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A model of an amorphous ferromagnet containing atoms that form two-level systems is considered. The time 
of relaxation of such systems via interaction with spin waves is calculated, and it is shown that this time can 
be shorter than the phonon relaxation time. The .law governing the damping of the spin waves in such a 
system is determined and the magnetic contribution to the heat conduction is calculated. In a definite 
temperature range this contribution can exceed that of the phonons. 

PACS numbers: 75.30.D~ 

1. INTRODUCTION 

The low-temperature propert ies  of amorphous sub- 
s tances a r e  being explained a t  p resen t  on the b a s i s  of 
the concept of s t ruc tura l  excitations of a special  type, 
known a s  two-level systems.  The idea of this  descr ip-  
tion i s  due to Anderson, Halperin, and Varma'  and to 
P h i l l i p ~ , ~  and consis ts  of the assumption that the amor-  
phous sys tem contains a definite number of a toms  (or  
groups of a toms) that can b e  on one of two levels  and 
tunnel between these levels  with participation of acous- 
tic phonons. By making cer tain assumption concerning 
the s tat is t ical  distribution function of the tunnel s ta tes ,  
Anderson, Halperin, and Varma '  calculated the con- 
tribution l inear  in the t empera ture  to  the heat capacity 
of g lasses  and the quadrat ic  t empera ture  dependence of 
the thermal  conductivity, i.e., precisely the tempera-  
tu re  dependences of the quantities experimentally ob- 
se rved  in g lass  insulators. 

Two-level sys tems  were  short ly  af ter  observed a l s o  
in metallic g l a ~ s e s . ~ . ~  

It i s  assumed in the present  paper that an amorphous 
ferromagnet  a l so  contains a number of a toms  that form 
two-level systems.  The a toms  can b e  ei ther  magnetic 
o r  nonmagnetic. It i s  c l e a r  that the tunnel s ta tes  due 
t o  the magnetic a toms  modulate the exchange-interac- 
tion energy, the dipole energy, and the magnetic- 
anisotropy energy. If, however, the tunnel s ta tes  a r e  
formed by nonmagnetic atoms,  the latter,  participating 
in the production of an indirect  exchange interaction and 
of the c rys ta l  field, a l so  modulate the exchange-inter- 
action and the magnetic-anisotropy energies." Ob- 
viously, tunnel t ransi t ions in this amorphous fe r ro-  
magnet should be produced not only by phonons but a l s o  
by  spin waves. It is these phenomena to which this  
paper i s  devoted. In part icular ,  i t  has  turned out that  
if the dipole-dipole interaction i s  neglected the spin- 
wave contribution to the thermal  conductivity is pro- 
portional t o  T S f 2 ,  but contains a l a r g e  coefficient; A 
temperature region in which the spin-wave thermal  
conductivity exceeds that of the phonons can therefore 
exist. Fur thermore ,  the spin-wave damping is a l s o  
found to be anomalously s t rong  and t o  have a r a t h e r  
s t rong momentum dependence. 

A direct  experimental  check on this  prediction of the 
theory i s  mos t  important  for  the study of how the spin- 
s ta tes  a r e  made up in magnets. We wish t o  propose 

h e r e  one variant  of such a verification, which we r e -  
gard  a s  qui te  at t ract ive.  

It i s  well known (see, e.g., the paper  by  Laermans  
ef  0 1 . ~ )  that bombardment  of c rys ta l s  by  fas t  e lec t rons  
and y r a y s  causes  local  amorphization and the onset  of 
two-level systems.  On the other  hand, in  f e r r i t e  c rys -  
t a l s  the spin-wave damping i s  investigated in detai l  
with the aid of parametr ic-resonance experiments  
(Gurevich and Anisimov8). By i rradiat ing a c r y s t a l  
whose spin-wave damping is well  known, it is possible 
to  t rack  the variation of the damping a s  a function of the 
i r radiat ion dose, and ascer ta in  the ro le  played in this 
c a s e  by the two-level systems.  

It mus t  b e  noted that the question of the interaction of 
spin waves with two-level sys tems  in fe r romagnets  was 
recent ly considered by continent in^.^ He, however, 
took into account only the modulation of the exchange 
interaction by two-level systems.  But in th i s  case,  in  
view of the law of total-spin conservation, the spin 
waves can not cause t ransi t ions between tunnel s ta tes  
in the homogeneous l imit  ( k  - 0). The tunnel modulation 
of the exchange interact ion i s  therefore inessent ial  in 
the low-temperature region and i t  is necessary  t o  study 
the interaction of spin waves with tunnel s ta tes  that 
modulate the magnetic anisotropy and the dipole forces,  
The  smal lness  connected with the total-spin conserva-  
tion law w a s  not noted in  Ref. 9, s o  that the energy and 
tempera ture  dependences obtained there  fo r  the physi- 
ca l  quantities do not hold in  the exchange approxima- 
tion. Fur thermore ,  the quadrat ic  approximation in- 
vestigated in Ref. 9 f o r  the spin-wave spec t rums  i s  not 
sufficient a t  low temperatures ,  and one mus t  use for  
the spin-wave energy a n  exact  express ion  that  t akes  
into the dipole forces,  a s  wil l  be  done below. 

