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We calculate in the dipole approximation the cross section for the absorption of electromagnetic radiation in a
metallic spherical particle. The calculation is made for low frequencies (infrared and lower), when the
contribution of the eddy currents to the absorption predominates, and for relatively small particles (~ 10 nm),
so that the skin effect can be neglected. No restrictions are imposed, however, on the ratio of the electron
mean free path and the specimen size. The calculation shows that in the limit of large free paths the
absorption cross section has a nontrivial oscillatory dependence on the radiation frequency. The possibility of
observing these oscillations of the spectral dependence of the cross section is discussed.

PACS numbers: 41.70. + t, 78.30.Er

1. INTRODUCTION

It is known that the electromagnetic properties of
small metallic particles can differ substantially from
the properties of bulky metal specimens.! The causes
of this difference, besides quantum size effects (due,
e.g., to the discrete character of the electron energy
spectrum?3), may also be effects that can be explained
classically. Thus, in particular, if the dimension a of
the metal specimen is comparable with the electron
mean free path A, or is smaller (a< A), the interaction
of the electrons with the specimen boundary begins to
influence substantially on the electron response to the
external field, and therefore also on the optical proper-
ties of the specimen. Therefore at ga< A the optical
characteristics (for example, the absorption cross sec-
tion) of a metal particle should exhibit a nontrivial de-
pendence on the ratio a/A. At room temperatures, in
metals with good conductivity (aluminum, copper, sil-

ver and others), A has characteristic values 10-100 nm.

On the other hand, the dimensions of the experimentally
investigated particles reach 1 nm (Ref. 1), so that the
situation a< A seems to be quite attainable in experi-
ment.

From the theoretical point of view, to observe the in-
dicated size effect there is no need to resort to a con-
sistent quantum-mechanical description of the conduc-
tion-electron system as a finite Fermi system.3* All
we need as a formalism capable of describing the re-
sponse of the conduction electrons to the external elec-
tromagnetic field in a sample of size g at an arbitrary
ratio of g and A (i.e., with allowance for the interaction
of the electrons with the sample boundary). Such a
formalism can be the standard kinetic theory of the con-
duction electrons in a metal.?

We note that the equations of macroscopic electrody-
namics are applicable only in the limiting case of
“massive” specimens, a> A. Therefore the known Mie
theory® that describes the interaction of an electromag-
netic wave with a metal sphere within the framework of
macroscopic electrodynamics is not suitable for the de-
scription of the aforementioned size effect. It was
therefore proposed in a number of papers™?2 to use a
certain prescription for extrapolating the classical re-
sults of the Mie theory to the case a< A by introducing
an explicit dependence of the dielectric constant € on
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the quantity a/A, making it possible to take rough ac-
count of the influence of the specimen boundaries on the
relaxation properties of the electrons [see Eq. (37) be-
low]. In a number of cases it is possible to estimate
correctly in this manner the influence of the size effect
even for very small particles.® However, the use of
such procedures is not fully corroborated and cannot
take the place of a consistent kinetic calculation of the
response of electrons on an external field in a specimen
with finite dimensions a=< A.

In this paper we calculate by the kinetic method the
distribution function that describes the (linear) response
of conduction electrons in a metal sphere of radius g to
an alternating magnetic field H= Hye i** of a plane
electromagnetic wave at an arbitrary value a/A =1.

The inhomogeneity of the external field H, and the skin
effect are not taken into account. It can be shown (see
Sec. 2 below) that if the sphere is not too small, a> 2
nm, and the frequency w lies in the infrared band (or
lower), it is precisely the response to the magnetic
field of the wave which makes the main contribution to
the dissipation of the electromagnetic energy in the par-
ticle. From the obtained distribution function we suc-
ceeded in calculating the dependence of the cross sec-
tion on the radius and on the frequency in closed analy-
tic form. This dependence goes over, in the continuous-
medium limit @> A, into the corresponding classical
relation (Ref. 9, §73). In the opposite limiting case

a<< A it agrees at low frequencies (in the far infrared)
with the one obtained earlier (in the low frequency ap-
proximation),'® while at high frequencies (the near in-
frared) it exhibits a nontrivial behavior (see Fig. 1) that
can be observed experimentally in principle.
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FIG. 1. Dependence of the dimensionless cross section F on
the dimensionless frequency ¥ = aw/v in the absence of vol-
ume collisions (x=a/A=0): 1) rigorous kinetic calculation,
Eq. (29); 2) MD theory, Eq. (30).
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2. PRINCIPAL PHYSICAL ASSUMPTIONS

