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An XY model with weak random anisotropy is considered. In the two-dimensional case at n = 1 and 2 there 
is no phase transition. At n 2 3 there exists a temperature range T* < T < T, in which the low-temperature 
phase of a "pure" XY model is realized. At T < T* the parameters T and h are substantially renormalized, 
namely T+T* and h 24, SO that low t'emperatures are effectively unattainable. There is therefore no state of 
the spin-glass type, although the susceptibility has a quasicusp relative to h(f)=h#O at T = T*. A quasi- 
two-dimensional layered system with weak coupling of special type g,cosn (0, +, - 0, ) exhibits at T* < T < T, 
the same properties as in the two-dimensional case. At T < T*, however, for any arbitrarily weak couplingg,, 
the system becomes essentially three-dimensional. The renormalization-group equations have "standing pole" 
solutions, thus indicating a phase transition into a spatially fully disordered state of the spin-glass type. 

PACS numbers: 61.50.K~ 

I. INTRODUCTION H =- x cos (ei+.-8,) -x hi cos (no,) ; 

The possibility of the existence of a phase of the spin- 
glass type1 in disordered magnets having a low spatial 
dimensionality (d= 2 o r  3) continues to at tract  in- 
creasing interest. R e  consider this problem in this 
paper using a s  an example a planar (XY) classical 
ferromagnet in the presence of random anisotropy 
fields. We consider separately a two-dimensional (20) 
and a quasi-two-dimensional (layered) system. 

The "pure" (without random fields) 2 0  XY model has 
by now been fully investigated (see, e.g., Refs. 2-5). 
Jus t  a s  in any 2 0  magnet with continuous symmetry 
group, thermodynamic fluctuations make a long range 
order in this system impossible. Nonetheless, a phase 
transition does take place in the 2 0  XY model and i s  
due to formation of a low-temperature phase charac- 
terized by the so-called quasi-long-range order with a 
slow power-law decrease of the correlations. The de- 
struction of the low-temperature phase and the transi- 
tion to the paramagnetic phase i s  due to formation of 
vortical  excitation^.^^^ In the dual representation, the 
XY model i s  described by the well-known sine-Gordon 
model,5 which i s  equivalent in turn to the Thirr ing mod- 
e l  of interacting massive f e r m i ~ n s . ~ - '  This equivalence 
i s  preserved also in the case of a disordered model, s o  
that from the technical point of view i t  i s  convenient to 
study the properties of the initial disordered magnet in 
the language of fermion theory which i s  known to be re-  
normalizable in the two-dimensional case. 

Two types of disordered models a r e  usually con- 
sidered. These a r e  ei ther  models in which the random 
quantity i s  the interaction between neighboring spins 
(models with random bonds), or  models in which each 
spin i s  in a random external field. In the case  of the 
XY model with random bonds (see, e.g., Refs. 9 and 
10) the question of the transition into the spin-glass 
phase can be raised only in the case of strong disorder, 
when the system contains a large amount of frustration" 
and strong degeneracy of the ground state se ts  in. 

In the case of the XY model with random field, the 
situation i s  somewhat different. The system energy can 
in this case be written in the form 