2. CHOICE OF MODEL 

We consider (for the sake of argument)  a ferromag- 
net  with "easy axis" anisotropy, descr ibed  by the Ham- 
iltonian 

1 
%=- Tz  J,,s,s,-DZ (st)' 

1 

where  Sq denotes the a-project ion of the spin in the 
i - th  lattice s i t e  (a= Y,Y, 2); Ji, is the exchange interac-  
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tion of the spins at s i tes i and j ;  D i s  the magnetic 
anisotropy constant; D i s  the magnetic anisotropy con- 
stant; the z axis i s  the easy axis. 

We write the two-level-system Hamiltonian, a s  
usual," with the aid of a Pauli matrix in the form 

where A i s  the difference between the level energies of 
the levels in two wells, and A, i s  the tunneling energy 
in the usual form1': 

(we use a system of units in which A= k, = 1). 

It i s  quite clear that the exchange-interaction energy, 
the dipole energy, and the magnetic-anisotropy energy 
a r e  all different, depending on the potential minimum 
at  which the tunneling object i s  located. Therefore the 
Hamiltonian of spin interaction with two-level systems 
can be  represented in the form 

The summation here i s  over al l  the tunnel states and 
over the spins that interact with them. The vector n, 
i s  the direction of the random anisotropy axis. Gen- 
eral ly speaking, one should add to (4) the modulated 
part of the dipole forces, which decreases rapidly with 
distance (like R-4). This part, however, does not lead 
to any new phenomena, and can therefore be taken into 
account effectively by redefining the constant D,. 

In the spin-wave approximation the Hamiltonian (1) 
takes the form (see, e.g., Ref. 11) 

where i s  the spin-wave energy, and for the quantities 
A, and h, we have the expressions 

Ar=~(ak)~+2~p~M~+2pdi~+4np~M, sinZ Bt, 

B t -4npoMo sin2 Br exp( -2 icp t ) .  
(6) 

Here an2 i s  the spin-wave rigidity coefficient, n i s  the 
interatomic distance, a i s  a quantity of the order of the 
Curie temperature, M, i s  the saturation magnetization, 
and H i  i s  the internal magnetic field. The constant D in 
(1) was rewritten by us in the form D = ~fi,,M,/s, where 
now j3 i s  the magnetic-anisotropy constant. 

The Hamiltonian (4) contains te rms that describe tran- 
sitions that take place between levels of two-level sys- 
tems and a r e  accompanied by emission and absorption 
of one o r  several  spin waves, a s  well a s  te rms de- 
scribing the elastic and inelastic scattering of the spin 
waves. The volume part of the Hamiltonian describes 
in our approximation only the scattering processes. Ob- 
viously, the principal role in the low-temperature re- 
gion i s  played by the single-quantum processes (the in- 
terlevel transitions accompanied by emission of two 
and more spin waves a r e  small  because the phase space 
i s  small). That part of the Hamiltonian (4) which corre-  
sponds to single-quantum processes i s  of the form 

Here ci and c; a r e  the spin-deviation Bose operators 
and a r e  connected with the spin-wave creation and an- 
nihilation operators by the known (u, t ~ )  transformation 
(see, e.g., Ref. l l ) ,  while Y i  and q i  a r e  the azimuthal 
and polar angles of the vector n,. 

Changing over in (7) to the spin-wave operators a; 
and a,, we r ep resen tz ; ,  in the form 

%.,,'=-z D.E { a t + @ t ' e x p ( - i k R , ) + a k @ k  e x p ( i k ~ , ) ) o ~ '  , 
io  k 

(8) 
Qk=ur exp(- i l l . , )  + ~ . r  e x p  ( i l l . ; ) .  

Here D, = 1/4 ( 2S )3120 i  sin2yi, and u, and 71, a r e  trans- 
formation coefficients given by'' 

It must be noted that in the case of a noncollinear fer- 
romagnet (asperomagnet) the exchange part can acquire 
t e rms  responsible for single-quantum transitions, but 
by virtue of the total-spin conservation in the exchange 
interaction they must inevitably vanish in the homo- 
geneous limit k = 0. The Hamiltonian exchange part 
analogous to  (8) must therefore include the factor k 
omitted in Ref. 9. After diagonalizing the tunnel Hamil- 
tonian (2), the interaction (8) takes the form 

Thus, the final form of the Hamiltonian of our problem 
i s  

It should be noted that this Hamiltonian describes the 
principal effects of the interaction between spin waves 
and two-level systems in any ferromagnet, including 
noncollinear ones. In the latter case, however, the in- 
teraction of the two-level systems with the longitudinal 
fluctuations of the spins can also be significant. At 
present, however, we know almost nothing about such 
fluctuations, other than the experimental fact that they 
exist. 

