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We present an explicit form of the equation of motion of the spin vector in an electromagnetic field in the 
quasiclassical approximation with inclusion of radiative damping in any order in the parameter 
x = (fi/mc)(lwl/c"yZ, where y = e/mc2; w and 8 are the acceleration and energy of the particle. For particles 
captured in planar channeling in traversing a slightly curved single crystal we find the solution of this 
equation in the approximation x ( 1 .  Averaging over the levels of the transverse energy is carried out for a 
thin crystal. The influence of the angular divergence of the beam on its polarization is estimated. We 
demonstrate the possibility of obtaining polarized beams of electrons (degree of polarization ~40%) and 
positrons {degree of polarization ~ 6 5 % ) .  Estimates are made of the degree of polarization of the beams for 
thecasexbl. 

PACS numbers: 61.80.Mk 

1. It is well known that in contemporary proton ac-  its energy; H and E a r e  the magnetic and electric field 
celerators electron and positron beams a r e  produced strengths. 
in the energy region inaccessible for  existing electron 

The f i r s t  t e rm in  the right-hand side of Eq. (1) de- 
accelerators. The possibility of polarization of these 

scr ibes  the precession of the spin vector in electromag- 
beams would permit substantial extension of the s e t  of 

netic fields with allowance for the appearance in the experimental investigations which can  be performed. 
particle of an anomalous magnetic moment (as a con- 

The present work i s  devoted t o  discussion of one of sequence of the interaction with the radiation field). 
the possible methods of obtaining polarized electrons Here the magnitude of the field must  satisfy the condi- 
o r  positrons of high energy, which was f i r s t  mentioned tion H/H,<< 1 (E/E,<< I ) ,  where Ho =Eo =m2c3/eti 
in Ref. 1: radiative polarization in t raversa l  of curved =4.41. 1013 Oe = 1.32. lo6 V/m, which for  interatomic 
single crystals  by electrons in the planar channeling crys ta l  fields is satisfied quite well. 
mode. Effects which influence the establishment of 
polarization of the beams a r e  considered. The second t e rm in the right-hand side of Eq. (I) ,  

which we have denoted by G,  determines the change of 
We shall s t a r t  from the equation of motion of the spin b. a s  a consequence of radiation events with spin flip. 

vector in electromagnetic fields, which we shall  write Using the qu$iclassical method of Ref. 2,  we can  show 
for an arbitrary value of the quantum parameter  of the that Gb. = -2w6, where W' is the probability per unit 
radiation of a radiative transition with spin flip. The expression 

R Iwl for  wg which i s  exact in x has the form 
~ = ~ , r 7 ~ '  

where y = &/mc2;  w and E a r e  the acceleration and 
energy of the particle. The  necessity of such a dis- 
cussion i s  due to the fact that fo r  a number of c rys ta ls ,  +(,$)' j x ~ ( ~ & + ( L [ $ x  s ] ) ~ ~ I . L ~ u / ~ x ) ,  

a s  will be shown below, a value x 2 1 is reached al- rutrx 

ready in the energy region of severa l  hundred GeV. where a =$/tic, s =w/lw 1 and K,(x) i s  the MacDonald 
Using the quasiclassical method: this equation can function. F rom this for  arbitrary x we obtain fo r  G 

be written in the form 9 .3"am2c' 
G=- 

8nhe x a { t l ( ~ ) - : ( ~ + ) ~ ( ~ ) + [ $ ~ s ] ~ h ) ) .  3 = E [ ~ ~ ( L H . + H ~ ) ]  + G. 
dt e  P (1) 

'' K . ( Y ) ~ Y .  (2) Y 2  K ~ ( Y ) ~ Y -  ~ ( ~ ) - j ~ ~ + . ~ ~ ~ ~ ) ~  Here t is the average value of the spin operator  in the A ( X ) = I  d+>/2XY)'  
r e s t  system of the particle; 

0 

Hs=H+- EX- ,:*/, [ : 1 
is the effective field acting on the inherent magnetic In the case  x<< 1, assuming 
moment of the particle; A  ( x )  =A ( 0 )  =5n/9, B ( x )  =B(O) =10n/81, C ( X )  =C(O) -8 .3'hn/27, 

I 
~ ~ - 1 ( ~ - $ ( f  H ) ~ + [ E  x : ] )  we a r r ive  a t  the well known equation of motion of the 

spin vector. In the limiting case  x>> 1 it is necessary 
is the effective field acting on the anomalous part  of the to expand the function K,(y) in s e r i e s  in y, taking into 
magnetic moment v is  the particle velocity and c i s  account that in a substantial region of the integration 
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y - c< 1. Retaining the leading t e rms  in powers of 
we obtain 

2. Let us turn t o  discussion of the characterist ics  
of a beam of particles captured in the planar channeling 
mode. 

The energy of the transverse motion &, of a particle 
in an interplanar potential U(x) i s  given by the expres- 
s ion 

el=U ( x )  + ~0'12, 

where 8 i s  the angle between the direction of motion of 
the particle and the crys ta l  planes, from which we ob- 
tain for  the cri t ical  channeling angle the estimate 

where Uo is the depth of the potential well (Uo - 10-100 
eV). 