I.0 I 

here  i s  the angle variable that specifies the direction 
of the planar spin (0 @ <  2n), n 'is the anisotropy order,  
and hi i s  the random field: h,h,=36i,. All the variables 
a r e  assumed specified a t  the lattice si tes ,  and the sum- 
mation in the f i r s t  te rm i s  over pairs  of nearest  neigh- 
bors. It i s  well known (see, e.g., Refs. 12 and 13) that 
even a t  arbi trari ly smal l  value of the random field 
(hi << 1) there i s  no long-range order in such a system 
if the space dimensionality d s 4. This can be seen al- 
ready from the following qualitative considerations. Let 
the characterist ic  Length over which the long-range 
order i s  destroyed by R,. In a volume with linear di- 
mension of the order R, the exchange energy connected 
with the deformation of the structure i s  then of the 
order  of Rd,-' (d  i s  the dimensionality of space), where- 
a s  the energy gain in the same volume, due to the inter- 
action with the random field, i s  of the order  of the 
mean squared value (2R:)lf2. At d < 4 the energy gain 
due to the alignment with the random field i s  larger 
(at sufficiently large R,) than the loss of exchange ener- 
gy, s o  that formation of a randomly inhomogeneous 
structure with a characterist ic  correlation radius R, 
-il''d - 4 '  i s  favored (at this value of R, both t e rms  in 
the energy a r e  of the same order). The foregoing esti- 
mates show that a t  the temperature T = 0 the system 
should be  in a spin-glass s ta te  with "quenched" spins 
and with a finite correlation radius (which i s  large in 
the case of weak disorder). The question of the stability 
of this s ta te  a t  T +O relative to thermal fluctuations be- 
comes one of the basic ones for the theory of spin 
g lasses  and other essentially disordered systems. A 
consistent approach to the solution of this problem calls  
for  understanding the properties of the ground state of 
the spin g lass  and of the excitations near it. For lack 
of this understanding a t  the present time, we must use 
the "rule of contraries" and seek the high-temperature 
(paramagnetic) phase instability due to spin-glass 
formation. The available attempts t o  describe analyti- 
cally this instability (see, e.g., Refs. 14-16) use a s  
the start ing point the self-consistent-field theory (the 
l / z  expansion, where z i s  the number of nearest  neigh- 
bors)  and, a s  shown in Ref. 15, encounter serious dif- 
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ficulties already at d 6. 

We propose here an approach that does not use the 
l / z  expansion and i s  based on the well known proper- 
ties of the 2 0  XY model. We consider the properties 
of a purely two-dimensional and of a quasi-two-dimen- 
sional (layered) medium. Since we a r e  considering 
weak random fields, and the characteristic spatial scale 
of the problem i s  large compared with the lattice con- 
stant, we can use a continual approximation and con- 
sider continuous random fields h(x) with a correlator 
h(x)h(xp)=g6(x -xr). We show that in the 2 0  case states 
of the spin-glass type with "quenched" spins a r e  un- 
stable at all T #0, and there i s  no phase transition a t  
al l  a t  n = 1 or 2. At n 2  3 there exists a temperature re- 
gion T* < T < T, in which the disorder is inessential and 
the low-temperature phase of the pure 2 0  XY model i s  
realized. At T < T* there i s  a substantial renormaliza- 
tion of the parameters T and g, leading to T,,,= T* and 
g,,,= 0. A short variant of this part of the work was 
published in Ref. 17. In Sec. I11 we consider a three- 
dimensional layered system made up of the two-dimen- 
sional systems described above (with nz 3) and with a 
weak interlayer interaction of special form g, c o s n ( ~ , + ,  
- 0,). At T > T* this interaction i s  insignificant and 
the results reduce to those obtained with g,= 0. At T 
< T* and at an arbitrary relation between gl and the 
"two-dimensional" solution i s  unstable and the system 
becomes essentially three-dimensional. Analysis with- 
i n  the framework of the "fast parquet" m e t h ~ d ' ~ ' ' ~  
shows that the "moving-pole" solution characteristic 
of the pure ( 2 = O )  system i s  unstable at all g+O (thus 
again indicating instability of the ferromagnetic state) 
and i s  realized by a so!ution of the "standing pole" 
type. It seems to us that this last instability i s  evi- 
dence of a phase transition into the spin-glass state at 
T < T*. It i s  curious to note that a formal considera- 
tion of the fast-parquet equations in the case of more 
than two "transverse" dimensions (corresponding to 
d > 4 )  demonstrates the stability of the "moving-pole" 
solution relative to g+O and agrees with the presence 
of ferromagnetic order in the considered model at d 
> 4 (Refs. 12 and 13). 

11. 20 X Y  MODEL WITH RANDOM ANISOTROPY 

We consider the XY model in a random-anisotropy 
field h(x) cosnO(x). Using the known transition to dual 
 variable^,^ the effective Hamiltonian of our model can 
be  written in the form 

H = d 2 ~ [ 1 / 2  (allq)l+u cos @ + h ( x )  cos p ~ ] ,  (1) 

where V =  B/T"~, $ i s  the variable dual to p: &,,8,,$ 
= Burp,  8= 2n/TltZ, f l =  n ~ ' ~ ~ ( f l @ =  27rn). The second term 
in (1) describes vortical excitations of the XY model, 
and the parameter u assumes the role of the chemical 
potential of the vortices. We shall be interested here- 
after in the region near the point 0 = 411 (or P2 = 1 ~ ' ) .  

