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An equation for the correlation tensor of the magnetic field in a high-conductivity turbulent liquid is obtained 
on the basis of the Lagraqh approach. This equation is analyzed for all presently known types of 
turbulence. It is shown that an exponential growth of the magnetic fluctuations (a turbulent dynamo) takes 
place in a Kolmogorov turbulence at high magnetic Reynolds numbers. The relation between the kinematic 
viscosity and the diffusion coefficient of the magnetic field is of no significance in this problem. An analysis of 
few-mode turbulence shows that a field is generated in this turbulence, too. Finally, a concrete form of the 
equation for the magnetic-field correlation tensor is obtained for turbulence with intermittence and it is shown 
that the latter also gives rise to the turbulent-dynamo effect. 

PACS numbers: 47.25.Jn, 05.40. + j 

Magnetic-field generation under astrophysical condi- In other words, the principal question of the SSMF the- 
tions is among the most pressing problems. There a r e  ory, whether a turbulent medium generates SSMF, r e -  
many so-called laminar models, wherein the genera- mained unanswered. 
tion i s  effected by simple motion of a conducting plas- 
ma. More extensively used in applications i s  develop- 
ment of methods of field generation in a turbulent med- 
ium. The turbulence is characterized by an external 
scale I. The magnetic field i s  called large-scale if the 
averaged component (H) does not vanish and in this 
case  the field scale L>>1. The dynamics of a large- 
scale field has by now been relatively well investigat- 
ed. An exact theory that describes the field (H) has 
been developed. However, even without an exact theo- 
r y ,  the main dynamic processes in a large-scale field 
can be obtained from dimensionality considerations 
(just a s  the macroscopic equations a r e  deduced heuris- 
tically in electrodynamics), and a r e  therefore subject 
to no doubt. 

The development of an exact theory of large-scale 
fields3.' made it possible to study the SSMF. A de- 
scription of the dynamics of SSMF was first  presented 
for a highly conducting plasma (large magnetic Reynolds 
numbers Rm>> R ,  where R is the Reynolds number). 5 , 6  

In essence, the problem of the turbulent dynamo was by 
the same token solved, since, a s  already stated, the 
ra tes  of the two competing processes a r e  independent of 
the electric conductivity. Nonetheless, a rigorous con- 
sideration of the case  R m  S R  was necessary .' The r e -  
sults of the two cases R,>>R>>l and R > Rm>> 1 ,  a s  ex- 
pected, coincide: in both cases the turbulent liquid 
generates a field. Nonetheless, no complete theory 
was developed in Refs. 5-7. In the present art icle we 
develop a consistent SSMF theory that allow us  to con- 

Small-scale magnetic fields (SSMF) a r e  defined as  sider a much larger class of turbulent motions than 
those whose scale i s  comparable with or  smaller than heretofore. In particular, we consider below turbul- 
1. Even though turbulence theory started out precisely ence with few modes (of the strange-attractor type) and 
with the consideration of SSMF,' the theory subsequently turbulence with intermittence, a s  generators of mag- 
developed dealt almost exclusively with large-scale netic fields. 
fields. The point i s  that only an exact SSMF theory 
could be developed, and neither approximate nor heur- 51. SSMF DYNAMICS EQUATIONS 
istic approaches could prove anything in this case. SSMF dynamics in a highly conducting medium (in 
Likewise, nothing was proved by the analogy between 

which the freezing-in condition is satisfied) i s  defined 
the  (nonlinear) equation for curl  v v i s  the velocity) and 

b/ the enact solution 
the  (linear) eauation ~ r o p o s e d  for H in Ref. 1. The dif- - - 
ficulties of the problem were recognized following the atzi z ~ , - l ~ ,  

H i  ('x, t )  = - H,('a, 0) = lim - Hj('a, 0). 
rl'a, *.-a. 'a,-'aj 

(1) 
publication of Ref. 2. We indicate here the principal 
ones. The dynamics of a field of a given scale (smaller 
than 1) i s  determined by two factors. F i rs t ,  the field 
is generated in this scale; second, i ts  scale decreases 
and as a result the  energy of a field of a given scale de- 
creases.  The r a t e s  of these two competing processes 
a r e  of the same order of magnitude, and the theory must 
determine which of these processes prevails. These 
velocities, of course, do not depend on the viscosity v 
and on the electric conductivity a at the scales of in- 
terest  to us,  where the freezing-in of the magnetic field 
in the moving plasma i s  substantial. Since there was no 
exact theory until recently, the question of which of the 
two competing processes predominates remained open. 

Here 'x and 'X a r e  the coordinates, at  the instant of 
time t ,  of the liquid particles that have emerged from 
the points 'a and 'a at  the instant t= 0. We confine our- 
selves to a homogeneous, isotropic, reflection-invar- 
iant turbulence. In addition, the f irst  moments a r e  
equal to zero: (v)= 0 and (H) = 0. The correlation- 
tensor t ime evolution i s  described by the expression 

2x -'x . X , - ~ Z ,  
B.,=(H, ('x, t )  H,('x, t )  >= I lim --I------ 

~ ~ - 3 ~  'a,,-'an3 'am-'a,, 
'.4. 

x p (axl @a, t )  B,,. ('a, 'a, 0) d'ad%dd2xd'x. (2 ) 

We have introduced here the distribution function 
P ( ~ X  I 'a, t )  (the Greek indices run through the values 1, 
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2, 3, and 41, namely the density of the probability of 
finding the liquid particles at  the point "x under the 
condition that they were located at the point a a  at t 
= O .  Equation (2) incorporates averaging over the in- 
itial coordinates of the liquid particles (integration with 
respect to 'a and 3a),  over close trajectories (integra- 
tion with respect to 'x and 4 ~ )  and over the initial dis- 
tribution of the magnetic field. The latter i s  assumed 
to be uncorrelated at t=O with the velocity field. This 
i s  why Bm, is separated in (21, and for the same reason 
expression (2) should be considered at  t>> T, where T 

is the "memory" time (in the present case  7 i s  the cor-  
relation time), when the system "forgets" the initial 
data and goes into a universal regime. 

