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A l a rge  number of physical phenomena a r e  described Equation (2) descr ibes  the freezing in of the J-field lines 
by equations that admit  of a hydrodynamic interpreta-  in the fluid. Below w e  consider  a number of relat ions 
tion. In these c a s e s  a n  important r o l e  i s  played in the that do not depend on the specific fo rm of the equations 
quantitative and qualitative analyses by the freezing-in describing the velocity field. In deriving them we u s e  
integrals  and the Lagrange invariants that a r i s e  within only the continuity equation for  the  density p (or  s o m e  
the f ramework  of the specif ic  equations. Normally, t h e  other  quantity). 
s e a r c h  for  them i s  essentially based on the f o r m  of the 
equations describing the continuous medium. The in- 
var iants  obtained then change when the  hydrodynamic 
model is  changed. It s e e m s  natural  in constructing them 
to proceed f r o m  the canonical s e t  of Lagrange invariants 
that a r i s e  in the  formulation of the variational pr in-  
ciple. The exis tence of such  a s e t  can  be verified on 
the basis  of the  following s imple arguments .  By apply- 
ing the canonical t ransformations,  we can always go 
over to  the initial coordinates  and the initial general-  
ized momenta, which a r e  Lagrange invariants.  In the 
present  paper ,  proceeding f rom a cer ta in  s e t  of La- 
grange invariants ,  we construct topological invariants.  - - - - 
The lat ter  ref lect  t h e  entanglement of the field lines of 
the frozen-in quantities, and c a n  play the r o l e  of a top- 
ological charge  for the localized motions. Fur ther -  
m o r e ,  the interrelationship between the Lagrange invar- 
iants and the freezing-in integrals  i s  elucidated. The  
relat ions obtained a r e  applicable to any hydrodynamic 
model for  a nondissipative medium. A s  a n  example, 
we give the invariants of a compress ib le  fluid and the 
two-fluid model  of a p lasma in the adiabatic case .  In 
conclusion, we consider  the  problems connected with the 
use  of the invariants  obtained. In par t i cu la r ,  we find 
the steady-state solutions of the  two-fluid hydrodynam- 
i c s  of a p lasma that descr ibe spher ica l  p lasma vor-  
t i ces ,  interest  in which has  lately r i s e n  in  connection 
with the  study of the  feasibility of thermonuclear  fusion 
in the "spheromak" type of configurations.' P l a s m a  
waves reminiscent  of the Rossby waves a r e  repor ted  in 
the nonstationary case .  

1. It is well known that the  quantities satisfying in t h e  
Euler  var iables  the equation 

which ref lects  the conservation of the  quantity I in i t s  
t ransport  by the  fluid par t i c les ,  a r e  called Lagrange in- 
var iants .  Another quantity, studied in the p resen t  pap- 
e r ,  namely, the freezing-in integral ,  i s  given by the 
equation 

Let  t h e r e  exis t ,  besides the  Lagrange invariants x,, 
(the initial coordinates  of t h e  Lagrange par t i c les ) ,  a s e t  
of other  Lagrange invariants 11, I,, and I,. Let  u s  t r e a t  
them as a new Lagrange s y s t e m  of coordinates ,  and go 
over  f rom the coordinates  xy, xg, and x i  to  I,, I,, and I,. 
Let  u s ,  in doing, this ,  go over  f r o m  x, to  the Euler  var -  
iables x ,  and f rom them to I,, I,, and I,, i .  e .  , effect 
the t ransi t ion x, -x -I. It i s  evident that,  s ince  the 
volume elements  in both the  old and the new coordinates 
a r e  Lagrange invariants,  the Jacobian of the transition 
is  a l so  a Lagrange invariant.  Thus,  we obtain a new 
Lagrange invariant: 

By repeatedly applying the  relat ion (3),  we can  con- 
s t ruc t  Lagrange conservat ion laws f r o m  three  o r  m o r e  
known Lagrange invariants  . 

