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Possible self-focusing regimes of wave beams in a weakly inhomogeneous plasma and the conditions of their 
realization are investigated for case of static local nonlinearity. Collisional absorption of wave-beam energy is 
considered and the possibility of its enhancement in an inhomogeneous plasma is studied. Simple equations 
are derived for the beam width in qualitatively different cases, and the main properties of the solutions of the 
equations are established. 
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Much progress  was  made  recently in  the  production 
of high intensity radiation beams.  It  is c lear  that the 
passage of such beams  through e plasma i s  accompanied 
by s trong nonlinear interaction with the medium. One of 
the central  problems is that of the ro le  of var ious 
mechanisms whereby the energy of the intense wave 
beam is dissipated. T h e r e  a r e  th ree  competing proces-  
s e s  responsible f o r  the absorption of the wave-beam 
energy in the plasma: Coulomb collisions, l inear  t r a n s -  
formation of a n  obliquely incident t r a n s v e r s e  wave into 
a longitudinal wave, and paramet r ic  mechanisms (see,  
e.g., Refs. 1 and 2). At  present ,  the bulk of the experi-  
mental data  cannot always be uniquely interpreted,  in- 
asmuch a s  a t  the attained parameters  (power, collision 
frequency, character is t ic  plasma density gradient,  and 
o thers )  these data  l i e  in a region that borders  on the 
indicated th ree  processes .  An investigation of energy 
absorption in the transition region i s  therefore of spec-  
ial interest.  

It  was shown that allowance for  the t rans -  
v e r s e  dimensions of the wave beam and of the ensuing 
self-focusing a l t e r s  quantitatively the picture of energy 
absorption in a n  inhomogeneous plasma,  and a l so  the 
rat io  between the competing processes .  In part icular ,  
it was indicated that a t  not too high wave-beam powers 
a n  increasing ro le  i s  assumed by the collision mechan- 
ism of absorption. In the cited references,  however, 
the spat ial  s t ruc ture  of the field of the self-focusing 
wave beam was investigated within the framework of a 
cer tain parabolic-type equation. This  res t r i c t ion  i s  
burdensome in the region where  nonlinear perturbation 
of the dielectr ic  constant of the plasma is f a r  f r o m  
smal l ,  s ince a n  est imate of the contributions of the dif- 
ferent  absorption mechanisms to the  wave-beam energy 
dissipation depends substantially on the self-focusing 
regime. In the  p resen t  paper ,  the re fore ,  the  fea tures  
of the self-focusing and energy-absorption reg imes  of 
intense wave beams in a n  inhomogeneous p lasma a r e  
investigated on the bas i s  of a m o r e  r igorous approach, 
that includes the descript ion of the spat ial  dynamics of 
the wave field with the aid of equations of the elliptic 
type. It  is shown that th ree  qualitatively different 
reg imes  of propagation of self-focusing wave beams  
ex is t  in a n  inhomogeneous plasma,  and the conditions 
f o r  their  realization a r e  investigated. It  is proved that 
the maximum efficiency of the absorption by collisions 

is reached in the c a s e  of broad beams with moderate  
energy density, while in the g r e a t e r  par t  of their  path 
these  beams propagate quasi-one-dimensionally. At 
not too high energy densi t ies  of the wave beam, the  
depth of i t s  penetration into a t ranscr i t i ca l  plasma 
with increasing density is res t r i c ted  to  a s c a l e  of the 
o r d e r  of the beam width. The main conclusion of Refs. 
3 and 4 ,  that the collisional absorption by self-focusing 
wave beams  can  be  increased,  remains  in  force. Thus,  
a complete analysis  i s  presented'of the self-focusing 
regimes of a wave beam in a n  inhomogeneous p lasma 
in the c a s e  of s ta t i c  local nonlinearity. 