3. RELAXATION TIME OF A TWO LEVEL SYSTEM 
The time of relaxation of a two-level system on ac- 

count of spin-wave absorption and emission can be 
easily calculated from the Hamiltonian (18) by the same 
method used in the case of interaction of a two-level 
system with phonons 1, 2 , 3 .  As a result  we obtain from 
(9)-(11) for the two-level-system reciprocal lifetime 
governed by the part of the interaction proportional to 

where 
1 - 

A = - ( 4 n p o M o ) ' " ~ , Z ,  
4na" 
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where i s  the average over both the angle Y, and the 
quantity Dl. By regarding in this integral the energy E 
a s  being of the order of the temperature T assuming T 
>> PP,/M,, we can neglect in I(E) the contribution due to 
the anisotropy. Calculating next the integral for E 
>> 4npoMo and E << 4npoM0, we obtain for the relaxation 
time the expressions 

Equation (13) corresponds to the case when the dipole- 
dipole interaction i s  neglected, whereas (14) corre-  
sponds to the case when the dipole-dipole interaction i s  
significant.' ' 

U'e compare now the relaxation time introduced by 
the spin waves with the contribution due to  processes 
in which phonons participate. The relaxation time due 
to the phonons i s  well known (we use the notation of 
Ref. 10) 

(15) 
where E ,  i s  of the order of several  dozen degrees. The 
contribution of the spin waves to the relaxation time 
will obviously prevail over the phonon contribution if 
the following conditions a r e  satisfied 

- 

It follows from these inequalities that there can exist a 
temperature region in which the spin-wave relaxation 
i s  faster than that of the phonons, i.e., the two-level 
system "feels" only spin waves. 

It must also be noted that in the general case in amor- 
phous magnets the total lifetime of two-level systems i s  
determined by both interaction processes: 

4. SPIN-WAVE SPECTRUM 

U'e study now the influence of the tunnel s tates on the 
energy spectrum of the spin waves. To this end we con- 
sider  the dispersion equation for  the spin waves 

where G i s  the self-energy part  of the spin waves and 
i s  due to their interaction with the tunnel states. 

G(k, d )  can be accurately determined by the technique 
developed in Ref. 13. However, just a s  in the phonon 
case (see, e.g., the review in Ref. 14), i t  i s  clear  that 
in the lowest order of perturbation theory 2(k, (1)) con- 
s i s t s  of contributions of two types, resonance and re-  
laxation. These contributions a r e  obtained by averaging 
the following quantities over all the tunnel-state types: 

These quantities a r e  averaged by the standard method 
developed in Refs. 1 and 10. This averaging operation 
can be  represented in the form 

where < i s  the density of the tunnel s ta tes  that modu- 
late the magnetic anisotropy, Em i s  their maximum en- 
ergy,  and A,,, i s  the minimum tunnelingenergy and 
i s  determined, for experiments that a r e  fast  enough, 
by their reciprocal t imes (a detailed discussion of this 
procedure can be  found, e.g., in Ref. 10). In addition, 
in the calculation of the mean values i t  i s  necessary 
also t o  average over the polar angle cP, of the spin 
wave, in which case the factor I ch,("s replaced by 
A,  /ck. As a result  of the described procedure, we ob- 
tain for the resonance contribution to the self-energy 
of the spin wave in the case w << Em 

- A t  - E m  
Z,,. (k, o) =-2Di2-  P,Vo ln- 

E k 2nT 

where V ,  i s  the volume per magnetic atom and IC, i s  the 
logarithmic derivative of the r function. This expres- 
sion i s  obviously valid in the case 

For  the energy and damping of the spin wave we have 
then 

The factor A, /& ,  in this expression s tems from al- 
lowance from the dipole forces in the unperturbed spin- 
wave spectrum. If the magnetic anisotropy i s  neglected, 
i t  becomes infinite a s  k -0. The equations in (23) can 
therefore be correct  only a t  a sufficiently high mag- 
netic anisotropy, when the corrections to the spectrum 
a r e  small. However, even in this case the correction 
to the spectrum may not be small  because of the large 
logarithm in (23). The situation here  i s  essentially the 
same a s  in the case  of resonant interaction of the pho- 
nons (see the review in Ref. 14), where a similar  large 
logarithm i s  present. This indicates that i t  may be 
necessary to  investigate higher-order approximations 
in the density of two-level systems, where powers of 
large logarithms a r e  present. 