Since the low-temperature phase of the XY model cor- 
responds to the region p2>8n (Refs. 4 and 5), i t  i s  
necessary, if the value of interest to i s  to be in this 
region, that n be larger than or equal to 3. It i s  
known415 that in the low-temperature phase the term - 

FIG. 1. Diagram representation of the vertices g and g. 

u cospg i s  inessential in the Hamiltonian (I) ,  so that 
our Hamiltonian becomes the Hamiltonian of the sine- 
Gordon model with random mass h(x). Using a known 
transformation, this model reduces to the Thirring 
model of interacting massive fermions."' These two 
models remain equivalent also in the case of a co- 
ordinate-dependent mass h(x). (To verify this it is 
convenient to use the boson-fermion transformation in 
Euclidean form, introduced by Zamolodchik~v.~) AS a 
result we arrive at the Thirring model with random 
mass: 

where (1 +,y/n)-'= p2/4n, 6 + TUau, Pu a r e  Dirac 2 0  
matrices, and (++) = $+'+.+ @-+@+. To average over the 
random field h(r)  i t  i s  convenient to use the method of 
replicas.20 As a result we have 

where a, b = l , 2 , .  . . , N a re  the replica indices, and it i s  
necessary to put N = 0 in the result. Both charges go 
andgo are  assumed small. This means, first, that the 
analysis i s  carried out near the point P2 = 477 (which cor- 
responds to qo = 0 and to a temperature T = 4n/n2 = T *), 
and second that the random field is  weak. 

In the zeroth approximation the only nonzero Green's 
function components a r e  

1 x-tiy 
G:' (r) =<$++ (O)$+(r) )= -7, 

2n Irl 

1 x-iy 
G:O' (r) =($-+(O) q- (r) >= -- . 

23 Irl' 

The vertices g and g a re  shown in the diagram repre- 
sentation in Fig. 1. In the parquet approximation, the 
renormalization of the vertex g i s  given by the diagram 
of Fig. 2, and that of the vertex 2 by the diagrams of 
Fig. 3. The corresponding parquet equations of the 
renormalization group a re  

Here 5 = 1n(Av/A 1, and A and A' a r e  the old and new cutoff 
scales a t  small distances. The asymptotic solutions of 
the system (5) depend essentially on the sign of gl,,, 
=go. At go < 0 (T > T*) we have 

FIG. 2. Diagram representing the vertex g. 
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FIG. 3. Diagrams that renormalize the vertex 2 

At go>  0 (T < T*) there i s  realized the "zero charge" 
asymptotic 

We note that a t  2o <<a the solution reach the asymptotic 
forms (7) at  

Solutions (6) and (7) a r e  shown in Fig. 4 in terms of 
the effective XY-model temperature T,,,(<) = 4sn- '[I 
+g(l)/n]-' .  The region of the initial temperatures T* 
< T < T,= n/2 where T, i s  Berezinskii-Kosterlitz- 
Thouless temperature) corresponds to a line of fixed 
points in which the correlators a r e  scale-invariant, and 
the degree (Y of the spin-spin correlator ( [ s ( ~ ) s ( r ) l )  
- - r -= changes from 2/n2 to 4 .  The random fields a r e  
insignificant in this region. The effective temperature 
of the model turns out to be lower than the bare tem- 
perature (Fig. 4). 

An interesting situation i s  observed in the region T 
< T*. The presence of random fields leads, a t  large 
scales, to an increase of the effective temperature, 
which tends to the universal value T,,,([ = T* = 4n/ 
n2. This means that the system cannot be cooled below 
T*, meaning also that a spin-glass state with 
"quenched" spins cannot be reached. Nonetheless the 
temperature dependence of the system susceptibility 
X =  a(( c o s ~ ~ ) ) / a h  relative to a nonzero mean field h(r)  
= 0 has a "quasi-cusp" at  T = T*. The width of the quasi- 
cusp 5 -go i s  small if h << l,go<< 1 and do ln(l/h) >> 1. In- 
deed, since cospv  corresponds to (&), the calculation 
of X reduces to calculation of the four-fermion mean 
value 

which is  the usual polarization operator (Fig. 5a). 
Therefore 

Inll/hl 

x G  j d b 2 ( E ) ,  
0 

where the angular part of 7(!) (Fig. 5b) i s  calculated 
with the aid of Eqs. (5) and the supplementary equation 

FIG. 4. Qualitative picture of the temperature renormalization 
at n > 3 [ T , , = ~ ( ~ = m ) l .  