Another relat ion that  allows u s  t o  construct  Lagrange 
invariants  f o r m  a known freezing-in integral  i s  

Indeed, that I' i s  a Lagrange invariant can  be  direct ly  
verif ied by computing dI'/dt with allowance for  (1) and 
(2). But physical a rguments  allow us  to predict  the  
answer.  Let u s ,  f o r  th i s  purpose,  consider  t h e  s u r f a c e  
I= cons t ,  and choose a contour element lying on this  
sur face .  It i s  c l e a r  that ,  owing to the conservation of 
t h e  Lagrange invariant I ,  the  contour will  r emain  on the 
sur face  I= const in any motion. The  direct ion of t h e  
a r e a  element  dH enclosed by the  contour element coin- 
c ides  with the direct ion of V I ,  Moreover ,  noting that 
the  equation f o r  VZ coincides with the equation describ-  
ing pds ,  l e t  u s  choose a const ,  such  that VZ=const 
x pds. Then t h e  relat ion (4) can  b e  interpreted a s  ex- 
p ress ing  the  conservat ion of t h e  flux of the  frozen-in 
quantity, thereby proving that the quantity I' i s  a La- 
grange invariant.  

Let  u s  now proceed to construct  frozen-in quantities 
f r o m  given Lagrange invariants.  We u s e  in the  con- 
s t ruct ion the physical meaning of the freezing-in inte- 
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grals .  The relation (2) can be interpreted a s  follows. 
Let u s  assume that at some moment of time to the vec- 
t o r  J coincides in direction with a length element dl(to) 
of a streamline. Then this element will subsequently 
continue to coincide in direction with dl(t), remaining 
in constant proportion, i. e .  , 

The last  relation reflects the existence of some  simili- 
tude between the frozen-in quantities and the  d l  field. 
We can easily construct on the  basis of the above-given 
physical interpretation a frozen-in quantity from two 
Lagrange invariants: I,(x,t) and I,(x,t). Indeed, let us 
consider in the space  of the initial coordinates xo the 
surfaces Il(xo) =$ and I,(xo) =$ of fixed values of the 
invariants. In the case  of a general configuration they 
intersect along some curve. Let u s  choose the element 
d l  alongthe intersection of these surfaces,  s o  that it is  an 
element of the streamline specified by the invariants I, 
and I,. It i s  evident that the vector VI, x VI, i s  oriented 
along the tangent to d l ,  i. e .  , it always coincides with 
this element in direction, maintaining the similitude in 
t he  process a s  a result  of the nondependence of these 
vectors on the t ime in this coordinate system. Going 
over to the Euler system of coordinates, we obtain the 
expression for the freezing-in integral: 

Thus, the existence of Lagrange invariants allowing us  
t o  construct quantities that a r e  frozen in the medium, 
and satisfy (2). Naturally, this can be verified by dif- 
ferentiating (5) with respect  to t ime.  Because Eq. (2) 
i s  linear in J, the sum of the frozen-in quantities is  
again a frozen-in quantity. Furthermore,  the multipli- 
cation of the quantity J by a Lagrange invariant does 
not destroy its frozen-in character .  It is  easy tounder- 
stand on the basis  of these simple arguments that the quan- 
tity constructedfrom three Lagrange invariants I,, I,, and 
I, i s  frozen in the medium: 

where the subscripts assume the values 1, 2, and 3 .  

The constructed quantity also has an  independent 
meaning, e. g. , in t e rms  of n-fields. An even more  
general expression for the frozen-in quantities has the 
form 

Here I, 1', and I n a r e  different, and it i s  only essen- 
t ial  that their components be Lagrange invariants. 

equation of the  form 

which, for divpJ+O, does not coincide with (7). 

The conservation of the flux p J  follows from (2 1, and, 
therefore, a s  the differential equation reflecting the con- 
servation of the flux pJ ,  we must take Eq. (2), which 
preserves its form also in the divpJ+ 0 case .  A con- 
sequence of the nonvanishing of divpJ i s  the nonvanish- 
ing of the flux of the frozen-in quantity through a closed 
surface and the emergence thereby of a charge analog 
for  such fields. For apparent reasons,  no general c i r -  
culation theorem exists. If the Lagrange invariants in 
(6) a r e  dependent [ i . e . ,  if there exists  a relation 
'p(I,, I,, I,) = 01, then the divpJ vanishes, and we re turn  to 
frozen-in quantities of the ordinary type. 

