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It is shown that, in accord with experiment, the critical current of a superconductor-normal 
metal-superconductor junction can increase substantially in a microwave field. The effect is attributed to the 
disequilibrium of electrons with energies on the order of the reciprocal time of diffusion in the normal-metal 
neck, whose contribution to the superconducting current decreases slowly with increasing neck length. 

PACS numbers: 74.30.Gn, 74.60.Jg 

1. INTRODUCTION 

Superconductivity stimulation is usually observed in 
superconducting bridges and point junctions; a micro- H e r e  G ~ * ~  a r e  the  re ta rded  and advanced mat r ix  

wave field can r a i s e  considerably the i r  c r i t i ca l  param- Green ' s  functions made up of the o rd inary  Green ' s  

eters. '  T h i s  effect is attributed t o  the  nonequilibrium functions g and the  Gor'kov functions F: 

electron-energy distribution, which cor responds  t o  an 
effective cooling of the j u n c t i ~ n . ~  A s i m i l a r  phenomen 
w a s  recently observed in S-N-S (superconductor-nor- 

7, is a Pau l i  matr ix;  d = a/ar - i eA(r )~ , ,  A is the vector  
ma1 metal-superconductor)  junction^.^ The c r i t i ca l  potential; the  mat r ix  f =f i- firs is made up of two dis-  
cur ren t  of such junctions i n c r e a s e s  substantially in a tribution functions; u is the conductivity of the metal  in 
microwave field, and in s o m e  c a s e s  the induced super-  t h e  normal  state. A product of the type @? means  con- 
conductivity a p p e a r s  a l s o  under conditions when the volution with respec t  t o  the internal  variable. 
c r i t i ca l  cur ren t  of the  non-irradiated junction is zero.  

We a s s u m e  that  electron-phonon interaction in the 
T h i s  behavior of S-N-S junctions in a microwave field n o r m a l  metal  is weak and that  the  o r d e r  parameter  A 

can a l so  be attributed t o  the  disequilibrium of the elec- = 0. In th i s  c a s e  we have f o r  the  Green 's  functions the 
t ron-energy distribution. It is shown in the present  equation6 
paper  that the nonequilibrium contribution t o  the cur-  

a &,A ( @ , A  ren t ,  which is proportional t o  the  i r radiat ion power,  - D  - [GRS AdGRsA] + rz - f 3t7 rz + ieD [ A  (7) z,GR- A dGR,A ar OT 
d e c r e a s e s  in power-law fashion with increasing length - G ~ '  A d ~ R ,  A~ (z') T,] = 0,  
d of the normal-metal  neck; a t  the s a m e  t i m e ,  if t h e r e  (3) 

is no i rradiat ion,  the c r i t i ca l  c u r r e n t  d e c r e a s e s  ex- 
ponentially with increasing d (Ref. 4). T h e  c r i t i ca l  cur-  
ren t  in sufficiently long junctions, s ta r t ing  with a ce r -  
tain i r radiat ion power, is determined therefore mainly 
by the  nonequilibrium e lec t rons  and it  value can in- 
c r e a s e  appreciably. Thus ,  the  c r i t i ca l  cur ren t  in a 
microwave field can be measured  even in the c a s e  when 
i t s  non-irradiated value is exponentially smal l .  

The  analysis  is based on the microscopic equations 
f o r  the Green ' s  functions integrated with respec t  t o  the  
energy It t u r n s  out that the  main contribu- 
tion to  the nonequilibrium c u r r e n t  in the S-N-S junction 
is made by e lec t rons  having energ ies  & on the o r d e r  of 
the  rec iproca l  t ime  ?iD/d2 of diffusion along the  junction, 
where D is the diffusion coefficient. Superconductivity 
is stimulated when th i s  charac te r i s t i c  energy is low 
compared with the external-field frequency w ,  a s  is the 
c a s e  in experiment. T h e  energy relaxation of the  electrons,  
a s  usual,  is slow enough s o  that  the  relaxation t i m e  T 
is large compared with a l l  the charac te r i s t i c  param- 
e t e r s  of the problem. 