A quas iclass ical evaluation of the number of levels 
in the potential well gives 

where d - 1-3 is the interplanar distance. This 
demonstrates the validity of a classical discussion of 
the motion of particles in a channel. 

Choice of a specific form of the interplanar potential 
for electrons (e-) 

and for positrons (e+) 

where -d/2 c x s d / 2 ,  is justified by the following con- 
siderations. The region of energy which is interesting 
for  realization of the radiative polarization effect in 
interaction of a beam of particles with curved crystals ,  
as will be shown below, begins with energies severa l  
tens of GeV. At these energies the synchrotron radia- 
tion conditions (@,>> l / ~ )  i s  well satisfied and, in con- 
trast to dipole radiation, this depends only slightly on 
the specific s tructure of the potential. Defining the 
quantity 

p o - ( ~ , r ) 2 = 2 U o ~ / m z ~ 4 = 8 ~  10-sUo [ e V ]  ~ [ G e v ]  , 

we can write the synchrotron radiation condition in the 
form po>> 1. For  example, for  crystals  of Si and Au the 
condition po 2 1 is satisfied beginning a t  energies 4.2 
and 1.4 GeV, respectively. Accordingly i t  is  also not 
necessary to consider the influence of thermal and 
zero-point vibrations of the atoms of the lattice on the 
form of the interplanar potential. An estimate of the 
magnitude of these effects can be found in Refs. 3 and 
4: ~ ~ x ( A u / u , )  - 10%. 

The dynamic characterist ics  of the beam during its 
interaction with the crystal  will depend substantially on 

the nature of the distribution of the particles in the 
t ransverse  energy levels. We shall  find the form of 
the distribution function for  two cases:  

1) the beam on entry has a uniform distribution in 
the angle 9 and the coordinate x; 

2) a beam without angular divergence is  uniformly 
distributed over the coordinate and is parallel to the 
crys ta l  planes on entry. 

Comparison of these two cases  will permit  us a l so  to 
evaluate the influence of the angular divergence of 
the beam on the effect of interest  here. 

The uniform distribution of the beam over the co- 
ordinate x is determined by the fact  that, generally 
speaking, we cannot t race  the coordinate of the particle 
(the beam width is significantly g rea t e r  than the inter- 
planar distance). Usually the width of the angular dis- 
tribution of the beam is (82)'" >> O,., and therefore a s  a 
rule we have the ca se  1. In what follows we shall  con- 
s ider  only ra ther  thin crys ta ls  whose length does not 
exceed the characterist ic  dechanneling lengths, and the 
distribution over the t ransverse  energy levels is  deter-  
mined by the conditions of entry into the crystal .  Using 
the specific form of the potentials fo r  e+ and e-, we ob- 
tain the respective distributions in E,: in case  1 

in case  2 

The dependence of &, on the level number n i s  given by 
the expressions 

On the basis  of solutions of the equations of motion in 
the selected potentials we shall  find the minimal crystal  
bending radius RmM a t  which motion of particles in the 
planar channeling mode is st i l l  possible. From the con- 
dition e ' / ~ ~ ~ ~  =max 3 we have 

d E E [GeVl 
Rmi,.- [cm]=R,, ,  ..==Rma = -- = 2.5d [ A ]  - 

4 Uo uo [eVI ' 

  ow ever, on approach to Rmin the number of particles 
captured in the channeling mode will fal l  off. Carrying 
out the appropriate calculations in the approximation 
R m i n / ~  << 1,  we obtain for  the efficiency F of capture 
into a channel in case  1: 

Fa-= [ I -  (ln 2)  RmmlR],  Fe=1-2RmJR; 

in case  2 we obtain 
F.-=1- (2R,./R)", F,+=1-Rmi,,/R. 