Besides the above-noted differences, (5) and (6) also 
possess certain topological differences within the l imits  
of one and the s ame  c lass .  But before investigating 
them, let u s  introduce the topological characterist ics  
of the above-constructed freezing-in integrals. To ob- 
tain these characterist ics ,  we consider the purely r o -  
tational field of the quantities p J  ( i . e . ,  in the case  when 
I, and I, a r e  independent). In this ca se  the introduction 
of the vector potential A (pJ=cur lA)  i s  admissible. Let 
u s  consider the quantity 

Here the integration i s  over the volume enclosed by the 
surface So, the normal to which is  orthogonal to J 
(i. e. , n . J = O )  a t  al l  t imes.  Theabove-introducedquan- 
tity characterizes the entanglement of the field lines 
of the frozen-in quantities, and is  conserved in time. 

In proving this assert ion,  we use  for the vector poten- 
t ia l  A an equation that follows from the specific form of 
J, (5) and (6): 

aAlat= [v X rot A] + Cq. (9) 

The form of the function 4 i s  unimportant. Using (9) 
and (21, we obtain 

dJA/dt= (JV ) ($+Av) .  

It i s  easy to show, using the equation obtained, that 

which vanishes a s  a result  of the  fact that J n = 0 by 
definition. 

The physical interpretation of the Lagrange invariants 

It should be noted that, like the quantities (51, a l l  the (7) i s  entirely s imi lar  to the interpretation of their  par -  

known fields that are frozen in the medium (e. g. , J ticular ca ses  in a compressible fluid and in magneto- 
hydrodynamics. , The following natural question ar i ses :  =Hip, p" curlv, etc. ) possess the property divpJ= 0. 

The constructed fields (6) in the case  of the general What other conservation laws of a s imi lar  type are pos- 

configuration do not possess this property, and a r e  an sible in hydrodynamic problems? To answer this  ques- 

example, from this point of view, of frozen-in quan- tion, let u s  consider the  f o r m  of t he  differential equa- 

tities of a new type. In this ca se  the two forms of 
tion that gives r i s e  to such conservation laws. It i s  
clear  that, if freezing-in differential relations, namely, (2) and 

a r e  not equivalent, s ince from (2) we have for  pJ an then the quantity 
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with the same limitation on the direction (i. e. , for J 
- n=O) is  conserved in the course of the evolution. The 
equation given above gives r i s e  to a limitation on the ad- 
missible B fields. Indeed, it follows from the equation 
that B should satisfy the identity 

where cp is  arbitrary.  It i s  easy to verify that this r e -  
lation i s  satisfied by B, = VJ, and B,=ImVIL (I, and I; 
a r e  Lagrange invariants). On the basis of the linearity 
of the identity, and with allowance for the invariance of 
the equation under addition to B of te rms orthogonal to 
J ,  we obtain the form of the B fields that give r i s e  to 
conservation laws: 

here g, gk , and cp a r e  arb i t rary  functions of the coor- 
dinates and the time. Thus, we a r r ive  a t  the laws of 
conservation of the quantities 

in time if J . n = 0 (n is  the normal to the surface en- 
closing the volume V,). The value of this invariant i s  
the same for an entire class of fields differing in their 
potential parts  and in their par ts  orthogonal to J. In 
a compressible fluid and in magnetohydrodynamics, 
for example, the flow velocity v coincides with the form 
of the B field given above. Consequently, the existence 
of Lagrange invariants allows us  to obtain the conser- 
vation laws for (10) and (7) (which reflect a conserved 
topological structure of the fields under investigation in 
nondissipative media). 

Let u s  now return to the topological differences be- 
tween the introduced freezing-in quantities (5) and (6). 
It i s  clear that the lines of intersection of the two su r -  
faces determined by the Lagrange invariants cannot be 
linked. Because of this ,  the invariant (7) for the quan- 
tities (5) is  equal to zero (we a r e  discussing the case  in 
which the invariants give a one-to-one mapping from 
% -I). For the freezing-in integral (61, the invariant 
(7) may be nonzero. Thus, the field lines of the f reez-  
ing-in integral (5) a r e  a set  of unentangled lines, while 
in the case  of ( 6 )  the field lines can form nodes and be 
linked with each other. 