In the kinematic formulation of the dynamo problem, 
to which we confine ourselves, the motion of the con- 
ducting liquid is assumed given. In this case  it i s  nec- 
essary to specify the function p. For r ea l  turbulence, 
however, the concrete form of this distribution function 
i s  unknown, it contains a large number of variables. It 
was found to be much simpler to specify not the distri- 
bution function itself but the equation for it. In the next 
section it will be shown that in the general case the 
equation for p takes at t > > r  the form 

(we sum over repeated Greek and Latin indices). The 
tensor Ti, has the properties of the correlation tensor 
of the solenoidal stationary field. 

Using (3), we can change from (2) to an equation for 
B,,. To this end me differentiate Bij with respect to t .  
In the right-hand side of (2), only the distribution func- 
tion depends on t .  We replace ap/ at in accord with (3). 
It i s  next necessary to take all the differential operators 
aa i  outside the limit sign and reduce all the equations to 
a form that coincides with the right-hand side of (2), 
on uhich the operators ,ai  act in addition. Cumber- 
some but straightforward calculations (see Ref. 5) lead 
to the following equation for Bij: 

Equation (4) follows directly from the exact solution (1) 
[with allowance for (311, which i s  valid, as stated, when 
the freezing-in condition is  satisfied. It i s  necessary 
here to refine this condition and make it more specific. 
In the most general case it takes the form 

where L i s  the SSMF scale,  D = c 2 / 4 r ~ ,  v, is the mean 
squared value of the velocity of the scale L ,  and L - C l  

in accord with the definition of the SSMF. In a r ea l  tur- 
bulence v, decreases with decreasing L (at L < I ) .  For 
a Kolmogorov turbulence, requirement (5) leads to the 
condition 

l/mio(R'"R;, R:} < ~ < 1 ,  (6) 
R,=ul/D, R=ullv. 

Equation (6) contains two limiting scales. This i s  due 
to the presence of two regimes, R>>Rm>>l and Rm>>R 
>> 1. In the first regime, the ohmic dissipation becomes 

substantial even in the inertial region, while in the sec- 
ond the dissipation comes into play at  scales much smal- 
le r  than the viscous ones. 

In the general case  of a power-law (not necessarily 
Kolmogorov) turbulence spectrum, condition (6) chang- 
e s  but (5) remains the same. In the inertial region, 
where neither viscosity nor ohmic diffusion i s  signi- 
ficant, the tensor equation (4) can be transformed into 
the differential equation 

Here B,, i s  the longitudinal correlation function (see 
Ref. 8) of the magnetic field: it i s  a function of the 
modulus Y = I 3x - 'x I of the distance between the points 
and of the time t .  The coefficient T, is determined 
from the longitudinal correlation function T,, (Y), which 
is obtained from the tensor Tii , 

andA i s  a constant. The tensor Ti,, just a s  the func- 
tion T,,, has the dimension of the diffusion coefficient; 
the exponent a! can be determined from dimensionality 
considerations. For  a kolmogorov turbulence we have 
a!=4/3 (the Richardson "4/3 lawH8). For a turbulence 
with intermittence we have a! > 4/3 (see 95). The exact 
values of A and T, a r e  unknown, and in the theory de- 
veloped below it suffices to know their order of magni- 
tude: A=vl ,T,=vl / lO.  

The region of applicability of (7) for a Kolmogorov 
turbulence is 

At R m >  R the region (9) coincides with the inertial re-  
gion, while a t  R m <  R the lower limit of r  i s  determined 
by the ohmic damping. We shall discuss in greater de- 
tail the case  R m >  R. The region (6) includes in this 
case the region (9). In the interval 

according to (6), the frozen-in condition i s  satisfied, 
and there a r e  practically no velocity pulsations because 
of the viscosity. At such small  values r <  1, it is neces- 
sary  to use in place of (8) the expansion 

T , )  T i - T  

In order of magnitude T = vl and T ,  = R"~v/z,  where T, 
i s  the reciprocal lifetime of the smallest turbulence 
pulsations, whose scale i s  determined by the viscosity 
(and i s  equal to 1, according to (10)). Substituting (11) 
in (4) we obtain the equation 

-- 
2 at  

(12) 
- 

which can be obtained from (7) by putting a! =2  and T, 
= T , / 2 .  

Equation (7) is thus a universal description of the be- 
havior of the SSMF. In the region (9), for a Kolmogor- 
ov turbulence, we must put a! = $ in (7). In the scale 
region (10) (which exists only a t  R m >  R) ,  Eq. (7) is 
valid and a = 2. 
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92. DERIVATION OF EQUATION FOR THE 
DISTRIBUTION FUNCTION 

In the general ca se  the equation for  p can be written 
in the form 

The problem i s  to determine the operator L^. We de- 
r ive  f i r s t  an equation for  the two-point distribution func- 
tion p,: 

It is  useful to compare the dynamics of p, with the 
correlation function of the sca lar  admixture 0,('x, 'x, t )  
= (8('x)8 '(,x)). The functions 8 and 8 ' satisfy the equa- 
tion 

d 
- B=-a,u,B+xAO, div v=0, 
at 

in which x i s  assumed to be very small .  The function 
0, is uniquely determined from p ,  (see Ref. 5). On the 
other hand, f rom the equation fo r  8, we obtain an  equa- 
tion p,. Indeed, from the linearity of (15) follows a 
linear equation for  0 , :  

The solution of (16) with initial admixture density 

i s  none other than p,('x,*x lla,'a, t )  (by definition). At 
t>>r  the kernel of (16) does not depend on t in stationary 
turbulence: 

Consequently, the equation for  p, can be written in the 
form (161, and K is  independent of the t ime at t>>r.  