1. SELF-FOCUSING OF WAVE BEAMS IN  AN 
INHOMOGENEOUS PLASMA 

We consider within the f ramework  of the s c a l a r  prob- 
l e m  a n  equation f o r  the complex amplitude of the elec- 
t r i c  field of a wave beam 

where  & ( I  E 1 )  2 &, +i&, is the dielectr ic  constant of the 
p lasma with allowance for  nonlinear t e r m s ,  k ,  = w/c f o r  
t r a n s v e r s e  o r  k =(w/311' uTe) f o r  longitudinal waves. The 
applicability of the s c a l a r  model will  be justified later.  

Le t  b be the charac te r i s t i c  t r a n s v e r s e  dimension of 
the wave beam and k, = k,,&"' the longitudinal wave num- 
ber. Under the natural  condition (k ,b  I>> 1 the solution 
of (1.1) has  a l a rge  phase and can  be investigated by the 
methods of geometr ic  opt ics ,  s i m i l a r  to  those presented 
in Maslov's m ~ n o g r a p h . ~  

Separating in E(z , r , )  the amplitude and the phase, 
E =Aexp(-icp), we obtain f r o m  (1.1) f o r  a n  axisymmet- 
r i c  wave beam, discarding t e r m s  of the o r d e r  of l/k2,b2, 
equations f o r  the eikonal and f o r  the energy flux 

Taking into account the se l f - s imi la r  charac te r  of the 
contraction of the  wave beam in the axial  region, we put 

A 2 ( z ,  r ~ )  =A.Z(z)  exp ( - r , ' /2b2(z) ) ,  (1.3) 

q (z, rL)  = k, ( 2 )  dz+rL2q, (z) +rL4cp, ( z )  + . . . , 

where  A&) is t h e  field on the beam axis. We introduce 
the effective refract ive index N,(z) = kz(z)/k0 and the ef- 
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fective width of the wave beam l(z): 

F r o m  the condition that Eqs. (1.2) and (1.3) be  compat- 
ible follow equations f o r  the beam width l(z), f o r  the 
refract ive index N,, and for  the field Ac(z) o n  the beam 
axis  : 

Here @, and &, a r e  diffraction correct ions that  de te r -  
mine the minimum t ransverse  dimension of the beam; 
x z  = (ko/~,)&,(A~);  9 = ( A , / N , ) ~ ~ C , / ~ ( A ~ )  charac te r izes  the 
nonlinear contribution t o  the dielectr ic  constant. Equa- 
tions (1.4) a r e  the s tar t ing point f o r  the  study of self-  
focusing of wave beams. 

We consider the self-focusing regimes.  

1) If the nonlinear par t  of the dielectr ic  constant E, 

i s  substantially s m a l l e r  than the l inear  co(z) and the 
damping is s m a l l ,  the sys tem (1.4) takes the s impler  
f o r m  

(1.5) 
which was investigated in Ref. 6 f o r  cubic nonlinearity 
E, = &,,(z) +(A,/Ep)', where E, is the character is t ic  non- 
l ineari ty  field. Equations (1.5) correspond t o  a t ransi-  
tion in (1.1) to  the  parabolic approximation6 

E=E,,F (NOIN, ( z )  ) "> exp -i k, (z) dz , c i  1 
when, f o r  example f o r  a cubic nonlinearity the complex 
function F sat isf ies  the equation 

h e r e  

We can  make a number of s ta tements  concerning 
those solutions of (1.6) which descr ibe  wave beams of 
finite diameter.  F i r s t ,  we introduce the positive func- 
tions 

and, in analogy with the case  of a homogeneous plasma,  
we  construct  the function 12([) =I3([) - @(()I4((). It  is 
eas i ly  seen  that I, is a n  integral ,  but in a n  inhomogen- 
eous plasma I, i s  no longer conserved but obeys the 
evolution equation dI,/d[ = -I&@/d{. J u s t  a s  in a homo- 
geneous plasma,  the charac te r i s t i c  dimension of the 
region of localization of the field upon development of 
self-focusing instability is determined by the s ign  of 
I,, i.e., d2(62)/d 5' =21,. It follows there fore  that wave 
beams with negative value of I, become self-focused, 
and the charac te r i s t i c  self-focusing length corresponds 
t o  A[ -%/(I I,[ )'I2. Moreover ,  in  a n  inhomogeneous 
plasma,  upon propagation in the direction of increasing 
plasma density, the wave beams that  spread  but on 