2. GREEN'S FUNCTIONS OF ELECTRONS IN  
JUNCTION 

If the electron mean f r e e  path is smal l ,  the  cur ren t  
density is given by6 

where  D =vF1/3 is the  diffusion coefficient, and we use  
a gauge in which the s c a l a r  potential is zero ;  the right- 
hand s ide  of (3) can  be s e t  equal  t o  z e r o  because of the 
l a r g e  value of 7,. F r o m  (3) we find that the relation 

which is valid in an equi l ibr ium superconductor, is val- 
id a l s o  in a normal  metal.  In addition, the  Green 's  
functions sat isfy the normalization condition 

T o  investigate the behavior of the  junction in a micro-  
wave field we shal l  need express ions  f o r  the unperturb- 
e d  Green ' s  functions. We obtain them by using a junc- 
tion model in the f o r m  of a br idge of variable  thickness, 
in which the t r a n s v e r s e  dimensions (thickness andwidth) 
of the  normal-metal  neck a r e  s m a l l  compared with the 
thickness  of the superconducting "shores," with the 
length d of the br idge,  and with the other  charac te r i s t i c  
dimensions of the problem. T h i s  allows u s  t o  assume 
that  a l l  the quantities in the  bridge depend only on the 
longitudinal coordinate x .  We change over  in Eq. (3) t o  
the  F o u r i e r  representat ion in t e r m s  of the t i m e  differ- 
ence  T - T' with the corresponding energy &: 
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On the edges of the junction, at x = 4 2 ,  the Green's 
functions should be matched to the equilibrium functions 
in the shores. When calculating the nonequilibrium cur- 
rent it i s  necessary, a s  will be shown later, to find a 
solution of Eq. (6) for real energies E that are  small 
compared with the order parameter A in the shores. 
For such energies, the boundary condition for Eq. (6) i s  
of the form 

where rp i s  the phase difference of the order-parameter 
at the shores. 

In the solution of the system (6) for the Green's func- 
tions g and for the Gor'kov function F it suffices to solve 
one equation 

a a 
& ( g i ~ ,  F ~ - F ~ R -  ax g:) + L ~ P ~ ~ = O ,  (8) 

since, in addition, the following relations hold: 

We have introduced here the dimensionless energy y 
= 2 & & / ~ ,  and the coordinate x i s  measured in units of 
the bridge length d. To solve Eq. (8) we make the sub- 
stitution 

gi"=q/(qa-I) Ih, F1"==e'~/(qa-I) (1 1) 

(the branches of the root are chosen such that the func- 
tions 8 and F: have the necessary analytic properties) 
and introduce the complex parameter 

which, as follows from (lo), is independent of the co- 
ordinates. In this case we obtain for the functions q and 
x the equations 

where q0 =q(0) i s  the value of the function 17 at the cen- 
t e r  of the junction, and ~ ( 0 )  = O  (q is an even function of 
the coordinate, and x is odd). The parameters q0 and $ 
are  expressed in terms of the differences of the order- 
parameter phases rp at the shores and the relative ener- 
gy y from the boundary conditions ('7) 

where the integration i s  carried out in the complex u 
= q/qO plane along a contour that goes around the branch 
point u =*fif2 clockwise. 

The asymptotic solutions of the system (15) in the re- 
gions of low and high energies (compared with the char- 
acteristic energy m/&) are of the form 

6=qp-1 = I  
cp' cos' (cpl2) 
4yZ sin' (cp/4) I l y l t l ;  9=cp, 

(16) 

E=-2c cos'(cp/Z)e-"(*), 
$=c sin cpZ(y) e-Z'Y), 

) IyIBl;  

The asymptotic equations were written for the case 
when the phase difference cp i s  not too close to n, for 
otherwise there appears one more intermediate region 
of values of y.  

These asymptotic relations allow us to track the ener- 
gy dependence of the Green's functions of the electrons 
in the junction. At energies >> iTD/d2, as  follows from 
(1 1) and (1 7), the Gor'kov function at the center of the 
junction, F~ - 1;'12, is exponentially small, and the func- 
tion gR is close to unity, i.e., to its value in the normal 
metal. At &-ED/&, however, both functions are of the 
order of unity. Thus, the presence of superconducting 
shores influences strongly the electrons in the normal 
metal only at energies of the order of the reciprocal 
time of diffusion along the junction. 

3. CRITICAL CURRENT OF JUNCTION 

The critical current of the junction i s  obtained from 
Eq. (1). After calculating the average value of the cur- 
rent, we can substitute in this formula the distribution 
function f (&)  averaged over the time and the coordinates 
(the average nonequilibrium increment to the distribu- 
tion function is proportional to the large quantity T,, 
therefore the terms that contain the alternating parts of 
the distribution function are  relatively small). Intro- 
ducing the parameter $(&) defined by Eq. (12), we obtain 
from (1) 

where R i s  the normal resistance of the junction, and 
when finding the dependence of the parameter J, on the 
energy & one can use the unperturbed Green's functions 
[the corresponding asymptotic forms of $(&) are given 
by Eqs. (16) and (IT)]. 