It follows from (15) that 8 (x , t+  At) ( a t  i s  small)  de- 
pends on the f i r s t  and second spatial derivatives at  the 
point x and a t  the instant t ,  and the function 8(x, t + At) 
"knows nothing" of the points fa r  from x. Accordingly, 
t he  s a m e  (locality) property should apply also to Q,. 
This means that the operator in the right-hand side of 
(16) is  a differential one, and consequently also 2, 
in (14) i s  a differential operator that depends only on 
'x and 'X (since there i s  no dependence on 'a o r  'a in 
(16)). Using now the exact solution of (15) a s  x -0: 
B('x,t)=0('a,O) [cf. (I)],  we obtain an expression for 
the autocorrelation function 0;= (8('~)8(~x))-by analogy 
with (21, Changing now to the equation for  0; (in analogy 
with Eq. (4) for  B,,), i. e .  , taking the derivative of 
0; with respect  to t and using (14), we obtain for 0;, 
in place of (4), an equation that coincides exactly with 
(14). Thus, Eq. (14) i s  satisfied not only by p ,  but also 
by 0, and 0;. 

Everything stated above in this section imposes such 
stringent limitations on the operator i, in (14), that i ts  
fo rm i s  determined without difficulty. We note f i r s t  the 
ensuing consequences. F i rs t ,  the operator L, can be 
represented a s  an expansion in powers of the operator 
"a,, and the expansion i s  confined to a sum of a finite 
number of t e rms  (otherwise i, is  no longer a differen- 

t ial  operator but i s  in fact integral). Second, the opera- 
t o r  i, i s  self-adjoint ( see  Ref. 5). The expansion con- 
tains therefore only even powers of the operator " a,. 
Third, in the case  of homogeneous turbulence the de- 
pendence of i , o n  'x and 'x should enter  in the form r 
='x-'x. Fourth, the operator E ,  should be such that 
Eq. (14) preserves  the properties 

p z ( ' ~ = Z ~ I  'a, 'a, t) - 6 ( ' ~ - ~ a ) ,  

From the last  of these equations it follows that L, 
does not contain t e rms  of zeroth power of " ai. Allow- 
ance for  al l  four corollaries leads in the operator to a 
second-order t e r m  that coincides with the right-hand side 
of (3), where a,P= 1 ,2 .  (The equation for p, i s  in fact 
obtained from (3) by integrating with respect  to 3x and 
4~ o r  with respect  to 3a and 4a;  a s  a resul t  we have an 
equation of the s ame  form a s  (31, but with a, /3 = 1,2 .  ) 

To continue the analysis we need additional corollar-  
ies  of the foregoing properties of the operator i,. We 
shall regard  (14) a s  an equation for 0;. It should r e -  
tain the properties of the correlation function 06. This 
means that the form 

F = J c ('x) C' ('x) e2' ( 'x ,  'x) d 1 x 8 x  

should remain non-negative in the course of the evolu- 
tion of 0;. To verify this property we assume that a t  
the instant t = to>> T we have 

and F = 0. The operator i, should be such that aFl  at 
2 0 a t  t = to, otherwise the form F becomes negative. 
This is  the fifth corollary, and with i t s  aid we verify 
that the tensor Ti, in (3) sat isf ies the properties of a 
correlation tensor. Finally, the sixth corollary. The 
solution of Eq. (15) preserves  the minimum of 0 ,  i. e .  , 
if 8 > 8(xo) a t  t = to, then 8 2 Bo(.x0) a t  t 2 to. For  0; we 
have similarly: if 0; O;(xo, xo) at  t = to, then 0,' 
2 O,'(xo,xo) at  t 2 to. It follows therefore that t e rms  of 
fourth (and higher) order of the type T1aia:ajamp, a r e  
absent from the operator i;: at  an arb i t ra ry  fourth de- 
rivative of the function 8 '  a t  the point xo they would 
cause violation of the  sixth corollary. 

The only possible form of the fourth-order t e rm in 
i2 i s  

and does not contradict the f i r s t  four corollaries.  This 
t e rm generates in turn second-der ivative t e rms  that act  
on p, (and were  analyzed above), third-derivative t e rms  
that do not make up a positive-definite form and can 
cause the form F to become negative, meaning that they 
a r e  not contained in the operator L,, and finally, a t e rm 
in which a l l  the four operators "ai act  on p,. But even 
this t e rm i s  absent from e,. To verify this, it suffices 
to compare the form F with the function C(x) of the type 
written out above. It is  absolutely necessary here  to 
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use (17) (the third equation), from which it follows that 
Tijfm(r = 0) = O .  If Tijf,(r) were  to have the propert ies 
of a correlation tensor,  the fourth-order above t e rm 
could be contained in i,. The entire point i s  that the 
vanishing of Tijf, a t  r = 0 is  not compatible with the 
properties of a correlation tensor.  An analysis of t e rms  
of sixth and higher order i s  perfectly analogous to the 
foregoing: they must not be contained in the represen- 
tation of the operator 2,. The general conclusion i s  
that Eq. (14) coincides with (3) in which a , P =  1,2.  

We proceed now to an  analysis of the general expres- 
s ion (13) for a four -point distribution function p. The 
properties of the differential oper-ator a r e  determined 
in analogy with the properties of L,. All s ix  foregoing 
corollaries (with the exception of the third) can be gen- 
eralized to the four-dimensional case  without any dif- 
ficulty. The form F is  modified in this  case  into 

C(x) =C,G (x-s,) +C,G (x-x,) + C,G(x-x,) +C,6 (x-x,), 
@.=@'('x)@'('s)0'(k) @'(.x) for t=to 

Analyzing the t e rms  of fourth (and higher) power of the 
operator "ai ,  we can show that their presence in the 
representation of the operator leads inevitably to a 
negative form F if F = 0 a t  t = to. 