I t  follows from this that the discussion of the problem 
is  meaningful only for  the condition 

On the basis  of the chosen potentials and the equations 
(3) we shall find the average over the trajectory and 
over the particle distribution in t ransverse  energy of 
the parameter  (3 in ca se  1: 
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The bar  over the x denotes averaging over the particle 
trajectory for  a fixed value of C,, and the symbol (. . .) 
denotes averaging over the levels of the t ransverse  
energy. 

3. The polarization which a r i s e s  in t ransverse  and 
i s  directed along the vector s x v / c ,  along which we 
also shall direct  the z axis. The equation for  P, takes 
the form 

The solution of this equation is the function 

where 5; is the initial polarization. 

The dependence A,(x), C1(x), and x on the t ime enters  
through the acceleration w(t ) ,  which with inclusion of 
the condition R,~,/R<< 1 we shall  represent  in the form 
of the sum 

w ( t )  =c2/R+a ( t ) ,  

where a(t) is  the acceleration in a planar channel of an  
uncurved crystal. The condition (5) is equivalent to the 
condition ( I  w-1) >> 2 / R ,  and therefore over a substan- 
t ial  region of integration in equation (7) it is permis- 
sible to expand a l l  functions in s e r i e s  in the sma l l  
parameter R,,,/R<< 1. Since the length of the crys ta l  
contains many periods of oscillation of the particle in 
the channel, in the integration we can use the method 
of averaging over the trajectory for  a fixed value of E,. 

There is  no dependence on the polarization character-  
is t ics  of the beam on the initial phase. In calculation 
of the t e rms  characterizing the ra te  of establishment 
of the polarization, a smal l  correction (-Rmi,/R) will 
be dropped completely, and in the expression which 
determines the magnitude of the final, established 
polarization, only the f i r s t  power of this  correction 
will be retained. 

Performing the concrete calculations, we obtain 

27.3Ih am'c' I' 1 
D(x)-* " ; K l ~ ( y ) d ~ .  8nhe , ( l + ' / ~ ~ y )  

In the case x -x 1 we have 

After averaging, for  electrons we obtain 

For  positrons we have correspondingly 

6.(t)-t.P exp {-ktt(e~/U~)~)+k2(e,/U~)-"[l-e~~ (-k,t(eL/Uo)Y')], 

160 aha 3' nR,. 
k t = -  I ,  n,,,,,c, ( 7  =- . 

5R 

Finally we shall  average the obtained formulas over 
the t ransverse  energy levels with the appropriate dis- 
tribution function (3). As a resul t  we have 

6.(t) =6S0qt (k, t )  +6,cdp2 (kit) (10) 

for  the conditions cpl(0) = 1, cp,(O) =0,  cpl(a) =0 ,  %(a)  
= 1, where t;:' is the magnitude of the established pol- 
arization of the beam. Fo r  electrons in ca se  l we have 

and correspondingly in ca se  2: 

The results  of computer calculations for  the func- 
tions cp,(x) and %(x)  a r e  shown in Fig. 1, and the values 
of 5:"' a r e  as follows: in  ca se  1 

6 .3'hRR,c, cp" - 1.779 - 
5R ( l l a )  

and in ca se  2 

6.3'R-c. 
6:' -1.780-. 

5R (lib) 

FIG. 1. Plots of functions characterizing the damping of the 
initial polarization cpi(x) of electrons and the establishment of 
their final polarization cp2(%): a-for the initial beam of case 
1; b--£or case 2. 
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For positrons in case 1 we have 

9t(k~t)=~/c'T?/s ,  ki t ) ,  ( ~ 2 ( k t t ) = l - ~ ( ~ l 3 ,  kl t ) /3(k, t ) ' ,  

est 6.3"dlmi, 6. =2k2=- 5R , (12) 

where y (a ! ,  x) is  the incomplete Gamma function.= 

In the corresponding calculation for case 2 we en- 
counter a logarithmic divergence of several integrals 
a t  the lower limit, which is explained by the violation 
of the condition (5) in the limit c,/Uo- 0. The condition 
R,,,h/~<< 1 is equivalent to the following inequality: 
lw(t) I >> c2/R, o r  to the equivalent condition 

This leads to the result that for  &,/u,-0 the degree of 
polarization grows as (c , /~ , ) - l '~  [see Eq. (9)], while its 
limiting value cannot exceed the well known value 8 / m  
J 0.92. Therefore it is necessary to limit the rise of 
the polarization to this limiting value, i.e., 

Here the condition (13) also will be satisfied. As a re- 
sult for positrons in case 2 we can assume 

'pi (ki t )  -r('/r, k t )  / 3  (ki t )  ", 'pz (ki t )  4-BXP ( - k t  ( ~ J c R ~ ~ ~ / ~ R ) ' ) ,  

Plots of the functions ql(x) and p,(x) for positrons a re  
shown in Fig. 2. We recall that all of the results a re  
valid for thin crystals in which the distribution function 
of the particles over the transverse energy levels de- 
pends only the conditions of entry into the crystal. 