In the equilibrium case (without an external field) f(&) 
=tanh(&/2~) and the current i s  determined by the value 
of $ in the poles of the tangent & = (2n + l)nTi, i.e., on 
the Matsubara energies.4 As can be seen from (171, in 
this case the current i s  exponentially small @D/d2<< TI. 
In the nonequilibrium case, however, f(&) becomes non- 
analytic at low energies & -liD/d2, at which I $ ( -1, and 
the nonequilibrium current turns out to be relatively 
large. Thus, to calculate the nonequilibrium current 
we must find the distribution function in the microwave 
field at low energies. 

The kinetic equation for the distribution function in the 
case of a small electron mean free path takes the form6 
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In a linear alternating field, the Green's functions de- 
pend not only on the time differences, but also on their 
arithmetic mean t = (T +7')/2. In a weak field the de- 
pendence on t can be assumed harmonic: 

where w is the frequency of the external field, Go i s  the 
unperturbed function (in the Fourier representation 

where G! and G: are determined by Eqs. (2) and (ll)), 
while the amplitudes G,, are  proportional to the vector 
potential of the field. 

Using (221, we go over in (20) to the Fourier repre- 
sentation in terms of the time difference, with the cor- 
responding energy c ,  and average it over the time t and 
over the coordinate x (the latter will be designated by 
the angle brackets (. . .)). The first  two terms in the 
left-hand side vanish in this case; for the collision in- 
tegral in the right-hand side we use the expression6 

i 
z p h =  - - - (S~{T.(GSG~~)))  [f(")-tb- . 

4% 2T " 1 
when the frequency o of the external field i s  low com- 
pared with the temperature T (in the collision integral, 
the energies of importance in the term describing the 
arrival of the particles are of the order T, whereas a 
significant disequilibrium sets in at energies -w). 

We shall assume at the same time that the frequency 
w i s  high compared with the characteristic energies 
D/&. This simplifies the solution of Eq. (201, for in 
this case the derivatives aGfvA (-5 w)/ax are exponen- 
tially small in practically the entire region of the junc- 
tion [except for edges of size - ( ~ / w ) ' ~ ~ l , "  and the ma- 
trix G ~ ( E  & w) =T,  [see Eqs. (21, (111, and (1711. Using 
this circumstance, we obtain 

where A,, i s  the amplitude of the vector potential of the 
external field. Thus, there remain in the right-hand 
side of (23) only the terms that contain the amplitudes 
of the alternating part of the function G. This means 
that the main cause of the disequilibrium of the elec- 
trons in an S-N-S junction at sufficiently high frequen- 
cies is not the direct acceleration in the microwave 
field (the terms -A&I,,GoGf), but the "jitter" of the 
Green's functions and accordingly of the state density 
of the quasiparticles. 

To determine the amplitudes G,, we solve Eq. (20) 
by perturbation theory, substituting the unperturbed 
Green's function and the equilibrium function f(&) 
=tanh(&/2~) in the terms proportional to the vector po- 
tential. Since the frequency w >> D/&, we have at sub- 
stantial energies 

0 
Go(e*a)==*-z., 

T 
(24) 

and the terms containing GO(&) are relatively small in 
the parameter C/O. The collision integral in the right- 
hand side of (20) can be neglected because of the large 
value of rC. AS a result we have 

It follows from (24) that the amplitudes of the alter- 
nating parts of the Green's functions and of the distribu- 
tion functions at energies E i (w/2) are  expressed in 
terms of the unperturbed Green's functions at energies 
& -ED/&, which already differ substantially from the 
Green's functions of the normal metal even at the center 
of the junction [all their components at these energies 
are  of the order of unity, see Eqs. (111, (161, and (1711. 

Equation (25) ceases to hold in a region of size -(D/ 
w ) " ~  near the edges of the junction, for in this case Eq. 
(24) for the unperturbed Green's function Go can no 
longer be used and the derivatives aGteA(& * w ) / ~ x  are 
no longer small. For similar reasons, the contribution 
from the edges of the function i s  not accounted for in 
Eq. (23), too. Therefore, substituting (25) in (23) we 
obtain the nonequilibrium increment, apart from a nu- 
merical coefficient. With the same accuracy we can re- 
place the averaging over the entire region of the junc- 
tion by calculating the right-hand side of (23) at the 
center of the junction. 