Let u s  summarize the present section. The locality 
property leads to a differential form of the equation for 
p.  Numerous restr ict ions,  mainly connected with the 
fact that the equation for p must preserve  the proper-  
t ies  of correlation functions, lead to the result  that the 
operator L cannot contain derivatives of order higher 
than the second. Therefore the general form of the 
equation for p coincides with Eq. (3 ) .  

g3. GENERATION OF SSMF IN  THE PRESENCE OF 
KOLMOGOROV TURBULENCE 

All the previously considered particular  case^^-^ can 
be formulated and easily generalized in the general 
theory with the aid of the universal equation (7). For a 
Kolmogorov turbulence, the region of applicability of 
Eq. (7) is  (9) and always exists. We do not know the 
equation for BLL a t  a rb i t ra ry  Y. We can only say that 
in the general case  it reduces to a self-adjoint form 
(see Ref. 5), it coincides with (7) in the region (9) and 
in the region of extremely smal l  sca les  Y, where damp- 
ing manifests itself, the equation for BLL is  

For intermediate scales,  the equation for  BLL i s  un- 
known (with the exception of the particular case  R m  
>>R, which will be discussed in 54). Finite dissipation 
(D + O )  eliminates the singularity from the equation BLL,  
namely the vanishing of the  coefficient of the senior de- 
rivative in (7). The eigenfunction problem 

of the general equation for BLL is therefore meaning- 
ful. Since the operator i s  self-adjoint, al l  the eigen- 
values En a r e  real .  The existence of En < 0 (the analog 
of bound states in a sufficiently deep "well" of the 

Schrodinger equation) corresponds to an exponentially 
growing solution. In our ca se  the analog of the poten- 
tial of the Schrodinger equation is  not known in al l  of 
space: it is  known in the region (9) and for  extremely 
smal l  r. The question is  whether the potential can 
"capture particles" into a bound s ta te  in the region (9). 
To obtain the answer to this  question, a variational 
principle was used in Refs. 5-7. We describe here a 
simpler  and more  illustrative method, with which we 
shall operate hereafter. 

Assume that there  a r e  no growing solutions. Then a l l  
En > 0. We est imate the lowest eigenvalue E,. We note 
for  this purpose that the characterist ic  frequencies of 
the problem vary in a Kolmogorov turbulence from v/l 
(the reciprocal  lifetime of the largest  pulsations) to 
m i n { ~ ' / ~ , R i / ~ ) u / l  (the reciprocal t ime of rotation of 
the cel l  with the smallest  sca le) .  It i s  obvious that E, 
i s  of the order  of (or l e s s  than) the lower frequency 
v / l ;  otherwise the dynamic solution, represented in the 
form of the eigensolutions with initial SSMF of scale 
I would describe too rapid a damping of the field. In 
fact, such a field changes within a t ime I/v. Replacing 
a/at in (7) by -E, and using the estimate of T, (see 51) 
we see  easily that the left-hand side of (7) i s  negligibly 
small  compared with the right. Therefore the eigen- 
solution can be sought in the form B,(Y)-ra by setting 
the right-hand side to zero.  The result  for 6 i s  

The value of P at  a = 4 (Richardson's law) i s  found ac-  
cording to (18) to be complex. This means that B,(r) 
r eve r se s  sign, whereas the lower eigenfunction should 
be of constant sign. Thus, the assumption that there  
a r e  no growing solutions has led to  a contradiction. 
The converse, that dynamo solutions exist,  does not 
lead to a contradiction. Indeed, in this ca se  E,<O, and 
the minimum E, has the maximum modulus. Then 

I E ,  I = min {R'", R,'") , (19) 
I 

which i s  the maximum frequency of the problem in the 
region (9) and i s  of the order  of the growth r a t e  of the 
field. Replacing a / a t  in (7) by this value of -E,,  we see  
that in this ca se  the left-hand side i s  not smal l  com- 
pared with the r ight ,  and B, - ra is no longer a solution 
of (7). In this ca se  it i s  convenient to seek  the solution 
of (7) by the WKB method: B, - expi k(r)dr .  In the 
f irst-order approximation k2 =Eo/2T,re. At E, given by 
(19). this a ~ ~ r o x i m a t i o n  i s  self-consistent: a constant- . , - 
sign B, i s  obtained only for  pure  imaginary k ,  i. e . ,  a t  
E, < 0. Thus, a Kolmogorov turbulence generates an 
SSMF. 

$4. TURBULENCE WITH FEW MODES (OF THE 
STRANGE-ATTRACTOR TYPE) 

It has become c lear  recently that stochasticity can oc- 
cur  in a system when the number of interacting modes 
is small .  Such a system i s  called a strange at tractor  
( see ,  e .  g. , Ref. 9) .  Let us  consider the problem of 
generation of a magnetic field, if the velocity pulsation 
i s  described by a sma l l  number of modes (Fourier  har- 
monics). It i s  difficult to indicate concrete applica- 
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tions of field generation in such a model. There a r e  
probably none in astrophysics. Nonetheless, consid- 
eration of the strange attractor a s  a field generator can 
cast light on the simplest class of motions capable of 
producing the dynamo effect. Much attention is being 
paid to the simplest generators, since they should be 
abundant in nature. Another aspect of the matter (pos- 
sibly somewhat unexpected) i s  that consideration of a 
model with few modes permits a new examination of the 
generation of SSMF by a Kolmogorov turbulence in the 
particular case R,>>R. 