FIG. 1 .  

account of diffraction can (owing to the d e c r e a s e  of I, 
and to i t s  becoming negative) s t a r t  to  become self-  
focused a t  a cer tain distance f rom the injection plane 
( see  Fig. 1). 

We note in  addition that the Talanov transformation7 

< = E R / ( ~ + R ) ,  p = p K / ( ; + R ) .  P = ( I + ~ / R ) F C \ ~ )  [ip'/(E+R)J 

es tabl ishes a connection between the solutions of equa- 
tions of the type (1.6) with different coefficients @(() 
and fi @(<(<I) .  

The main condition imposed on the parameters  of the 
self-focusing wave beams can be obtained m o r e  easi ly  
by considering the stability of the plane wave 

in Eq. (1.6). Linearizing (1.6), we find the spat ial  
increment  Y. t([) of the self-focusing instability: 

where  x , = x , / k , ,  and w, i s  the t ransverse  wave num- 
b e r  of the perturbation. Le t  L be the charac te r i s t i c  
s c a l e  of the inhomogeneity of the plasma,  for  example 
co(z) = 1 - (z/L). Then the perturbations can become 
accelerated in the beam over  a distance L if the follow- 
ing condition i s  satisfied f o r  the amplitude of the beam 
field: 

Here 6 ,  =(xL)'" is the beam thickness a t  which the 
self-focusing length is a minimum. Since usually E m  
< E D ,  it follows therefore that the beam d iameter  should 
b e  l e s s  than the charac te r i s t i c  inhomogeneity sca le  L. 
In part icular ,  fo r  s t r ic t ion nonlinearity (62, = 16nn,T, 
n, =m,w2/4ne2) and b> b ,  we have f o r  the vacuum energy 
density in a beam of t ransverse  waves the est imate 
w,>H,T(~/L)', which a g r e e s  with Ref. 6. At  sufficient- 
ly s m a l l  wave damping, the wave-beam energy loss  
over  the self-focusing length is small .  Therefore ,  
a f te r  going to the first focus, the beam broadens to  a 
ce r ta in  maximum s i z e ,  and then s t a r t s  to  be  focused 
again, i.e., a pulsating waveguide is produced in the 
plasma. T o  connect the p a r a m e t e r s  of such a waveguide 
with the slowly varying p lasma parameters ,  we note the 
following. A s  seen  f r o m  (1.5), the equation f o r  the di- 
mensionless  -beam thickness f = 1(z)/1, descr ibes  the mo- 
tion of the nonlinear osci l la tor  with a frequency that  
v a r i e s  slowly with t ime 
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where  dt  =dz/lJV*. We introduce the potential n( f, t )  
defined by the equation a n / a f  =2Sf f .  T h e  condition f o r  
the conservation of the adiabatic invariant of the oscilla- 
t o r  

I= 0 p df, pz+u--8 

connects the change of the energy of the osci l la tor  &' 
with the slow changes of the p lasma p a r a m e t e r s  and 
determines by the s a m e  token the waveguide-parameter 
dependences of in te res t  to us, particularly of the 
maximum and minimum rad i i  on the plasma parameters .  
We demonstrate  the foregoing using a s imple example 
tha t  s imulates  the allowance f o r  diffraction and nonlin- 
ea r i ty  saturation. We choose the frequency i-2 of the 
nonlinear osci l la tor  in the fo rm 