FIG. 5. -a) Diagram representation of the four-fermion mean 
value ( (@$) (0) ($?) @)); b) vertex part of T ( [ ) .  

The result i s  

I l d x l  ,- 
X ago I.--b SO ' 

Therefore the relative slope of the x(g0) curve changes 
substantially near go= 0 in a narrow region having a 
width of the order of go. At g,>O i t  follows from (8) 
that T ( [ )  -[(ln{)/[]" ', therefore in this region (T < T*) 
the asymptotic form of the correlator i s  

As T -T*+O we have K(x)-X-', and a t  T = T *  we have 
K(x) -x' ' ln-'x. It must be noted that Eqs. (5) a r e  valid 
only when T - T* -go<< 1, and not in the entire region 
0 < T < T*. Nonetheless, the parquet equations in the 
next order in g 

show now new tendencies whatever in the behavior of 
the solutions g ( E )  and g([). We hope therefore that our 
results  a r e  qualitatively valid in the entire range 0 
< T < T*. (We note that the last te rm in the second 
equation of (11) i s  exact, a s  can be easily verified by 
comparing the renormalization of the vertex g with the 
mass  renormalization in the Thirring model.) 

All the foregoing i s  valid only a t  n >  3,  when T* < T,. 
In the cases n = l , 2  (T* > T,) the vortical excitations 
near T* cannot be neglected. The qualitative picture i s  
here the following. It i s  obvious that weak random 
fields do not change qualitatively the properties of the 
paramagnetic phase of the pure system at  T > T,. The 
renormalization trajectories for T < T, a r e  shown in 
Fig. 6. According to (5) the effective temperature in- 
creases  to T,, after which vortices appear and the 
paramagnetic phase sets in. There i s  therefore no 
phase transition in the system at  n =  1 and 2. 

We note that our results  a r e  directly appticable to the 
XY model with isotropically distributed random fields 
h cosn[8 + ol(x)l. The Hamiltonian has in this case a 
different symmetry, s o  that another behavior of the 
system i s  expected at  T <  T*. A similar system was 
considered recently in Refs. 21 and 22, where, just a s  

Paramagnetic -he; 
c T 

FIG. 6.  Renormalization trajectories at n  = 1 and 2. 
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in our case, a universal temperature ~ * = 4 n / n ' ,  which 
limits a t  n 3 3 the low-temperature phase of the XY 
model, was obtained. 

Ill. QUASI-TWO-DIMENSIONAL X Y  MODEL WITH 
RANDOM ANISOTROPY 

In this section we generalize the analysis of Sec. I1 to 
include the case  of a layered system with a weak cou- 
pling between layers. We shall use here the "fast par- 
quet" method developed by Gor'kov and ~ z ~ a l o s h i n s k i p ~  
and by Obukhovlg in the theory of quasi-one-dimensional 
metals. 

Each layer i s  a 2 0  XY model with random anisotropy 
h(x) cosne (considered in Sec. 11), and the coupling be- 
tween the layers i s  specified by an interaction of spe- 
cial form g, cosn(@,+, - e,), where i i s  the number of the 
layer and g, i s  a parameter assumed to be small. The 
Hamiltonian of our problem i s  then 

H -C J d i  [f ( ~ u q . ) z + u  cos f i t+hi(x)cos ppi+gL eos p (p,+,-qr) 1. 
(12) 

In the fermion representation this Hamiltonian i s  given 

by 

(13) 

After averaging over the random fields h,(r)  we obtain 

In this bare  Hamiltonian the interaction constants g,,, 
and 2 differ from ze ro  only inside one layer 1: = k and for 
the neighboring layers i = k i  1: 

(here g6+g: =go), but the renormalization procedure 
can initiate also interaction with more remote layers. 

The zeroth-approximation Green's functions in each 
layer a r e  given by Eqs. (4). The vert ices g,, g,, and 5 
a r e  shown in the diagram representation in Fig. 7. The 
renormalization of the vertex g:k i s  given by the dia- 
grams of Fig. 8, that of gik by the diagrams of Fig, 9, 
and of the vertex iik by the diagrams of Fig. 10. 