Let the velocity field be described by a sum of har- 
monics: 

H e r e u k + O i f k = k , = 2 n / l a n d u k = O i f k + k , .  By the 
same token we consider all the modes whose wave vec- 
tor has a modulus k, o r ,  more accurately, i s  close to 
k,, since a discrete set  of wave vectors i s  used. For a 
more specific description of the amplitude u,(t), we 
break up the time t into intervals (t,-,,tn): 

Within each interval, u, i s  independent of time. There 
a r e  two linearly independent vectors perpendicular to 
the vector k (two polarizations). We shall assume that 
u in the given interval i s  parallel to one of them: u,. k 
= 0 and u: .uk x k = 0 (linear polarization). In the next 
interval, the amplitude u, has the same property, i. e. , 
the velocity field represents a linearly polarized wave 
with zero frequency, i.  e. , the velocity is stationary, 
but with a new amplitude u,. The modulus of the ampli- 
tude i s  preserved, only the direction of k and the phase 
change. The new amplitude does not correlate with the 
old one. The field v i s  a process stationary in time 
(but not in space-therein lies the similarity with the 
strange attractor). The length of the interval tn - tn-, 
i s  likewise a stationary random process, and the cor-  
relation time (or memory time) is obviously T =  (t, 
- t,-,} averaged over the different n. The velocity field 
has four degrees of freedom: two angles, which specify 
the direction of the wave vector k, the angle character- 
izing the polarization of the wave, and the phase of the 
wave. In a given time interval there is realized only 
one value of each of these quantities (a point in four- 
dimensional space). It must be kept in mind that at each 
given instant of time the velocity field is one-dimen- 
sional: it depends on direction of the vector k. Some- 
times the dynamo process i s  connected with gyrotropy 
in the velocity field. A gyrotropic field i s  defined a s  
one for which the pseudoscalar (v . curl  v) * 0. The gyro- 
tropy is  in fact significant in the generation of large- 
scale magnetic fields. It will be shown below that an 
SSMF is generated in the considered velocity field for  
which v curl  v= 0. 

All the mean values for the given random process 
should be understood a s  averaged over the time or  over 
an ensemble of realizations. For the dynamo to work 
it i s  necessary to satisfy the condition Rm=vE/D>> 1. 
In this case v coincides with the constant (in absolute 
value) amplitude u,. The theory developed in 61 makes 

it possible to obtain an equation for BiJ  without solving 
the induction equation for each time interval. In fact, 
the random process described is a particular case  of the 
general one described by Eq. (3)  if the averaging, mean- 
ing also the corresponding probability distribution, i s  
understood in the sense defined above. Consequently, 
the equation for  B i j  coincides with ( 4 ) .  The problem now 
is  to determine the tensor T i ,  in (4). This i s  easiest to 
solve in the case  of an isotropic process corresponding 
to uniform distribution over all four degrees of freedom. 
Then T , j  i s  an  isotropic solenoidal correlation tensor. 
This is still not enough to make i ts  general form clear,  
but at r<< E i ts  form is uniquely defined and written out 
in (11). The corresponding equation for the SSMF coin- 
cides with (12). 

We consider three cases: 1) T<< 1/u, 2) T=L/zr,  3)  
r>> l/u. The first corresponds to the "white noise" 
of the velocity field and to a Markov process for the 
magnetic field. Only in this case  can the coefficient 
T ,  in (11) and (12) be determined exactly. In the two 
other cases T ,  can be determined only in order of mag- 
nitude. However (and this i s  the advantage of the theo- 
ry ) ,  this suffices to cast light on the main question: 
is an SSMF generated? The coefficient T ,  has the phys- 
ical meaning of the average rate of the relative change 
of the distance r between the liquid particles. More 
concretely, 

Here a is  a dimensionless constant of order unity. The 
numerator contains the mean squared distance between 
the particles after a time T. Division by T gives the 
r a t e  of change of the squared distance. The quantity 
(#) in the denominator corresponds to the fact that the 
relative velocity is being determined. The expression 
for r ( t )  in each interval is obtained without difficulty. 
In a coordinate system in which the vector k is parallel 
to the x axis and v to the y axis we have 

The distance increases linearly with time. We turn to 
the f irst  case of the Markov process. According to (20), 
([r(tn) -r(t,-,)]2) - 72 (since y, i s  independent of time). 
For the small  distances r<< 1 of interest to use the quan- 
tity V,(~X,) -vY('x1) i s  replaced by 'r,3u,,/ax. Conse- 
quently 

It is appropriate to recall  here that within the frame- 
work of a Markov process one can obtain for B i j  an 
equation that contains the Euler characteristics of the 
velocity. Since Markov processes have been well in- 
vestigated, we can present directly the result of such an 
analysis. The tensor T i ,  i s  expressed in this case  in 
t e rms  of the Euler velocity 

(see Ref. 5), the coefficient T ,  i s  defined in the expan- 
sion (11) of this tensor in powers of r and is  indeed 
of the same order a s  (21). The equation for B i ,  in the 
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region r,<< r < < l  (r, i s  determined by the ohmic dissi- 
pation) agrees  with (12). The advantage of the Markov 
process is  that it i s  possible to obtain for it an  equation 
for  Bi j  a t  arbi trari ly smal l  r. The general equation 
coincides a t  r<< 1 with (12), except that the right-hand 
side contains an additional t e rm DAB,,. Thus, the gen- 
e ra l  theory of SSMF corresponds in the limit T<< I/U to 
a Markov description obtained for the SSMF in an en- 
tirely different manner. 

We proceed now to the ca se  2): ~ = l / v .  According 
to (20) 

therefore ~ = a / ~ = v / l .  Finally, for  the third case  7 

>>l/v we can again write  [r( tn)  -r(tn,)I2=?(t,) with the 
previous value T, = a/7,  but now T,<< v/l.  All three 
cases  can be combined into one by the interpolation for- 
mula 

Equation (12) was analyzed in Ref. 5 with the aid of var-  
iational principle. We use here  the method described in 
$3 to find the growing solutions. We seek the solution 
in the form ~ , ( r ) e - ~ o ~ ,  ~ , ( r )  - re. Substituting this ex- 
pression in (12) we have a condition on B :  

from which it follows that only a t  E,< - Y T ,  is rea l ,  
and the lower eigenfunction does not reverse  sign. 
Thus, an exponentially growing solution does exist. 
The growth r a t e  y of the dynamo instability is  of the 
s ame  order  a s  T, written out in (22). It i s  seen from 
this expression that a s  7 - 00 we have y - 0 and there  is 
no dynamo. This i s  a natural result: a s  7 - m  we 
actually a r r ive  at  one-dimensional motion during the en- 
t i r e  time. In an unbounded medium, however, one-di- 
mensional motion (the particular c a s e  of planar motion) 
does not generate a field, and y tends therefore to zero.  
The growth r a t e  is a maximum at  T =1/v. 