We derive the topological invariants of the fields for  
which a vector potential A cannot be introduced (i. e. , 
when all the invariants I,, I,, and I, a r e  independent), 
using a quantity called the degree of 

where j = J/ I J I .  This quantity is  equal to the number 
of times the vector j goes around a unit sphere a s  r 
runs over S .  In the course of the temporal evolution, 
the field of the frozen-in quantity is  deformed by the flow 
of the continuous medium in a continuous (i. e. , homo- 
topic) fashion. It i s  well known that the degree of map- 
ping i s  conserved in a h o m ~ t o p ~ . ~ * ~  Thus, IT is Con- 
served in time. 

The invariants obtained a r e  particularly useful in the 
study of particle-like solutions (localized vortices o r  
flows). Indeed, on account of the conservation of IT, 
the number of linkages under the initial condition at t 
= O  i s  conserved in time, and, consequently, the topolo- 
gical classification of the initial conditions ca r r i e s  over 
to the corresponding fields at an arb i t rary  moment of 
t ime (i. e. , to the solutions of the corresponding equa- 
tions), which allows u s  in a number of cases  to affirm 
the global stability of the solutions in nondissipative 
media. 

Thus, to construct the freezing-in integrals, the 
Lagrange invariants reflecting the topological structure 
of the freezing-in fields, we only need some initial set  
of Lagrange invariants. In the canonical form, such a 
se t  is  easily obtained when the corresponding equations 
a r e  formulated in t e rms  of the variational principle. 
Indeed, in the variational formulation, based on the use  
of the Lagrange multipliers, of the equations of motion 
of nondissipative media,6 a s  the coordinates, we use the 
trivial Lagrange invariants x,,(x,t) (the initial positions 
of the Lagrange particles), with the Lagrange invar- 
iants A, that acquire the meaning of generalized momen- 
ta  in the Hamiltonian formulation serving a s  their con- 
jugates. Consequently, it is  natural to take a s  the in- 
itial se t  of Lagrange invariants the se t  that a r i s e s  in 
the variational principle. Besides the invariants ob- 
tained with their help, a number of invariants similar 
to  the ~o inca r6 -Car t an  invariants in classical mechan- 
ics  (e. g. , the fluxes of the frozen-in quantities, etc. ) 
can be constructed. 

It should be noted that the relations (3)-(7) can also 
be used to construct new exact solutions from known 
particular solutions. Below we illustrate the applica- 
tion of the relations obtained in some specific cases.  

2. Let u s  investigate what invariants a r i s e  in a com- 
pressible fluid in the adiabatic case. For this purpose, 
let us u se  the variational principle constructed in Ref. 6 
for a compressible fluid, and giving the initial Lagrange 
invariants %(x, t ) ,  ~ ~ ( x ,  t ) ,  and s (s i s  the entropy, the 
% a r e  the initial coordinates, and is the analog of the 
generalized velocity). In these variables the flow vel- 
ocity v has the form 

The relation (12) allows u s  to go back to the flow velo- 
city of the fluid from x,, k,, and s. Using the relation 
(3) and the above se t  of Lagrange invariants a s  the init- 
ial  s e t ,  we can easily construct other Lagrange invar- 
iants : 

It i s  clear from the construction of (3) that such invar- 
iants a r e  not independent; some of them are trivial. In 
Ref. 7 expressions of the type (3) a r e  used to construct 
invariants corresponding to a more  particular class of 
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flows (i.e. , flows without the entanglement of the field 
lines of the frozen-in quantities), and contained, in par -  
ticular, in (13). It i s  easy to notice that the quantities 
(11) contain the well-known Er te l  integrals.' Let u s  not 
dwell on the tr ivial  scheme for constructing Lagrange 
invariants of higher order in the  derivatives [by repeat- 
edly using (3) and (13)], and proceed to construct the 
freezing-in integrals. We use  in the construction the 
relation (5) and the initial s e t  of invariants q, h,, and 
s. Then we obtain the following se t  of quantities frozen 
in the fluid: 

The frozen-in quantities (14) correspond to fields whose 
lines of force do not form nodes and linkages, a fact 
which follows from the derivation of (5). 