The corresponding parquet equations of the renormal- 
ization group take the form (there is no summation over 

+ ' 
A 

FIG. 7. Diagram representation of the vertices g fk, g lk ,  and 
gik. 

91 gr 91 qz ST Sz ~2 B 

FIG. 8. Diagrams that renormalize the vertex g fk. 

repeated indices) 

In the Fourier  representation we obtain the system 

d g i t q )  1 -=- 
2 dq' 2 dq' 

d: n s 2 ( n ) + , g l ( q )  J G6.(~')---J ,g,(q,)g.(q-q,) 

2 dq' 
- ; J z g 2 ( q ~ ) ? ( q - q ~ ) ,  

dgz(q)  1 dq' - =- - 
2 dq' 

4 J z g t ( q ~ ) g l ( q - q ' ) - F  J r g l ( q r ) 2 ( q - q t ) ,  (17) 

-=- 2 
d j  n 

with initial conditions in the form 

Jus t  a s  in the two-dimensional case, the form of the 
solution depends essentially on the sign of go, Substi- 
tuting in the system (17) the solutions in the form 

we can easily verify (see Appendix A) that a t  c,(O) + c,(o) 
=go< 0 (T> T*) there i s  realized inside the Layers the 
two-dimensional situation described in Sec. 11: 

and the coupling of the layers remains weak 

In the case  go>  0 solutions of type (19) will not do, 
since the coupling c' between the layers becomes of the 
order  of c (see Appendix A) and account must be taken 
of the next-order harmonics, i.e., the problem becomes 
essentially three-dimensional. In this case  one might 
expect the solutions to be of the moving-pole type, a s  i s  
the case in the theory of quasi-one-dimensional metalslg: 

a 
+ - + -- 

91 gr 5'1 9 

FIG.  9. Diagrams that renormalize the vertex glk.  
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FIG. 10. Diagrams that renormalize the vertex zik. 

where =to  - aq2 a t  small momenta. Reasoning a s  
in Ref. 19, one might assume that the pole singularity 
in the integral terms of the system (17) can be inte- 
grated and the principal terms a re  the first of the first  
equation, which yields 

and the first  term in the third equation, which leads to 

Since i ( 5 ,  q)  has a stronger singularity than g,(E, q ) ,  
those terms of (17) which contains integrals of g(5, q) 
turn out to be more singular a s  5 - E ,  than the non-inte- 
gral  terms. Thus, a solution of the "moving-pole" type 
i s  found to be unstable to inclusion of g2 0; this i s  one 
more manifestation of the known destruction of the long- 
range order by a random field a t  d c  4. It i s  interesting 
to note that a formal analysis of the system (17) a t  d 
> 4 shows that the "moving pole" solution is  stable, for 
in this case the integration i s  with respect to daq', where 
n = d - 2 > 2 and the singularities of the integral terms 
a re  indeed weaker. 

To understand what happens in our case at f i>  0 we 
start from the fact that with increasing 5 an ever in- 
creasing number of layers begins to interact. In the 
coordinate representation we seek the solution in the 
form 

where I , ,  i s  the distance between the layers i and Q at  
I,,>> 1 / ~ .  It turns out that such a solution actually exists 
and i s  of the form (see Appendix B) 

g l ' " ( b ~ a ,  e l p  ( -h(E) l ,a ) ,  g,"(E) =-a2 ehp ( - 2 h ( f ) l t k ) ,  (22) 
8'"E))a,L, exp ( - h ( E ) l a ) .  

Here 

X, and a,,, a r e  certain positive parameters that must be 
determined from the initial conditions (x, - 1, n, - go). 
Thus, at T < T* the interaction between the layers takes 
the form of an attenuating exponential in I,,, whose at- 
tenuation length increases with increasing [ in accord 
with (23). 