We recall  that the very equation (12) used in the pre-  
sent section corresponds to the region (10) that appears 
in the Kolmogorov turbulence a t  R,>>R. The compari- 
son is  complete if the scale I and the velocity v of the 
present section a r e  compared with 1, given by (10) and 
with the corresponding velocity of the smallest  pulsa- 
tions of the Kolmogorov turbulence. The c a s e  Rm 
>>R was considered in Ref. 5. The derivation of the 
equation for p in Ref. 5 differs substantially from that 
given in 82. The point is  that in Ref. 5 was obtained 
an equation for the dynamics of extremely close liquid 
particles (r<< minil, I,}), whereas in D2 the distances 
between the part icles a r e  a rb i t ra ry .  Nonetheless, the 
general equation (3) for p can be justified by using the 
resul t s  of Ref. 5. In fact, it i s  shown in that re ference  
that the equation for p is  differential, and that the oper- 
ator L [see (13)] does not contain derivatives of order  
higher than the second. Since Ref. 5 deals with ex- 
tremely close particles, it can be stated that in that 
reference was proved the vanishing, a s  r - 0 of the ten- 
so r s  for t e rms  of fourth o rde r  in "a, and of 
analogous te rms for  higher orders .  But the vanishing 

of Tijfm(r) a s  r - 0  means identical vanishing of this 
tensor,  since it should possess the properties of a cor-  
relation tensor (see 62). 

A generator with few modes i s  the simplest model of 
turbulence and i s  therefore most useful for  the under- 
standing of the  turbulent-dynamo process. The power 
spectrum of the velocity pulsations i s  proportional to 
6(k-ko),ko=2r/ l ,  s o  that the turbulence can be regard- 
ed a s  "single-scale. " A rea l  turbulence is  character-  
ized by a la rge  number of modes with different scales,  
but the  main interaction of the SSMF with the velocity 
field is  effected quasilocally. This means that the be- 
havior of an SSMF of a given sca le  is  determined by 
velocity pulsations of the s ame  scale,  and the interac- 
tion t imes of the two competing processes mentioned in 
the introduction is  determined by the s ame  velocity pul- 
sations (equal in order  of magnitude to the  t ime of ro-  
tation of the cell).  It is  therefore not surprising that 
the SSMF generation does not depend on the rat io R J R .  

85. INTERMITTENCE OF THE TURBULENCE 

Recent experimental and theoretical investigations 
shows that the small-scale s t ruc ture  of the turbulence 
i s  not spatially homogeneous within each cel l  of s ize  
I (see, e .  g. , Ref. 10). The smal l  vortices into which 
a la rge  vortex breaks up do not fill  the space of this 
vortex completely. This leads to a non-kolmogorov 
turbulence spectrum. We shall use  quantities averaged 
over spatial dimensions la rger  than I. Then a l l  the pos- 
sible probability distributions and characterist ics  of the 
SSMF will be homogeneous. In part icular ,  the tensor 
@Ii(x + r)H,(x)) will be homogeneous (independent of x )  
for  such averaging and for  arbitrari ly smal l  r corre-  
sponding to sca les  that a r e  smal l  compared with I. The 
SSMF theory developed in 6 1  i s  preserved,  and the dy- 
namics of the SSMF i s  described by the universal equa- 
tion (7). 

The quantity cu in (7) determines in accordance with 
(8) the measure of the diffusion of the pulsations of 
sca le  r < 1. From dimensionality considerations we 
have 

T u  ( r )  -E ( r )  T,, 

E ( r )  i s  the energy of pulsations of sca le  r, and 7, i s  
their lifetime. According to Ref. 10 we have 

Here N i s  the so-called similari ty dimensionality. If 
the smal l  vert ices were  to fill the entire three-dimen- 
sional space,  N would be equal to three and E - ?I3, 7, 

- $ 13. The value of a in this ca se  i s  +, and the power 
spectrum coincides with the Kolmogorov spectrum. The 
available experimental data point to N=2 .5  (the so- 
called 2.5-dimensional space). This conclusion, how- 
ever,  i s  not unambiguous. We assume therefore that 
N is  a rb i t ra ry  but l e s s  than three.  Then a >*. 

We shall analyze Eq. (7) for  the SSMF by the  method 
described in 63. All the arguments that lead to relation 
(18) remain in force. All that changes is  the region of 
applicability of (7) 
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[in place of (911 and the region of variation of the char- 
acteristic turbulence frequencies from 

It is  easily seen that the radicand in (18) i s  negative at 
a >* (i. e . ,  a t  N <  3). Consequently, the lower eigen- 
value E,  cannot be positive. The negative eigenvalue is  
estimated in analogy with (19): 

This is in fact the growth ra te  of the field. At N =  3 it 
coincides with (19), and a value N <  3 gives a larger 
growth rate. 

s6. PHYSICAL INTERPRETATION OF SMALL SCALE 
TURBULENT DYNAMO 

1. Thus, the SSMF theory predicts an exponential 
growth of the magnetic field for all  the known types of 
turbulence. The universality of the solutions of the 
problem for all  types of spectra i s  due to the quasilo- 
cality, indicated in 94, of the interaction of the SSMF 
with the pulsations of the velocity field. The ra tes  of 
the two competing processes (see the Introduction) a r e  
determined for an SSMF of scale r by the velocity-field 
pulsations of the same scale. The SSMF dynamics was 
interpreted in Ref. 2 by using the approximation of the 
direct Kraichnan interaction, while in Ref. 11 the dif- 
fusion approximation was used. However, a s  empha- 
sized in Ref. 2, no approximate scheme o r  model (in 
particular, the Markov model) has the force of proof. 
The results of the theory developed above agree with 
the results of the approximation schemes in Refs. 2 
and 11, and this circumstance is an argument favoring 
the latter. 