The quantities frozen in a fluid of a more general top- 
ological type can easily be obtained, using (6): 

where the vectors a stand for  vectors whose coordin- 
a tes  coincide with either xOi o r  s , h i .  Among the frozen- 
in quantities (15) a r e ,  in part icular ,  p-' curlv, which, 
as i s  well known, i s  frozen in a fluid: and frozen-in 
fields that a r e  not purely rotational, i. e .  , for which 
divpJ #0. The above-obtained quantities (15) allow us  
to introduce a number of new Lagrange invariants: 

And, finally, the conservation of the fluxes of the cor-  
responding quantities naturally follows from (14) and 
(15). The topological invariants corresponding to the 
frozen-in quantities (14) and (15) a r e  constructed with 
the aid of the relations (10) and (13). They contain, in 
particular, the Moffatt invariant, which characterizes 
the entanglement of the vortex lines of the velocity 
field. 

Similarly, we can construct the Lagrange invariants 
and the freezing-in integrals in a rotating fluid, in 
magnetohydrodynamics , and in a superfluid liquid. 

3. As the next example, let u s  consider the invar- 
iants that a r i s e  in the two-fluid hydrodynamics of a plas- 
ma. In the process we shall illustrate another possibil- 
ity of using the above-obtained relations, avoiding the 
formulation in canonical te rms.  To obtain the initial 
se t ,  we use the system of equations of the two-fluid hy- 
drodynamics of a plasma without dissipation in the adia- 
batic case. Computing the cu r l  of the equations of mo- 
tion, we easily obtained the freezing-in integral1' 

rot v.+e.Hlm.c+~ rot v,+e.Hlm,c+P, 
= n. 

V )  v .  (17) 
nu 

Here 52, i s  the angular velocity of the a components a s  
a whole (the remaining symbols have their conventional 
meanings). 
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Thus, we have for each component a freezing-in in- 
tegral  and a Lagrange invariant s ,  (the entropy), which 
we use  a s  the initial se t .  Applying the relation (4), we 
obtain another Lagrange invariant: 

rot v a + e J 3 h c + P a  
Iia=Vsa 

na 
(18) 

which i s  close in meaning to the Er te l  integral for a 
compressible fluid. Using the relations (4) and (5) 
successively, we can construct freezing-in integrals 
and Lagrange invariants of higher order  in the deriva- 
tives, e .g . ,  

1 rot v,+e,H/m,c+Q, 
Jia= - [ v s ~ ,  V  ( V S ~  

nu n, ) I v  (19) 

etc . 
The topological characterist ics  of the field curlv, 

+ e,H/m,c + a, a r e  determined by the invariant (8): 

I:= J ( rot lea+% U. + - A+Q. do, 
m,c ) ( ea mzc ) (20) 

V. 

where the integration i s  over the volume, the normal to 
whose surface is  orthogonal to (curlv, + e,H/m,c + 51,) 
at  all t imes.  

The invariant (20) reflects  the entanglement of the 
field lines of the cur l  of the generalized momentum of 
each of the components of the plasma. 

4. Below we illustrate in the particular ca se  of the 
two-fluid hydrodynamics the computational advantages 
of using the relations obtained. Let u s  f i r s t  of al l  dis- 
cuss  the steady-state solutions. From the relation (2) 
it i s  easy to  note the existence of a one-parameter c l a s s  
of steady-state solutions satisfying the equation 

J=cv, (21) 

where c i s  an arbitrary constant o r  a function of the 
conserved quantities. In the ca se  under consideration, 
to Eq. (21) corresponds the s e t  of equations1° 

rot v,+e,H/m,,c=c,n,v,. (22) 

Supplementing (22) with the Maxwell equation 

4x 
rot H = - E , n . v , , ,  

in the incompressible ca se ,  we obtain a closed se t  of 
equations describing the stationary flows and fields 
possessing a "generalized" helicity. Below we shall 
seek H and v in the form 

H=rot rot(x$) +rot(xcp), 
v=rot rot(xF,)+rot(x@,) . 