So long as  i s  small enough and x(€) Xo - 1 only the 
nearest layers interact and equalization takes place of 
the constants of the interaction between the nearest 
layers and inside the layers, a s  described in Appendix 
A. But when A(£)  becomes much smaller than unity, the 
solution in the inner region I,, << l/X([) i s  independent of 
I,, and assumes a form that corresponds in the q-repre- 
sentation to a "standing pole" (see Appendix C): 

3n h ( C )  3 n  h ( E )  
g , ( E ) = - - ,  g 2 ( k ) z - - -  

4 L-E 8 E o - E  ' 
n  1 

a t )  7s. 
The following remark i s  in order here. The solutions 

(24) a re  meaningful only if 5, - I vanishes earl ier  than 
A((). It i s  seen from (22) that if A ( [ )  vanishes earlier, 
al l  the layers of the system begin immediately to inter- 
act simultaneously. (Such a solution of the system (16) 
with charges independent of i and k does formally exist: 

where L i s  the size of the system.) Such a situation 
seems quite strange from the physical point of view, 
and we assume therefore that X(F) 2 0  a t  5 < 4,. 

It is k n ~ w n ' ~ . ' ~  that the presence of a moving pole of 
the type - [ I - '  points to a transition into a spa- 
tially ordered phase: a certain q, exists at which a pole 
appears f irst  (q,= 0 in the case of a ferromagnetic tran- 
sition). The fact that in our case we have precisely a 
standing pole (the pole appears simultaneously for all 
q) indicates that below T* there occurs a transition into 
a spatially fully disordered state (of the spin-glass 
type). 

All the foregoing pertains only to the case when the 
random field has an anisotropy order n 3 3. At n = 1 and 
2 (T* < T) it i s  necessary to take into account near T* 
the vortices, and it i s  not clear what happens in this 
case. 

CONCLUSION 

We have considered an XY magnet with random anisot- 
ropy of h ( x )  cosn0. A quantitative analysis was carried 
for n > 3, for in this case we can neglect the vortical ex- 
citations in the analysis of the effects connected with the 
random fields. A qualitative examination of the situa- 
tion a t  n = 1 and 2 points to the absence of any phase 
transitions whatever in a 20 system. At n 3  3 there 
exists a temperature region T* < T < T, where the ran- 
dom field is inessential. We have shown that at T < T* 
the interaction of the thermal fluctuations with random 
field leads to an effective "heating" of the 2 0  system to 
a universal effective temperature T*, so  that a phase 
with randomly quenched moments exists. It was found 
convenient in this case to use a representation of our 
model in terms of fermion variables that describe soli- 
ton excitations of the initial boson field; this confirms 
the importance of taking into account excitations of 
topological character in strongly disordered systems. 

To study the properties of a three-dimensional sys- 
tem we chose a quasi-two-dimensional model with weak 
interlayer interaction (J, / J =  g, << 1) of special form 
J ,  cos(0,+, - 0,). The scale dimensionality of this term 
i s  2 - n2a(T), whereas the dimensionality of the ordi- 
nary interaction J cos(dt+, - 0,) equals 2 - a(T). The 
factor n therefore decreases the scale dimensionality 
of our interaction, and this should also weaken the ef- 
fect of the interaction between the layers. Nonetheless, 
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this interaction turns out to be  quite substantial a t  T 
< T* and leads to a solution of the "standing-pole" type 
in the fast-parquet equations. This i s  a weighty argu- 
ment favoring the existence of a spin-glass state a t  T 
< T*, although our method only indicates the character  
of the instability of the high-temperature phase, with- 
out making an investigation of the low-temperature 
structure possible. 

It must be noted that in the employed special model i t  
would be  possible to disregard excitations of the vortex- 
line type, since the temperature T* turned out to be 
lower than the vortex-formation temperature T,. In a 
r ea l  system the interaction between layers i s  of the 
form J cos(8 ,+, - 8,) and is significant a t  a l l  T < T,, s o  
that effects connected with randomness, vortices, and 
three-dimensional interaction cannot be separated. 
Since, however, the instability that leads to the phase 
transition into the spin-glass state was observed for a 
substantially weakened interlayer interaction J ,  cosn(8,+, 
- O,), i t  i s  natural to propose that i t  exists  in a r ea l  
system with an interlayer interaction J cos(8,+,  - 8, )  
and with random fields h(x) cosn8. To  cas t  Light on this 
question we must know the properties of the vortex 
lines in the system with random field (we point out in 
this connection a recent paper,23 in which i t  i s  shown 
that in an  Ising magnet with random field the "surface 
tension" of the domain wall vanishes a t  d 3). We em- 
phasize in conclusion that our results  (apart from the 
value of the characteristic temperature T*) cannot be 
transferred directly t o  the case  of isotropically dis- 
tributed random fields [h,(x) cos(n8) + h , ( ~ )  sin(n8); 
hi(x)hk(xl) = 5,,26(x -xl) l ,  for  in this case the parquet 
equations take a different form and require a separate 
treatment. 