2. The result of an exact analysis of the SSMF shows 
that the growth ra te  of the SSMF energy prevails in a 
turbulent medium over the r a t e  of the cascaded trans- 
fer of the SSMF energy into smaller scales. We pre- 
sent an illustrative interpretation of this phenomenon. 
In the presence of a frozen-in field, the flux through the 
liquid contour i s  conserved: 

Here A i s  the vector potential, C i s  the contour around 
the surface S. We locate the contour in such a way that 
the force lines of the field H cross  it normally. The 
contour C isolates a field force tube. The streamlines 
a r e  stretched in the turbulent stream, a s  is  also the 
force tube. From the conservation of the mass of ma- 
terial  in the tube it follows that lengthening of the tube 
i s  accompanied by a decrease of its cross  section. 
The cross  section i s  in fact the scale L of the field. 
The conservation of the flux Q, means that 

o r ,  for the squares of the averaged quantities 

In a number of early papers on turbulence it was as- 
sumed that the field A behaves like a scalar admixture 

and H like a gradient of the scalar admixture. This 
meant that @ 2 ) = c ~ n ~ t  and (H2)-~- '  (this is  precisely 
the situation in the two-dimensional turbulence dis- 
cussed below). The growth of the field energy was in 
this case due to the decrease of the scale,  and a tur- 
bulent dynamo was therefore impossible. Relations 
(24) give a faster growth of the field. It can be shown 
that the field A behaves like the gradient of a scalar 
admixture VB, and therefore the growth ra te  of the mag- 
netic field exceeds the r a t e  of decrease of its scale. 
An additional argument favoring this premise is the sim- 
ilarity of the exact solution for A 

[the curl operation transforms this expression into (I)]  
to the solution for VB. Of course, the foregoing argu- 
ments do not have the force of proof and a r e  valuable 
(at least for illustration purposes) only after an exact 
theory is  developed. 

That relations (24) conform to the theory can be seen 
for one-scale turbulence (14). We use for  this pur- 
pose the Fourier transform of Eq. (12), i. e .  , the equa- 
tion for the spectral function B(k , t ) :  

S inc e 
- - 

< H Z ) =  J ~ ( k ) d k = 4 n  J B(k)IPdk,  (A2)=4rr  S B ( k ) d k ,  
0 0 

we have in accord with (25) 

It is  natural to define the scale of the field a s  

L-I = J Bkdk / J Bdk, 
0 0 

and then 

d d - L=-2T2L, -La=-4TzLz. 
dt d t  

From this follows, f irst ,  d/dt(A2)L2=0,(A2)-L-2, i.e., 
the f i rs t  relation of (24) (while the second is a consequence 
of the first) ,  and second, that the growth ra te  of @') 
(the argument of the exponential is  4T2) is  larger than 
the ra t e  of decrease of the scale (the exponent is 
-2T2). 

3. From the point of view of the method, it is useful 
to compare the three-dimensional and two-dimensional 
turbulences. There is  an antidynamo theorem'' that 
excludes generation of a magnetic field if v = {v, , v, , 0). 
The theory developed in 0 1  i s  valid also in this case,  
and in particular Eqs. (3) and (4) remain in force, but 
the tensor Tlj is anisotropic: T,, = T,, = 0. The equa- 
tion for the HE component coincides with (151, and gen- 
eration of this component is  of course impossible. The 
equation for the spectral function of the field {H,,Hy, 0) 
i s  of the form 

We seek the eigenfunction of this value in the form 
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B - ~ ' e - ~ o ~ ,  from which we get @= 1 & (1 - E,/T,)'/~. 
Here, in contrast to (23), E ,  can be  positive. In other 
words, this solution tells u s  nothing about the sign of 
E,. For the new function z(k) = ~k~ we obtain a self- 
adjoint (in two-dimensional k-space) equation with a 
positive definite operator in the right-hand side.  It 
follows from this that al l  En > 0,  and there  is  no dy- 
namo. 

We compare now the illustrative interpretations of the 
three-dimensional and two-dimensional cases .  To in- 
vestigate the Hz component we locate the liquid contour 
introduced in Subsec. 2 in the z = const plane. Two- 
dimensional turbulence will not take the contour out of 
this plane. The force tube (the force lines a r e  parallel 
to the z axis) a r e  not stretched: there a r e  no motions 
in the z direction. Therefore the a r e a  inside the contour 
i s  conserved. Consequently, H,S = const, (H:)  = const, 
and generation i s  impossible. We turn now to the field 
H = {H,, H ~ ,  0). We draw our contour in the following 
manner. Two par ts  of the contour l ie  on the surfaces 
z = z, and z = 2,. Between these surfaces the contour 
is connected by two straight lines paral lel  to the z axis. 
In the course of the two-dimensional motion, the contour 
configuration described above remains unchanged. The 
conservation of the flux @ i s  written in the form HS 
=HL(zl - 2,) = const. Since the distance 2,-z, remains 
unchanged, we have H -L-', (HZ)- L-'. We a r r ive  a t  the 
same conclusion by using the relation for the circulation 
of A. Since A has only one Ag component, conservation 
of the circulation means A(zl - z,) = const and (A2) 
= const, and consequently (Hz)- L-2. Thus, the field H 
behaves like VB, and generation is impossible. This is 
the illustrative interpretation of the antidynamo theor- 
rem.  l2 