4.  Let us analyze the effects which influence the 
form of the distribution function and find the character- 
istic lengths of crystals for which this discussion is 
justified. References 6-8 a re  devoted to the problem of 
finding the distribution over the transverse energy 
levels in rather thick crystals. We shall restrict  the 
discussion to two principal effects: radiative transitions 
between levels, and multiple scattering by atoms of 
the lattice (and also by atomic electrons). 

The rate of change of c, as  the result of radiative 
transitions is related to the energy loss of the particle 
by the equationg 

X 

FIG. 2. The same as in Fig. 1 but for positrons. 

where q is  the exponent which determined the relation 
E, - C-a. In the case of planar channeling q = 1/4 for e-  
and 1/2 for e'. For the intensity of radiation I =-d&/dt 
we can use the classical expression averaged over the 
particle trajectory for a fixed value of c,. As a result 
we obtain the following equations for e+ and e -  
respectively: 

Proceeding from the expressions for (d&,/dt) let us 
determine the characteristic lengths of change of the 
distribution function in the transverse energy as  the 
result of radiative transitions. In case 1 for electrons 
and positrons we have respectively: 

(16) 
We shall give an estimate of the characteristic lengths 

as  the result of multiple scattering by lattice atoms on 
the basis of the well known formula for the mean square 
multiple scattering angle in an amorphous material: 

- e,'l 
ex2 = -, 

rad 

where c, = 14.85 MeV, L ,ad is the radiation length of the 
crystal material, and I is  the path length in the crystal. 
The main fraction of the particles in channeling pass a 
substantial part of the time in the space between crystal 
planes under the influence of the interplanar potential. 
Multiple scattering by atoms occurs only on traversal 
of the rather thin layer containing the crystal plane. 
We shall take the thickness of the layer to be 

where % = 0 . 8 8 5 a , ~ - ~ / ~  is the Thomas-Fermi screening 
radius, a, =fi2/me2, and u, is  the amplitude of thermal 
vibrations of the lattice atoms. We shall assume that 
multiple scattering in the layer is described by the 
formula for 8: in an amorphous material. In the cal- 
culations it is necessary to take into account that the 
density of atoms in the layer is d/2ac times greater 
than the average density of atoms in the crystal. Per- 
forming the calculations with use of the equality d&,/dl 
=(&/2)dO2,/dl and averaging over the trajectory and the 
transverse energy levels, in case 1 we obtain respec- 
tively for e-  and e': 

E Uo 
1, [cml --;-L,ad~2.77.10-'Uo [eVl~[GeVl Ld [cm] , (17) 

E. 

Let us consider multiple scattering by atomic elec- 
trons. Taking the cross section for scattering by f ree  
electrons1° 
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we have for  the mean square angle of multiple scat ter-  TABLE I. 
ing 

- 
d~ O"" 8ne' o,, 
-= n.02do(0) =n.- ln-, 
dl ez Oml. 

Om'" 

where a, is  the density of electrons and the value of 
8 ,,, is  obviously determined by the limiting channeling 
angle: Om,,= 8, = (2 u~/E) ' '~ ;  Omin =Rwb/&, and w, =4m,e2/ 
m is determined by the polarization of the electron 
gas." Taking into account the influence only of the 
nearest crystal  plane, for  n,(x) we shall  wri te  

where N i s  the concentration of atoms in the crys ta l  
and n, is the density of atomic electrons. Carrying out 
the calculations with use of the Thomas-Fermi model, 
we find 

Here x ( t )  is the universal Thomas-Fermi function.'' 

Substituting the function n,(x) into the formula fo r  
dQ2/dI  and averaging the resulting expression over the 
particle trajectory for  a fixed value of e, , we have 

d 'I, d 
t .=-[i-(l-%) 20, Uo ] for e-, t ~ = ~ ( $ ) ' ~ '  for e+. 

Then, averaging this expression over the transverse 
energy levels with the appropriate distribution function, 
we obtain for  the characterist ic  length due to multiple 
scattering by atomic electrons 

S2.1021 U ,  lev]  e [GeV] 
NV'd  [ A ]  

With increase of Z the quantity (duldt)  varies in the 
range f rom -0.2 to -0.1 for  electrons and from -0.08 to 
-0.04 fo r  positrons. 