From the se t  of equations (20) and (21) we easily obtain 
the equations for the potentials +, cp,  and Fa, 9, : 

Eliminating pand  a, from (24), we obtain 

Here we have introduced the notation 
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The simplest particular solutions to (25) can easily be 
found by assuming that F, = b,F and J,= nF (where b ,  
and x a r e  some arbitrary constants). Substitution into 
the system (25) leads to a system of equations for b,  
and n of the form [the consistency condition for (25)] 

In its turn, the value of @ is  computed from the solva- 
bility condition fo r  (26): 

and the system (25) reduces to the single equation 

A F f  $F=O. 

This equation contains P, which can be either positive o r  
negative, depending on the values of c, and c, .  A de- 
tailed analysis of the sign of P can easily be carried out. 
The (cl,c,) plane splits up into regions with P>  0 and 
@ <  0. Let us ,  without giving the exact boundaries of 
the regions, point out, for example, that, for c, and c, 
lying inside the circle of radius wk/cn (i. e. , for c: 
+ ci < w;/n2cZ), 8 > 0. Equation (25) has been thorough- 
ly studied for both @ ', 0 and @ < 0. Let us consider the 
@ > 0 case,  i. e. , the case in which c, and c, belong to 
the corresponding region. 

In a spherical region occupied in a vacuum, the solu- 
tion has the form 

F=F,r-"'I,,: (b"'r) cos 8. (27) 

By choosing the boundary conditions 

we effect a matching with the solution to the external 
problem (in the vacuum) with a field that is constant at 
r - .o (HI ,-, = Hoz). Thus, the vortex obtained can exist 
in a constant magnetic field. The field lines and the 
streamlines (Fig. 1) coil into a family of tori embed-- 
ded in each other. On the outermost torus,  only the 
ve, and He, the velocity and field components, a r e  non- 
zero. It should be noted that the overwhelming major- 
ity of the lines of force of the magnetic field and the 
streamlines of the plasma, being in a closed volume 
(r S R ) ,  a r e  not closed, coiling into a torus with an i r -  
rational ratio of the rotational speeds (which corres- 
ponds to the case of the general configuration). Such 
flows a r e  of interest even from the purely hydrodynamic 
point of view a s  an example of topologically nontrivial 
motions. Notice that the vortex naturally becomes 
structurally complicated when it i s  chosen as  the nth 
root of the equation J3, ,(~'IZR) = 0. The configuration of 
the magnetic field of the indicated vortex coincides with 
that of the magnetic field of the well-known magnetohy- 

FIG. 1 .  The continuous curves depict the magnetic lines of 
force; the dashed curves,  the fluid streamlines. 

drodynamic vortex. ". Furthermore, such vortices can 
exist in plasma fluxes, and then, depending on c, and 
c,, two cases a r e  possible: when v, and v, at the bound- 
a ry  coincide in direction and when they a r e  oppositely 
directed. In the latter case such vortices can be ob- 
served in the countercurrents of the ionic and electronic 
components of the plasma. Besides the above-described 
vortices (271, other configurations a r e  possible: 

But such vortices a r e  refinements of significantly more 
complicated fields and flows with swirls. (Here the 
z,,,,, a r e  Bessel functions and the P, a r e  associated_- 
Legendre functions. ) By computing the invariant (8), 
we can verify that it is nonzero in the case of the solu- 
tion (27). Indeed, the vortex lines of the generalized 
momentum a r e  entangled (see Fig. 1). Because of the 
entanglement and the freezing-in of the curl  of the gen- 
eralized momentum, the vortex obtained is topological- 
ly stable, i . e . ,  it cannot go over continuously into 
steady flow. But the decay becomes possible upon the 
inclusion of viscous terms, which lead to closure again. 
Thus, such a vortex is  stable, a t  least during the period 
of viscous flow. 