In conclusion we wish to tha* L. P. Gor'kov, S. P. 
Obukhov, and V. L. Pokrovskii for numerous helpful 
discussions. 

APPENDIX A 

Substitution of solutions in the form 

in the system (17) yields two systems of equations 

I 
dc ,  1 2 
-=- I 

c j 2 -  -czE + - - ( c , ' ) ~ ,  
dE n n 231 
dc,  1 2 - = - - c , ~  - - c,E, 
dE n n 
dC 2 
-=- 

2 
( c , + c Z ) E - - ~  + - l - - E t C ' ;  

dE n n n 

I 
dc,' 2 
-=- 

1 1 
(c,+cz)c,' - - c,'c,' - - c,'E1, 

dS fi x n 
dc,' 1 
-=-- 

1 
( c , ' ) ~  - - C,'E1, 

dE 2n n 

dF' 2 2 2 - (cI+cz)E1 f -Fc,' - -EE'. 
d f  2-t n n 

Adding the f i r s t  two equations of (A2) we obtain 

Accurate to the small  t e rms  (c:), and zlc{, these a r e  
Eqs. (5) and have a t  (c, + c,)l,., rgn < 0 the solutions 

( C * + C Z )  (E+-)  =go exp (-g, /Ig,I  ) - -g , ,  

2 
(A51 

~ ( i + - ) = g % e x p  ( - - t g . ~ f )  n +o. 

Substituting (A5) in the system (A3) we obtain 

i.e., the coupling between the layers remains weak and 
we can confine ourselves in the expansion to the f i r s t  
harmonic (Al) .  

On the other hand, if go> 0, c and c1  become of the 
same order of magnitude when the solutions (A4) ap- 
proach the zero-charge asymptotic form (7). Since the 
principal t e rms  in Eqs. (A3) a r e  the f i r s t  t e rms  in the 
f i r s t  and third equations, the c t ( t )  f i r s t  increase like 
e ~ p ( 2 ~ , E / n )  a t  &>0,  and this growth continues until the 
negative t e rms  in the equations become dominant. In 
this case c and c1  become quantities of the same order 
and expression (Al)  no longer holds, since i t  i s  neces- 
s a ry  to take into account the higher harmonics. 

APPENDIX B 

U'e seek solutions of the system (16) in the form 

g,'k(E) -exp ( - L ( E )  lLk) 

where I,,>> 1 / ~ .  We f i r s t  verify easily by direct  integra- 
tion that 

Owing to the derivatives, the Left-hand sides of (16) 
contain t e rms  - l i kexp( -~1 ,~ ) .  Therefore, for such a 
t e rm to appear in the right-hand side of the second 
equation (where there i s  no summation over the layers), 
we must choose gik"l ik exp(-xlia). In addition, i t  can 
be  seen from the second and third equations that A,(<) 
= 2 ~ , ( [ )  and x,([) = X([). We seek therefore the solution 
in the form 

Substituting (B3) in the system (16) and retaining the 
t e r m s  principal in lik and exp(-XI,,), we obtain 

From this we easily find that 

1 
h(E)=ho ---a,£, ii=a2. 
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APPENDIX C 

Since the layer  interact ion at tenuates  exponentially at 
l , ,z  I/&, the summation in the t e r m s  such  as C,gf'g'k 
can b e  cut off a t  1 / ~ .  Assuming that  gfk in  the inner  
region I,,<< 1 / ~  are independent of I , , ,  we s e e k  the 
solutions in  the fo rm 

We substitute ( C l )  in  (16): 

5 1 dii 2 6 6 ,  2 T 2  2 Tb, - + - = -  +-- 
(to-E)' (to-E) dE n h(E)  (to-%)' n (So-@' n (SO-1)' 

We choose b , , , (E)  = c,,, h ( t )  and ;= c (c, , ,  and are num- 
bers ) .  We then obtain near  the pole 5 ,  the s y s t e m  

This  sys tem has a solution 

A second solution, in which < 0, has  no physical 

meaning, s ince 2 i s  essent ia l ly  a positive quantity. 
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