4 .  Turbulence causes rapid generation of the field. 
A classification of fast and slow dynamos was given in 
Ref. 13. A fast dynamo is  characterized by a growth 
r a t e  y = ~ / l ,  and a slow one by y = v/lR$, n > 0. It was 
shown above that turbulence causes rapid generation, 
therefore,  according to (191, the growth r a t e  i s  deter- 
mined by the highest frequency of the velocity pulsa- 
tions in which a field i s  s t i l l  frozen-in. A large-scale 
field is generated much more slowly. Turbulent gen- 
eration i s  a t  present the only example of rapid field gen- 
eration. Moreover, even if it becomes possible to con- 
struct a model of generation by a stationary (not tur -  
bulent) velocity field with y =u / l ,  the very amplification 
process will s t i l l  last  much longer than l/v. The point 
is  that the scale of the priming magnetic field greatly 
exceeds a s  a rule the sca le  of the eigenfunction. The 
process of "attuning" the initial field to the eigenfunc- 
tion, i .  e. , the process of decreasing the sca le ,  depends 
on the t ime linearly and i s  therefore quite prolonged. 
In particular, if the growth r a t e  i s  y =v/ l ,  then the 
scale of the eigenfunction i s  1, =I  R;,"' and the time 
when the exponential growth i s  reached is  ~ ' , / ~ l / v .  In 
a turbulent medium, the t ime of t ransfer  into the reg- 
ion of small  scales is  l/v (just a s  for a sca lar  admix- 
ture,  s ee  Subsec. 3), and this is  in fact the t ime in 
which an exponentially growing solution is  reached. 

The results  of shows that rapid generation of the 

field can be effected by an extremely simple motion 
(even one-dimensional a t  a given instant of time). It 
was shown in Ref. 14 that a differentially rotating cy- 
linder i s  capable of generating a field. Such a motion 
has a high degree of symmetry: axial and planar sym- 
metry a r e  present. The motion i s  one-dimensional (the 
velocity depends only on the distance to  the axis)  and a 
field is  nevertheless generated. A conclusion suggests 
itself that the significance previously attached to the 
antidynamo theorems is unjustified. They cannot be 
realized in nature quite simply. At any r a t e ,  attempts 
to separate (e. g. , on the basis  of topological proper- 
t ies  a c lass  of motions that cause field generation were 
unsuccessful. In part icular ,  it was suggested in Ref. 15 
that rapid generation i s  possible only if a a .v#O and 
cur l  a = v .  Actually, however, the quantity a -  v i s  not 
a cri ter ion for the dynamo. If a - v  = 0, generation may 
not occur (planar motion), the dynamo can be slow and, 
a s  shown in 64 (where a . v = O )  it can be fast. 

5. An exponentially growing solution is characterized 
by a ra ther  small  sca le  determined by the dissipation. 
In a collision-dominated plasma dissipation is  due to 
ohmic losses, and in a collisionle_ss (interplanetary 
medium, so lar  wind) it i s  due to  Cerenkov damping 
over sca les  comparable with the Larmor  radius of the 
ion. After a t ime comparable with y-' IE,I-' in accord 
with (19), the energy density of the  magnetic fluctuations 
reaches  the density of the kinetic pulsations in the s ame  
smal l  sca les .  Further growth of these supersmall-scale 
magnetic fields stops: they already act  on the motion. 
In la rger  scales (but s t i l l  smal l  compared with I ) ,  the 
growth r a t e  of the SSMF st i l l  exceeds the r a t e  of sub- 
division of the sca les ,  naturally, and therefore the 
field fluctuations in these sca les  continue to grow until 
they become comparable in energy with the kinetic fluc- 
tuations. This process continues until a l l  the SSMF 
sca les  (up to 1) a r e  enhanced. In part icular ,  enhance- 
ment of a field of sca le  I takes place after a t ime l/v, 
which i s  long compared with y-'. The t ime l/v char- 
acterizes the entire linear s tage of turbulence of the 
dynamo. After this t ime there  is  establishedan approx- 
imate equipartition of the magnetic and kinetic energies 
in the scale 1. In smal ler  sca les ,  the fluctuations a r e  
transformed into MHD waves against the background of 
a quasihomogeneous magnetic field (of scale I). The 
wave spectrum was obtained by ~ r a i c h n a n . ' ~  The 
Kraichnan k-3/2 spectrum differs from the Kolmogorov 
k-5/ spectrum because the nonlinear interactions in a 
magnetic field a r e  not local. In a collision-dominated 
plasma the spectrum i s  cut off at  lengths determined 
by equality of the dissipation t ime to the t ime of the 
nonlinear interaction. In a collisionless plasma, the 
cutoff occurs at  lengths close to the  ion Larmor  radius. 

The entire SSMF dynamics described above i s  prac-  
tically independent of the presence of large-scale mag- 
netic fields. The situation i s  entirely different with 
large-scale fields: a consistent theory of such fields 
can be constructed only if the dynamics of the SSMF 
i s  known. If the turbulence were  not to cause genera- 
tion of SSMF, the situation would be the exact opposite 
of the  described one. Without a large-scale field, the 
SSMF would become dissipated within a t ime l/v. The 
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large-scale field would serve  a s  a'source of weak fluc- 
tuations of the SSMF, with an increasing spectrum (of 
the type k1I3 ,  a s  a gradient of the scalar admixture). 
Finally, weak SSMF fluctuations would little influence 
the large-scale field. The presently available obser- 
vational and experimental data (the solar photosphere, 
the interstellar gas of the galaxy, the solar wind) offer 
convincing evidence that the energy of the magnetic pul- 
sations is  larger (sometimes by several orders  of mag- 
nitude) than the energy of the large-scale field, thus 
confirming the prediction of the theory concerning the 
SSMF dynamo. 
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