Next, let us give the second type of vortices, which 
illustrates another possibility of using (2). Going over 
in (2) to cylindrical coordinates (z, cp, r ) ,  and setting 
v,,=O, a/acp=O, and J=J,cp,, weobtain 

This relation actually indicates the transition of the 
freezing-in integrals into the Lagrange invariants in the 
two-dimensional case. The requirement that a/ acp = 0 
does in fact indicate the effective two-dimensionality of 
the problem. In the two-fluid hydrodynamics of a plas- 
ma, this equation leads to a steady-state form that can 
be written a s  

Using the Maxwell equation (23) and Eq. (28) in the 
incompressible case, we obtain the system of equations 

where 6 and y, a r e  arbitrary constants. The solution 
to (29) in a spherical region (# + zZ R2) has the form 
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FIG. 2.  

Choosing 

we obtain H,,, =0,  and the current is  directed along the 
tangent to the surface of the sphere: 

Figure 2 shows the streamlines and constant-H, sur-  
faces. The configuration of the vortex obtained is r e -  
miniscent of the hydrodynamic Hill vortex whose field 
i s  oriented along the curl  of the velocity. The solu- 
tions obtained preserve their form when the presence 
of the gravitational field is  taken into account: Only the 
pressure computed from the Berqoulli integral then 
changes. It should be noted that the vortex (30) is  top- 
ologically unstable, since the lines of the curl  of the 
generalized momentum a r e  not entangled in i ts  case. 

Recently there has been an upsurge in interest in such 
flows,',12 since they can be realized in both cosmic and 
laboratory plasmas. The states with curlv # 0  have also 
been intensively discussed in connection with the prob- 
lem of controlled fusion13 (spheromaks). 

Thus far, we have used the relations obtained to ana- 
lyze the steady-state solutions. But they a r e  useful in 
the nonstationary cases also, e. g. , in such areas a s  
the derivation of the dispersion relations in the pre- 
sence of inhomogeneities. As an example, let us de- 
r ive the dispersion law for waves in the two-fluid plas- 
ma hydrodynamics model, which a r e  analogous to the 
Rossby hydrodynamic waves. We shall, for simplicity, 
assume that n, = const. As the ground state we use 

i. e . ,  the field is  oriented along the z axis and inhomo- 
geneous along y ,  while the constant current is directed 
along x.  The nonzero perturbations 

v,, u,, Hz-exp( ik ,x+ik ,y - io t ) .  

In the absence of v, and v, the freezing-in integral goes 
over (as a result of the two-dimensionality) into a La- 
grange invariant : 

Taking the Maxwell equation (23) and Eq. (31) into ac- 
count, we easily obtain a dispersion equation of the 
form 

Taking the smallness of m,/m,  into account, and neg- 
lecting the motion of the ions, i. e. , setting vOi =0,  we 
obtain 

From (32) we easily obtain two vibrational branches w +  
and w-.  The dispersion in the long-wave region is  given 
by the relation 

when 

And in the shorter-wave region 

Oat 

c2 ' (o,+yoo,2vo. lc2)  

we have 

The branch w -  i s  reminiscent of the Rossby-wave dis- 
persion, with the rotation frequency replaced by the 
Larmor ion frequency and w,, by the flow mode. 

In conclusion, let us note that for lack of space a 
number of important consequences of the relations ob- 
tained, such a s  the modification of the "B minimum" 
principle in a plasma in the presence of vortex motions, 
two-dimensional stationary flows, solitons on the vortex 
tubes of frozen-in quantities, etc. , have not been ana- 
lyzed in the present paper. Furthermore, the relations 
obtained turn out to be useful in the kinetic theory of a 
plasma as  well. Indeed, a s  is  well known, the solu- 
tions to the system of Vlasov equations a r e  connected 
with the solutions to the system of hydrodynamic Benny 
equations,14 from which similar invariants can easily 
be obtained. These invariants allow us  to introduce a 
topological classification of the solutions to the system 
of kinetic equations in accordance with the solutions to 
the system of hydrodynamic Benny equations, and also 
obtain some exact solutions to the system of Vlasov 
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