where 6<< 1 character izes  the s i z e  of the focal spot. 
We note f i r s t  of a l l  that f o r  self-focusing wave beams 
the energy '8 of the nonlinear osci l la tor  is negative. It 
can be  shown next that the inhomogeneity of the f r e -  
quency n0( t )  in  t ime i s  equivalent to  introducing into the 
sys tem friction that is positive when no inc reases  
with t ime and negative in the opposite case. Indeed, 
with increasing no the osci l la tor  energy d e c r e a s e s ,  
i.e., the level d rops  to  the potential-well bottom cor -  
responding to the waveguide, As a resu l t ,  the amplitude 
of the oscillations of the wave-beam width and the self-  
focusing length decrease.  With increasing 0, the pro-  
c e s s  is  reversed ,  and a f te r  P becomes positive the 
self-focusing s tops and the beam s p r e a d s  out. It i s  
important to note that  a t  appreciable  oscillations of t h e  
beam width, when I ,,,,, >> 1 ,,,,,,, the t ime dependence of P 
takes the f o r m  of jumps in t ime intervals  corresponding 
to formation of the focal  spot. Analogous jumps a r e  
made simultaneously a l so  by the function I , ( [ ) ,  a s  can 
incidentally be readily s e e n  f r o m  the evolution equation 
f o r  I,. 

In the example presented above, the condition f o r  the 
conservation of the adiabatic invariant takes the f o r m  

h e r e  a = -2P(6/520)2 < 1 ,  while E(k)  and K(k) a r e  elliptic 
functions. It follows therefore that in the case  o<< 1 the 
energy P of the osci l la tor  var ies  in  proportion to 
W z  exp(-I/Q,). Near the bottom of the potential well,  
where (1  - a) c< 1 ,  we have 

On the whole, the behavior of the dimensionless  width 
of the beam f ( z )  in the c a s e  of increasing no, which 
corresponds to  propagation of the wave beam towards 
the increasing plasma density, is shown schematically 
in Fig. 1. 

2 )  We consider now the self-focusing of a wave-beam 
f o r  a s t rong  nonlinear perturbation of the plasma di- 
e lectr ic  constant,  when the l inear  t e r m  c o ( z )  in  the ex- 
pression f o r  &,(A:) can be neglected. Such conditions 
a r i s e  automatically when the beam approaches the s u r -  
face of the cr i t ical  plasma density n,(w),  but can be 
realized i n  the t ransparency region a l s o  f a r  f r o m  the 
cr i t ical  surface. It  is reasonable t o  a s s u m e  that  out- 

s i d e  the narrow region direct ly  adjacent to the focus 
the  nonlinearity saturat ion is negligible. Putting E, 

= ( A , / E , ) ~ ~  (where a 7 0 ,  and f o r  s t r i c t ion  nonlinearity 
a = 1 ) ,  and neglecting damping and diffraction, we ob- 
t a in  f r o m  (1 .4 )  

where  p = 3 a / ( 2  + a ) ;  8 = (t) - tan2B0 is the integration 
constant,  and tanQo = d l / d z  a t  1 = 4 .  It is s e e n  f r o m  (1.7) 
that  diverging beams become self-focused if the initial 
divergence 8, does not exceed In the  c a s e  
of z e r o  initial divergence, the self-focusing length is 

F o r  (Y = 1, i n  part icular ,  w e  have z ,= 1 .96 .  T h e  
described self  -focusing reg ime is real ized in the inho- 
mogeneous-plasma region, where &,(A:) > I &,(z) 1, i.e., 
a t  a sufficiently high nonlinearity level. Putting A: 
= N ~ E ~ I ~ / ~ ~  I N ,  ( and stipulating a l so  k,zf > 1 ,  we obtain 
the condition f o r  the nonlinearity, which takes a t  cr = 1 
the f o r m  

It follows therefore that  the nonlinearity level  is a 
minimum a t  a beam thickness lo.: ( h 2 ~ ) ' ' 3  and is equal 
to 

E,Z/E,Z=4XILN~. 