5. Let us consider the problem in the limiting case  
x>> I. As is well known, in this case  the radiative 
polarization falls off with increase of x a s  x-'I3. AS a 
result we shall not search  fo r  a solution of Eq. (8), for  
which it is necessary to use expressions for B(x) and 
D(x) which a r e  exact in X ,  but shall make an asymptotic 
estimate of the results. For sufficiently large values 
of X, where the principal fraction of particles channeled 
in a curved planar channel of a c rys ta l  spend a signi- 
ficant part  of their time in the region x>> 1 ,  we can 
use approximate expressions for  the functions N x )  and 
D(x) for  large values of the argument: 

from which according to Eq. (8) for  the final polariza- 
tion value and correspondingly for  the parameter  char-  

acterizing the r a t e  of establishment of the polarization 
we obtain 

c:"' = 5.3""r ('la) m"ca - - 
18.1'(a/s)ZIYyYIR IwI-~(IwI")-' 

(19) 
= 5.3'"1'(%) ,,, -=,{RF) .R2 

1 8 r ( ~ / ~ )  k- R 

Here we have made use of the expression = kc2/ttmin, 
where k =4/3n for  e+ and k =2/3 for  e- in case  1. 

6. For  numerical est imates we shall use the crystal  
parameters given in Table I.314.13.14 The depth of the 
potential well can be calculated according to the 
approximate formulas 

U,=6nZezNdaoe-'[ch 6-11, 6=4/2a., 

a.=0.01643[2"-9.9756542"+42.21546] [ A ] .  

As follows from Figs. 1 and 2,  the characterist ic  values 
of the arguments of the functions p,(x) and q2(x) a r e  
x =  2 for  e- and x=: 10 for  e', f rom which we can obtain 
the length f o r  establishment of the polarization respec- 
tively for  e- and e+:  

1,  [cml m1.3. 108(U,  IeV] l d  [A]  ) - a ~ - z  [ G ~ v ] ,  

1, [cm] ~ 1 . 1 .  109(U0 l ev ]  / d [ A ]  ) -'e-' [GeV] . (20) 

Using Eqs. (16)-(18) and (20), we find the minimal 
energy Emin a t  which I ,  s min [ I , ,  l e i ,  Ira*]. The results  of 
the numerical calculations, which a r e  given in Table 11, 
show that for  electrons 

while for  positrons 

The quantity Em,, obtained characterizes the minimal 
energy value a t  which the distribution over the trans- 
ve r se  levels is determined by the conditions of entry 
into the crystal ,  not the lower limit of existence of the 
radiative polarization effect in curved crystals. From 
comparison of Fig. 1 fo r  electrons and Fig. 2 f o r  posi- 

TABLE II. 
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t rons we can see a weak dependence of the polarization 
charac te r i s t i cs  of the beam on the f o r m  of the dis t r i -  
bution function over  the t ransverse  energy levels. 
Consequently the radiative polarization effect can be 
observed in a number of c rys ta l s  beginning at energies  
of a few hundred GeV f o r  positrons and E-  50-100 GeV 
f o r  electrons. 

In the case x <: 1 the f inal  polarization value does not 
depend on the energy f o r  R,i,,/R= const  and, as follows 
f r o m  Eqs. ( l l ) ,  (12), and (14), f o r  example f o r  
R,,/R = 0.1, i t  is equal t o  3% in cases 1 and 2 f o r  
electrons and 65.3% and  66.6% i n  c a s e s  1 and 2 f o r  pos- 
i t rons.  

In the limiting case x>> 1 the final polarization value 
and the charac te r i s t i c  length f o r  its establ ishment  be- 
have with increase  of the energy as 

f o r  R,,/R =const.  At  an energy E =3000 GeV, as 
follows f r o m  Table 11, the case ~ 7 -  1 is real ized f o r  
c rys ta l s  of W and Au, f o r  example. For W at this  
energy and R,,/R =0.1 we have gist  =8.4% and 
ln=0 .036cmfor  e-, a n d b F t =  15.4%, 1,=0.048 c m f o r  e+. 

In conclusion we note that  the  length f o r  establish- 
ment  of polarization behaves with increase  of energy 
as 1,- 1/2, while the period of oscillation of a part ic le  
in  the interplanar channel increases  as L - &lf2. AC- 
cordingly there  are grounds f o r  hope of observing the 
radiative polarization effect in sur face  channeling, 
where  1, will be  comparable with the period of the 
motion L. H e r e  also the energy loss  of the  part ic les  
being polarized will b e  significantly less. 
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