We consider a spherical particle of nonmagnetic metal
having a radius a in the field of a plane electromagnetic
wave of frequency w. The range of admissible frequen-
cies is determined by the condition that the contribution
of the plasma resonance to the wave-energy dissipation
in the medium is small:

0*<w,i=4ne’n/m, (1)

where ¢ and m are the charge and mass of the electron,
n is the density of the conduction electrons, and w, is
the plasma frequency (its characteristic value in metals
is 10'® cm™, Ref. 11). This means in practice that w

is bounded from above by the near-infrared frequencies
(ws 24105 sec™).

We assume that the radius g is smaller than the skin-
layer depth 5 (Ref. 9):
a<6, 8=6(w)=c(wImVe)~, (2)

so that the skin effect can be neglected (¢ is the speed
of light), and

e=¢(0)=¢,(0)+ie.(0)

is the complex dielectric constant of the metal at the
frequency w). For metals in the infrared, the depend-
ence of ¢ on w is described with good accuracy by the

Drude formulas (Ref. 11, pp. 321 and 324):
e(0)=1+i4a2(0) /o, Z(o)=I/(1-ioT), (3)

where the static conductivity ¥, and the electron relaxa-
tion time 7 are connected with the plasma frequency w,
by the approximate relation (Ref. 11, p. 322)

4, =, t=4ne'nt/cm. (4)
Egs. (2)-(4) provide a simple estimate for the depth of
the skin layer:

T, (5)
wt=1. (6)

§(w)=6(>) (2/01)",
8 (@) =8 () =c/wy,

The characteristic times 7 range from 107* sec at
room temperature to 10™° gec at low temperatures in
pure samples, so that both possibilities (5) and (6) are
realized in the band (1), with

§(o)=c/wy~3-10"° cm. W)

It is clear therefore that under conditions (1) and (2) the
radius a is certainly small compared with the wave-
length A, regardless of the frequency,

a<h=2nc/o, (8)

so that the field of the incident wave can be regarded as
homogeneous (the dipole approximation).

Under the conditions (2) and (8) the macroscopic
electrodynamics (see Ref. 9, §73) leads to the following
equation for the absorption cross section o,,:

12na’we, | 1 w*a?
c ( lel?  90c )’ (9)
in which the two members are the first two terms
[which are the principal ones under condition (8)]of the
infinite expansion in multipoles in the Mie theory.®

The first term (dipole electric ~|¢|?) describes the

Oct =
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absorption due to the currents of the electric (dipole)
polarization of the particle in the external electric field
of the wave. The second term (dipole magnetic) de-
scribes the absorption due to the eddy currents induced
in the particle by the external magnetic field of the
wave. Estimates based on Egs. (3) and (4) show that in
the considered frequency range (1), owing to the
screening of the electric field in the particle (| ¢
~413,/w> 1) in the region of applicability of Eq. (9)
(i.e., at @>A) the dipole magnetic term is larger by
several order than the dipole electric, therefore
2nd’w’e,  8n'fe’a’

15¢ 15 (1+eit)
It is obvious (from continuity considerations) that by
decreasing the radius a (or by increasing A) we should
land in a (more or less narrower) region of values a
< A such that the macroscopic equations (9) and (10) no
longer hold, but in this case the contributions of the
electric-polarization currents to the absorption will re-
main negligibly small compared with the contribution of
the eddy currents. We assume hereafter realization of
just this situation, and disregard the action of the ex-
ternal electric field of the wave.

(10)

Oci =

All the remaining physical assumptions of this paper
are universal. We regard the conduction as an (almost)
ideal degenerate Fermi gas and describe its response
to the alternating external (magnetic) field by the
Boltzmann equation in the relaxation-time and in the
linear (in the external field) approximation.®! It is
assumed in the boundary conditions that the reflection
of the electrons from the inner surface of the sphere is
diffuse.’