We present  explicit formulas  f o r  the main functions 
in the case  a = 1  and a t  z e r o  initial beam divergence: 

(NoE,Em2) 
A .  = 

(NoEm'/E,2) '" 
(sin ,,,) ', ' N' = a ( 2 )  - l ( z )  

(sin Q)" ' (4+2 sinz$) " 

Z ( Z )  =lo sin Q, (1 .8)  

h e r e  $ = ($)n(l  - z/zf). We note the qualitative distin- 
guishing features  of the self-focusing regime. F i r s t ,  
owing t o  the substant ial  inc rease  of the group velocity 
with decreasing beam width, the self-focusing length 
is independent of the level of the "initial" nonlinearity. 
T h i s  circumstance in  the c a s e  of cubic nonlinearity was  
pointed out by ~ o i s e e v . ~  Second, the  limiting divergence 
of self-focusing wave beams is la rge ,  e m =  39.2', and is 
likewise independent of the level of the  initial nonlinear- 
ity, this  being the consequence of the increase  of the 
parameter  &,/&,. We note a l so  another important a s -  
pect. It is known8 that in  the l inear  Schrijdinger equa- 
tion diffraction cannot s top  the contraction of the beam 
even f o r  cubic nonlinearity, when a = 1. In our  c a s e ,  
however, because of the nonlinear increase  of the group 
velocity, the limiting degree  of nonlinearity that  sup-  
p r e s s e s  the diffraction increases  and corresponds to 
a = 2 .  Indeed, allowance f o r  diffraction leads t o  the 
appearance in the left-hand s ide  of Eq. (1 .7 )  f o r  the 
beam width l ( z ) ,  of a "centrifugal" potential u(l/Z,,)2y, 
where  

I t  is s e e n  there fore  that  the limiting degree of non- 
l ineari ty  corresponding to the condition y = O  equals 5 .  
Thus,  f o r  a > 2 the s i z e  of the focal region is de te r -  
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mined by the amplitude En of the nonlinearity saturation 
field and is  of the order  of I - ~ , , ( N , ~ ~ / N ~ ~ ) ( ~ +  a)f4. In 
the opposite case  a < 2,  the minimum beam dimension 
can be reached below the nonlinearity saturation thresh- 
old, a t  the level I- 

We now write down the geometric-optics parameter  

Consequently, a t  y > 0 (a  > 2) the conditions for  the 
applicability of the nonlinear WIG3 approximation im- 
prove with increased contraction of the beam. For  IY < 2,  
when y <  0, the quasiclassical parameter  decreases  to 
the minimum permissible value only in the focal spot. 

At a linear plasma-density profile in the region of 
interest  to us, when t,(z) =-z/L, the investigated 
self-focusing regime is realized in the region lz ~ < ~ L N Z , .  
If this dimension 2 M m  is large compared with the 
characteristic self-focusing length zf - I,, the self- 
focusing beam produces a pulsating waveguide against 
the background of slow variation of c,(z). Let  us in- 
dicate now the result  of taking &,(I) into account, a l l  the 
more  since I c,(z) I increases with increasing distance 
from the critical surface and becomes comparable with 
the t e rm &,(A:) in the dielectric constant E, of the plas- 
ma. 

Confining ourselves for  simplicity to the case  a, =1, 
we write the equation for  the width of the beam: 

The effect of interest  to us is  due to inclusion in the 
function of a sma l l  correction &,/N:. This introduces 
in  the right-hand side of (1.9) smal l  nonconservative 
te rms that produce smal l  changes in 8, which should 
be positive for  a self-focusing beam. When gbecomes  
negative, the beam becomes defocused and is  reflected. 