Changing over from the matrix Green's function to the 
ordinary functions g and F (with the aid of Eq. (2)], we 
have 

e a h .  
f (e) -thF = 8T ki, a=ctDA.A-., 

where the number kt is expressed in terms of the pa- 
rameters b' and JI  with the aid of (1 l )  and Eqs. (13) and 
(1 4) in the asymptotic limit (17). 

With the aid of Eq. (26) for the nonequilibrium dis- 
tribution function, we calculate now the critical cur- 
rent of the junction using Eq. (19). We use here the 
asymptotic equations (17) for the parameters C and JI.  
As a result we have for the maximum value of the non- 
equilibrium current J$"' 

where Z ( y )  and the constant c are defined by Eqs. (18). 

The analytic properties of the integrand in (27) are 
such that the integral differs from zero (k, = 6) and the 
significant values of y are  of the order of unity. There- 
fore our initial assumption that the main contribution to 
the nonequilibrium current is made by electrons with 
energies E-i7D/d2 i s  justified. Thus, apart from a 
numerical factor, we obtain from (27) 

The critical current is found to have a power-law rath- 
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e r  than exponential dependence on the junction length d, 
unlike in the case of an equilibrium current. Recogniz- 
ing6 that 7,-T", we obtain for the temperature depend- 
ence of the critical current J:*'-T'~. The determina- 
tion of the numerical coefficient in (28) calls for an ex- 
act solution of Eqs. (3) and (201, something possible 
only with the aid of very complicated computer calcu- 
lations. 

Equation (28) i s  valid at not too high irradiation pow- 
e rs ,  since the kinetic equation (20) was solved by per- 
turbation theory. All that was important there was that 
the distribution function f(w) differed little from the 
equilibrium value (w/2T). The corresponding restric- 
tion on the value of the parameter CY which is propor- 
tional to the irradiation power can be obtained from Eq. 
(26): 

where we used the fact that at energies t - w the right- 
hand side of (26) increases by a factor (w&/D)"~ (the 
main contribution at such energies are made by the 
edges of the junction). The deviation of the distribution 
function from equilibrium [f ( c )  - tanh(&/2~)] for ener- 
gies &-ED/& at values of CY satisfying the inequality 
(29) can already be large. 

4. DISCUSSION OF RESULTS 

The results show that an external microwave field can 
stimulate superconductivity in an S-N-S junction: the 
critical current of the junction increases substantially 
in a microwave field. The physical picture of the phe- 
nomenon consists in the following. In the equilibrium 
case (without irradiation) electrons with energies tf - T, 
diffusing through a normal-metal layer, lose their 
coherence over distances 5 -  @D/T)"~. This leads to 
an exponential damping of the superconducting current 
at normal-layer thicknesses d>> f .  In a microwave 
field the electron distribution becomes substantially 
nonequilibrium at energies c -ED/&. Electrons with 
such energies diffuse freely through the junction (d2/D 
i s  the diffusion time) and make the principal contribu- 
tion to the nonequilibrium current. As a result, the 
critical current decreases with increasing d only in 
power-law fashion [ E ~ .  (28)]. 

The calculations were performed under the condition 
that the external-field frequency o satisfies the rela- 
t ion 

The left-hand inequality allows us to neglect the spatial 
gradients, as  well a s  to expand in powers of the param- 
eter &/w (and not of the field frequency, as i s  custom- 

ary in the treatment of nonequilibrium phenomena). The 
right-hand inequality must be satisfied to  use the re- 
laxation-time approximation in the collision integral. 
The value of the order parameter A in superconductors 
does not enter in the final result, but it is assumed that 
it i s  large compared with the characteristic energies 
& -FD/d2. The restriction on the radiation power i s  
given by condition (29). 

Comparison with experiment3 shows that the results 
give the correct picture of the phenomenon. The effect 
is observed when the field frequency w > (D/&) and the 
critical current have a power-law dependence on the 
thickness d of the normal-metal layer. A quantitative 
comparison, however, i s  difficult, since the measured 
quantity was the maximum critical current in a micro- 
wave field, whereas Eq. (28) is valid only at sufficiently 
low irradiation powers. 

The authors thank A. A. Abrikosov, K. K. Likharev, 
and A. I. Larkin for valuable remarks and for a discus- 
sion of the results. 

 he quantity q , ( 2 d / ~ ) ,  as seen from 47) is  exponentially 
large, therefore gf w 1, whereas F? -vrl is  exponentially 
small; the smallness of the derivatives follows from Eqs. 
(13) and (14). 
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