3. MATHEMATICAL MODEL AND CALCULATION

Taking the foregoing assumptions into account, the
absorption of the electromagnetic-wave energy in the
particle is described in the following manner. The ho-
mogeneous magnetic field, H= Hye #“! of the wave,
which is periodic in time, induces an electric eddy field
which, by virtue of the symmetry of the problem is de-
termined from Maxwell’s induction equation

rot E=—(1/c) 0H/ot (11)
in the form
1 oH @ )
—__ = —iot 12
E 2c['x a:] 5 Lr XHole™, (12)

where 7 is the radius vector (the origin 0 of the coor-
dinates is at the center of the particle). The electric
field acts on the conduction electrons in the metallic
particles and produces a deviation f, of their distribu-

tion function f from the equilibrium Fermi function f:
106,V =fu(&)+1i(e,v), E=mv*/2. (13)

This leads ultimately to the onset of an (eddy) current

j=eJ vf2d’§::w) =2(L;:—)3j‘ vf, d°v, (14)

and also to an energy dissipation (per unit time) 6 in
the volume of the particle®:

0= [ ReE)-(Re]@’r—":Re [ JE"d, (15)

where the bar denotes time averaging and the asterisk
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the complex conjugate, v and &= mv?/2 are the velocity
and Kinetic energy of the electron, and % is Planck’s
constant. In (14) we have assumed the standard nor-
malization of the distribution function f, wherein the
density of the electronic states equals 2/k%, and we use
hereafter for the equilibrium function f(%) the step-
function approximation

1,0<&<Er,
0,8<8&,

where &, =muv,%/2 is the Fermi energy.

fn(8)=9(r3’p—é’)={ (16)

The problem is thus reduced to finding the deviation
/1 of the distribution function from the equilibrium value
fo produced by the vortical field (12). In the approxima-
tion linear in the external field, the function f, satisfies
the kinetic equation®!

0fs 0fo fi
—iofi+ V—6—+ E?———‘r-’ (17)

where the proposed stationary dependence on the time
is fy~e™t  and the collision integral is calculated in
the relaxation-time approximation:

(dfi/dt) col =—fi/T.

To determine uniquely the function f, we must specify
for it a boundary condition on the spherical surface of
the boundary. We choose this condition to be the dif-
fuse-reflection condition®:

o a {11

Solving (17) by the method of characteristics,'? we
obtain

fi=A (e —1) v, =0, (19)
where
v=1/1—iw, A=evEdf,/0& =— ( 6/0) [vXr]H e, (20)

and v and A are constant along the trajectory (charac-
teristic), while the parameter ¢’ has the meaning of the
time of electron motion along the trajectory from the
boundary to the point r with velocity v, and is defined
as a function of r and v by the equation

t'={rv+[ (xv)2+(a>—r*) v*] “} 2. (21)

Relations (19), (20), and (21) determine completely
the solution f, of Eq. (17) with boundary condition (18),
enabling us to calculate the current (14) and the aver-
age dissipated power (15). In the calculation of the in-
tegrals (14) and (15) it is convenient to change to
spherical coordinates both in coordinate space (7, 6,
and ¢, with the polar axis z || Hy), and in velocity space
(v, a, B, with polar axis »,). The field (12) has in
spherical coordinates only a ¢ component

E=E.e,, (22)

0] . .
Ey=—rH,sin Be~"".
2c

Accordingly the current (14) has also only a ¢ compo-
nent (the current lines are closed circles with centers
on the z axis on a plane perpendicular to the z axis):

o= 2B 0 (5-850) (1= v
netay\ 3 ¢, 1—e |
= w( p— ) -—Z_[da sin’ a; (23)
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n=2(m/h)’5 fo Pv=2(m/h) %avs*/3,

(29)
(25)

z=va/vr=a/vVst—ia0/vi=2—Iiy,
vet’la=n=E cos at+[1—E*sin*a]”, E=r/a.

Frorx_l_(15) we obtain now the average dissipated
power @ and, dividing by the average flux density
cH,2/8x in the wave, we obtain the absorption cross
section o:

o=/, (8n/cH,?) j Re (joEs') d'r=0,F (2, y),

g;=n’ne*a‘ve/2mc?, (26)

e~
sin® a.
z

1 n
F(z,y)=4y*Re [ £ dt [ da L
The integral in (26) can be calculated explicitly. To
this end we make the change a —7 in the integration
variable in accord with (25):

P Ppp— 141 l—e-5
J‘da ¢ sin“a=j dn ¢ [1—
z . z

(n*+g-1)* ] (n*—g*+1)
48y’ 2%n*

We next change the order of integration:
1 143

Ja jdn( )—jdn j as (..