Averaging the nonconservative increments in Eq. (1.9) 
and using Eqs. (1.8), we ar r ive  a t  the following equation 
for  $(z): 

It follows therefore that with increasing penetration 
of the wave beam into the plasma, decreases  like 

8 (z) = [C- ( z / 2 L N m 2 ) ]  ", 

where C is a number of the order of unity. The de- 
c r ease  of tT leads to a n  increase of the amplitude of the 
oscillations of the beam width (,,,,and of the self-focus- 
ing length I,: 

which reaches values zf - I,,; LPm a t  the boundary of 
the region z - 2 L N ~ .  In that region, however, a cor rec t  
description of the nonlinear evolution of the beam calls 
for  consideration of the complete system of equations 
(1.4). We note only that the wave beam can penetrate 
deeper into the plasma only to a distance of the order 
of LNZ,. 

3) An interesting propagation regime se ts  in for  a 
sufficiently broad beam of moderate intensity a s  it 

approaches the region of reflection of small-amplitude 
waves. Let  &,(z) =-z/L, near the cutoff surface. The 
characterist ic  values of the dielectric constant and of 
the s ize  of the region where the reflected wave is for-  
med a r e  then, fo r  small-amplitude waves, 

If the energy density in the beam ensures that the 
nonlinear part  &,(A:) of the dielectric constant exceeds 
(not strongly) c,,  a broad (Z,,>>AI,) wave beam pene- 
t ra tes  fa r ther ,  into the denser plasma, in the quasi- 
one-dimensional propagation regime,  when the plasma 
transparency is  due in the case  of s!ow beam narrowing 
to the increase of the beam field a s  a result  of the 
strong group deceleration of the wave packet. The c r i -  
terion for  the field amplitude follows from the condition 

From this, taking into account the relation AZ, = Nolt E;/ 
1 2 1 ~ , (  we obtain 

A',EmZIEPZ83 (XIL) "'. 

In particular, for a t ransverse wave incident from 
vacuum we have a lower bound on the energy flux, S 
2 (2c~/8nL)I$. The diffraction spreading of the colli- 
mated beam in the region where it is transported to the 
cutoff surface is  then negligible if I,> (LX)"~. 

Analytic formulas that describe the propagation of the 
beam in the plasma under the indicated conditions a r e  
simplest  fo r  a linear profile of the unperturbed plasma 
density in the region of interest to us,  when so = -z/L. 
In this case  the refract ive index is obtained from the 
equation 

N,2=-z/L+ (NOl.ZEn,2/ I ( l 2Ep i )  '. 

Now, in contrast to the regime 2), the beam in the 
region where I co (<  E, i s  only barely narrower,  and the 
refract ive index remains at  the level N,aN,. The 
passage of the wave beam into a denser plasma z > z, 
= L N ~  is due to balancing of the linear and nonlinear 
parts  of dielectric constant. In this case 9>> 1 and the 
refract ive index is  determined by the formula 

N,=  (A',,,loZ/l2) (z,,/z)"", 

while the beam width l(z) satisfies the equation 

d21 dl 1 dl 2LX2 
1 -  dz" - --- 

( L I Z )  azdz 
+ 2 = - .  

azlZ (1.10) 

With the aid of the substitution 

Equation (1.10) is transformed into the equation of a 
nonlinear oscillator with negative friction 

with initial data 

Leaving out the diffraction t e rm,  which is  important 
only near the focal spot, we investigate the phase plane 
of the solutions of Eq. (1.11). It can be seen  f i r s t  of al l  
that the oscillator t rajectories have two singular points, 
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FIG. 2. 

a node (0,O) and a saddle (0, s,), where  s, = ( 1  +a) /20 .  
F o r  the t rajector ies  out of the node we obtain a t  s m a l l  
X 

where C, i s  the integration constant. The s e p a r a t r i x  
d ~ / d t  =f,(X) that joins the s ingular  point de te rmines  
the limiting initial divergence of the wave beam 

We note in addition that the t ra jec tory  goes off to 
infinity, and the representat ive point reaches  infinity 
within a finite time. On the whole, the phase portrai t  
of the solutions of Eq. (1.11) is shown in Fig. 2(a). The  
region of initial data  a t  which the beam becomes self-  
focused i s  shaded. 

In the reg ime considered, the self -f ocused length zf 
is of the o rder  of the initial beam width 1, and depends 
litt le on the s m a l l  parameter  z,/l,. 

