubic anisotropy 
leads to the roughest splitting of the magnetic level with 
J =  5/2 into a quartet and a doublet. The description of 
this situation with the aid of the usual Ising model is a 
rough qualitative approximation. One can hardly take 
too seriously the Bragg-reflection intensities obtained 
within the framework of this model. We hope, how- 

ever, that the main feature, and particularly the topo- 
logical structure, will remain the same when a more 
realistic account is taken of the interactions. 

In the interpretation of a structure experiment on 
cerium antimonide i t  was proposed in Refs. 1-3 that 
certain planes a r e  paramagnetic. This assumption 
seems to u s  to contradict the reliably established fact 
of the layered magnetic structure. Indeed, if the in- 
terplanar bonds can be regarded a s  week, then the 
ferromagnetic state of each plane changes into para- 
magnetic a t  a perfectly defined temperature. If, how- 
ever, account is taken of the interaction between the 
planes, the fluctuations become three-dimensional near 
the phase-transition temperature. It is therefore ut- 
terly impossible to observe individual paramagnetic 
planes . 

There exists also another cerium compound, CeBi, 
whose magnetic structure is also quite complicated. 13*" 

The phase diagram of CeBi can apparently be inter- 
preted with the aid of the method employed by us. A 
preliminary analysis shows, however, that we a re  
dealing here with another range of values of the para- 
meters. A detailed analysis of the magnetic structure 
of CeBi will be presented in another paper. 

We thank D. I. ~ h o m s k i i  for pointing out the experi- 
m e n t ~ ~ ~ ~ ' ~  on CeBi. 
' 'cerium antimonide CeSb has an  NaC1-type lattice. Its strong 

anisotropy is presently assumed (see Refs. 5-7) to be dueto- 
two factors, the Jahn-Teller effect and the proximity of the 
localized 4f electron to the Fe rmi  surface. Small lattice de- 
formations lead in this situation to strong changes of the 
electron wave function. 

2 ' ~ o  prevent confusion, the quantities with respect to which 
the f ree  energy i s  minimized ( p ,  r, and s in this case) a r e  
called variables. The remaining quantities on which the free 
energy depends, such a s  {, a r e  called parameters. 

3'We present no proof of this statement. I t  can be obtained by 
mathematical induction and is straightforward albeit cumber- 
some. The l a s t  stages of the proofs will be omitted a lso  in 
the sections that follows. 
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