° In—tl

so that the integral (26) takes the form

y? dv 1 e
F(z,y)=7Re{j L

" | ratin- -0 g0}
o ]]

-1l

The calculation of the inner integral, while cumber-

some, entails no fundamental difficulties and yields
[ sastag— (-
In—1!

after which the outer integral is easily calculated, and

we ultimately obtain the function F in the form

D] =g+ 1) = - (4,

F(x,y)=4y23e{%p-—i+[’——gi+s(_1_+i+ 3 ) -} (27

P A r I
where p= 2z = 2(x -iy). (It is not advantageous to sep-
arate the real part in explicit form, since it is more
convenient to carry out the numerical calculations in
complex form.)

4. DISCUSSION OF RESULTS

The first term in the curly brackets corresponds to
the classical result (10):
8 16zy*
)= (28)

Ot =00Fc1 (Iv y), Fg (I y) 4!/ Re( 15(zz+y2) :

15p

The sum of all the remaining terms describes the con-

N
-~
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)
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FIG. 2. Dimensionless cross section F vs, the dimensionless
frequency v =qw/vy at x=a/A=0.5: 1) rigorous kinetic calcu-
lation, Eq. (27); 2) MD theory, Eq. (30); 3) classical theory,

Eq. (28).
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FIG. 3. Dependence of the dimensionless cross section on the
dimensionless mean free path x=a/A in the low frequency re-
gion (y=aw/v z=0.2) calculated from various equations: 1)
rigorous kinetic calculation, Eq. (27); 2) MD theory, Eq. (30);
3) classical theory, Eq. (28).

tribution of the kinetic effects due to the diffuse reflec-
tion of the electrons from the spherical surface of the
specimen. In the limit x = a/A> 1 this contribution of
the surface collisions decreases like x™2 and turns out
to be small compared with the contribution (28) of the
volume collisions, which decreases like x™. Thus, in
the case of small mean free paths A << a our result goes
over into the classical result (28). However, even at
A~a(x~1) and more so in the opposite limiting case of
large mean free paths A > a (x < 1) the contribution of
the surface collisions to the absorption cross sections
becomes quite appreciable and even predominant (see
Figs. 1-3), since F(0,v) = 0, whereas the exact kine-
tic relation (27) has a finite limit as x =~ 0:

1,3
FQO,y)=1+—+—
vy
2 3sin2
+ (—_—_—J—,)cos 2y — Q“;—ly-. (29)
/T Y

There is a known method of extrapolating the classical
formulas (9) and (10) to the case when the dimension a
of the specimen is comparable with or smaller than the
mean free path A. In this method the frequency of the
volume collisions is replaced by the combined frequency
of the volume and surface collisions™®:

1/1—>1/t+uea.

Introduction of this substitution into the Drude formu-
las (3) and (4) and the use of the so modified expression
for g(w) in the classical formulas (9) and (10) leads to
the so called “modified Drude theory” (MD).!* Transi-
tion to the MD theory is equivalent to the substitution
x~x+1(AM=A"+ g™) in (28):

16 (z+1)y?

15 (z+1)2+y* (30)

oMD=00FMD(x, y), Fyplz,y)=
The values of Fy are of the same order as F (see Figs.
1-3), thereby confirming the validity of the MD approx-
imation [at least under the condition (18) of purely dif-
fuse reflection from the boundary]. We note that in the
limit x << 1 at low frequencies (y < 1) we have F=(5/
8) Fyp, Which coincides with the result of Ref. 10. How-
ever, the exact relation (27) has a distinguishing fea-
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FIG. 4. Transpagency B (%) of specimen of ultradisperse gold
particles (a=17 A) vs, the wavelength (um) in the near infra-
red (from the data of Ref. 14).

ture missing in principle from either the classical (28)
or from the MD theory (30). At x<«< 1 (a< A, low tem-
peratures, pure specimens) the frequency dependence
of the cross section at high frequencies (w>vF/a, y>1)
takes the form of damped oscillations (see Figs. 1 and
2). For particles of radius a~10 nm these oscillations
lie in the near infrared (1<A<10 pum). If the dipole
magnetic contribution to the absorption remains domin-
ant in the near IR band (the frequency of the plasma
resonance is far enough), these oscillations can be ob-
served in experiment. The experimental data of Ref.
14 (see Fig. 4) seem to point to the presence of such
oscillations in precisely the near infrared, but a reli-
able interpretation of these data is made difficult by
their low accuracy and by the polydisperse character
of the specimens.
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