The refract ive index N, has  a distinctive dependence 
on the distance. At f i r s t ,  s o  long a s  the beam narrow- 
ing is negligible, the index decreases  with increasing 
distance in proportion to (1 'z)"". Then, past the point 
a t  which the condition dl&. = - 1 ' 2 0 ~  is sat isf ied,  N, 
increases rapidly a s  the focus is approached, owing to 
the fas te r  r a t e  of the d e c r e a s e  of the beam width I(z).  

We cal l  attention to the following important peculiarit- 
ies  of this self-focusing regime. F i r s t ,  a s  can be 
easily s e e n  f r o m  Eq. (1.11), a t  any a > 0 the diffraction 
s tops  the contraction of the beam a t  a cer tain I,,, ,,. 
Second, a n  analysis of the solutions of Eq. (1.11) shows 
that in this self-focusing reg ime the number of the 
foci is  finite. After  one o r  s e v e r a l  contractions, the 
beam becomes defocused and i t s  reflection mus t  be 
considered. Finally, the parameter  

of the quasiclassical  theory increases  when the beam is 
self-focused and decreases  when it is defocused; it 
a l so  decreases  monotonically in the direct ion of beam 
motion because of the increase  of I c o ) .  

The behavior of the dimensionless  wave-beam width 
f = l(z)/lo and of the plasma dielectr ic  constant &,(A:) 
a r e  shown schematically in Fig. 2(b). 

2. ABSORPTION OF THE ENERGY OF A SELF- 
FOCUSING WAVE BEAM 

We consider the absorption of the energy of a self-  
focusing wave beam in a n  inhomogeneous plasma. Since 

the  collisional absorption is m o s t  effective a t  s m a l l  
g roup  velocities of the waves,  it suffices t o  investigate 
the  s ingular i t ies  of the energy dissipation in the second 
and third self-focusing regimes.  To  simplify the fo r -  
mulas ,  w e  confine ourselves h e r e  to  cubic nonlinearity. 

We wr i te  f i r s t ,  using (1.4), a n  expression f o r  the 
power P(z)  ca r r ied  by the wave beam along the propa- 
gation path 

P ( z )  = P a r q ,  q ( z )  =J Ix,ldz. (2.1) 

The energy-absorption efficiency will be character ized 
by a n  absorption coefficient Q, and i t  is natural to  wr i te  
i t  in the f o r m  Q = 1 - exp(-q). The absorption increases  
thus with increasing q and is appreciable  at q 2 1; for  
example,  putting q = 1.5 we obtain Q =  0.777. 

We consider  the second self-focusing reg ime of the 
wave beam. With the aid of (1.8) and (2.1) we  calculate 
the increment  of the function q o v e r  the self-focusing 
length zf: 

Next, integrating (2.2) over  the en t i re  region where  the 
second reg ime i s  real ized,  with account taken of the 
g ( z )  dependence, we  obtain the total value of q in the 
self-focusing reg ime 

Comparing (2.3) with the resu l t  go =2LI C, I /h of the 
l inear  theory, we s e e  that the contribution of the plasma 
region ( co Ic N: in  which the second reg ime of self - 
focusing of the wave beam is real ized is s m a l l  in t e r m s  
of the parameter  N,. It  should be noted, however, that 
f o r  t r a n s v e r s e  waves the joint contribution of the beam- 
propagation region &,(z)> -fi in  which the f i r s t  and 
second self-focusing reg imes  a r e  possible is barely 
s m a l l e r  than the l inear  contribution, i.e., q = go. This 
curious fact  is due to competition between two tenden- 
cies .  On the one hand, the  nonlinearity, by increasing 
the group  velocity of the waves,  d e c r e a s e s  the spa t ia l  
damping decrement ,  and on t h e  o ther  it increases  the 
depth of penetration of the beam into the p lasma that is 
opaque to low-amplitude waves. On the whole, how- 
e v e r ,  the resu l t  is found to be independent of the non- 
linearity. Of course ,  a t  very  high energy densi t ies  i n  
the  wave beam, corresponding to E2,r E;, the colli- 
s ional  absorpt ion is much lower than in the  l inear  case.  

A much l a r g e r  increase  of the collisional absorption 
of the wave-beam energy is obtained in the third self-  
focusing reg ime f o r  broad beams.  I t  was established 
above that this  reg ime is real ized a t  a beam width I, 
>> Az, and a t  energy densi t ies  N,@,/E; 2 ~ 2 ' ~ ) ~ .  In th i s  
beam-propagation regime,  the total collisional ab- 
sorpt ion contains two contributions. The f i r s t  takes 
place in the region t0(z)< 0. It  is determined f rom the 
equations of the  l inear  theory and corresponds to  Aq, 
= 40. The additional contribution is made by the region 
E ~ ( Z ) C  0 ,  and can  substantially exceed the l inear  con- 
tribution, i.e., Aq, > go. Le t  us  calculate it  over  the 
self-focusing length z,. Substituting in  (2.1) the  re f rac-  
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tive index in the form corresponding to the third self- 
focusing regime, we write the result  in the form Aq, 
=q0xJ, where 

Since Sf - 1, the factor J does not contain large 
parameters and is of the order of unity. For  example, 
for  lo=20z, and cubic nonlinearity we have t f -  1.42 and 
J= 0.3. Consequently, an  appreciable excess of Aq, 
over go can be reached only on account of the factor X,  
which is equal to 

here  pm2 E,. Stipulating Aq, > Aq,, where A is  a certain 
number that determines the desired value of the colli- 
sional absorption 

we obtain the following condition for  the width of the 
wave beam : 

In the case  of cubic nonlinearity, taking A = 9 from 
(2.4), we have 

which can be satisfied a t  l,,< L. 

3. CONCLUSION 

We have thus investigated above, in the case  of s tat ic  
local nonlinearity, the features of stationary self- 
focusing of intense wave beams and the collisional ab- 
sorption of their energy in an  inhomogeneous plasma. 
Of course, the analysis presented does not cover al l  the 
aspects of nonlinear dynamics of wave beams in an in- 
homogeneous plasma. In particular, a self-consistent 
allowance for  the parametric and modulational instabil- 
ities in the nonstationary problem calls for  a special 
treatment. 

We discuss now the conditions for  the realization of 
a sca lar  model for  the investigation of self-focusing of 
wave beams. We consider f i r s t  Langmuir oscillations. 
We write down the known equation for  the complex am- 
plitude of the high-frequency potential of a wave packet 

where 6a is  the perturbation of the plasma density. It 
is seen thus that in the stationary case  the component 

E ,  of the electr ic  field of the wave beam satisfies Eq. 
(1.1). 

For transverse waves, the beam field satisfies the 
vector equation 

The problem becomes sca l a r  if the interaction of the 
polarizations can be neglected; this can be done if En 

<< E,. If the inverse condition &, i E, is satisfied, the 
t e rm with div E is  generally speaking not smal l  and the 
vector problem must be solved. In the case of thick 
beams of width b>> l/k,, the coupling of the polariza- 
tions is weak a s  before. In addition, an analysis of 
the self-focusing instability a t  I &,I<< &, shows that 
allowance for  div E leads only to smal l  corrections. 
This allows us to state that the sca lar  problem des- 
cribes correctly the character  of the self-focusing of 
beams of transverse waves in the region E ,  2 6,. 

It should be noted that f o r  intense wave beams with 
electric-field amplitudes E 2 m,cw/e an important role 
in the penetration beyond the cutoff surface n =nc is 
played by the stat ic  nonlinearity due to the relativistic 
dependence of the mass mc of the ca r r i e r s  (in this case.  
electrons) on the beam field. 

The authors thank S. S. Moiseev for  helpful discus- 
sions. 
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