The relaxation contribution i s  more complicated. It 
follows from (13)-(15) that the relaxation time of the 
two-level system varies in a range from r,,, corre-  
sponding to A,= E to T,, at  A,= A ,,,. In the case 
A,,, << T which i s  of greatest  interest  the relaxation 
part  of C can be  easily represented in the form 
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Comparing this expression with C,,,, we see  that 
owing to the large logarithm (21) the r ea l  part  of Ere, 
is in practice always smaller  than ReE,,,. At the 
same time, in the frequency region ?;in(?) >> w >> 7;:, 
the combination of arctangents in (24) is equal to n/2 
and the contribution of B,,, to the spin-wave damping i s  

- Ar 
y::: =D?-nPmVo. 

4 ~ k  

(25) 

This quantity i s  of the same order  a s  y z ) ;  outside this 
interval the relaxation damping i s  negligibly small. 

5. THERMAL CONDUCTIVITY AND INTERACTION 
ENERGY OF TWO-LEVEL SYSTEMS 

Obviously the equation for the heat capacity of two- 
level systems remains unchanged when the interaction 
with the spin waves i s  turned on. The situation with 
the thermal conductivity i s  here different. 

The thermal conductivity due to spin waves can be 
easily estimated by using the known formula x (1/ 
3)C,lv, where C, i s  the spin heat capacity, v i s  the 
spin-wave group velocity, and I i s  their mean f ree  
path. It i s  convenient here t o  consider two cases. We 
f i r s t  neglect the dipole-dipole interaction; this corre-  
sponds to temperatures T >> 4n/.~&2,. In addition, we 
assume in both cases  that the influence of the gap in the 
spin-wave spectrum i s  negligibly small, i.e., we con- 
sider  our system a t  temperatures higher than the mag- 
netic-anisotropy energy (T >> PP@,). In this case we 
obtain for the thermal conductivity the est imate 

Comparing this expression with the phonon contribution 
to  the thermal conductivity, 

we see  that owing to the large coefficient in (26) the 
spin-wave contribution to the thermal conductivity, a t  
temperatures 

pca 

exceeds the phonon contribution. 

In the other limiting case, when the dipole-dipole in- 
teraction i s  significant, i.e., a t  Pp&2,<< T << 47r/.~,M,, 
an estimate of the thermal conductivity due to the spin 
waves yields 

In this case  a comparison with the phonon contribution 
(26) shows that the temperatures a t  which x >  up, must 
satisfy the inequality 

4xpoMo Pm pca 
T>a (7)2(F)z(~vo-) P P ~  7' 

At lower temperatures T-,t?&,M, we can no longer 
neglect the gap in  the spin-wave spectrum, and the 
spin-wave contribution to  the thermal contribution i s  
exponentially small  in this temperature region. 

The resultant picture for the thermal conductivity of 
an amorphous ferromagnet i s  thus the following. At 
low temperatures the thermal conductivity i s  governed 
by the phonons and has a quadratic temperature depen- 
dence. With r is ing temperature, a large contribution i s  
made to the thermal conductivity by the te rm due to 
the spin waves, and a t  sufficiently high temperatures 
the thermal conductivity i s  proportional to T5I2. 

We consider, finally, the question of the interaction 
of tunnel centers  on account of spin-wave exchange, 
using the standard perturbation-theory method. From 
Eqs. (5), (6), and (8)-(10) we obtain the equation 

(29) 
The second te rm in the square brackets  of this ex- 

pression i s  smaller  than 1/2, and allowance for it does 
not change the qualitative picture of the interaction be- 
tween the centers. This interaction takes the same 
form as  the known Suhl-Nakamura interaction, i.e., a t  
large distances i t  i s  proportional to R i l  exp(- q$,J, 
where 

but the presence of the factor D,D, cos(lL, - d b )  makes 
the sign of the interaction uncertain. U'e note also that 
such a simple formula for &qn, can be used a t  p + v only 
when the distances between centers  a r e  not too large; 
the corresponding cri ter ion can be written in the form 

In conclusion one of the authors, Yu. N. Skryabin of 
the Metal Physics Institute of the Urals Scientific 
Center of the USSR Academy of Sciences, i s  grateful 
to the Leningrad Institute of Nuclear Physics for hospi- 
tality. 

"1t i s  well known (see, e .  g . ,  Refs. 5 and 6) that random an- 
isotropy destroys the long-range magnetic order. A constant 
magnetic field or else a constant magnetic anisotropy, how- 
ever, ensure stability of the ferromagnetic ground state. The 
existence of this stabilization i s  in fact assumed hereafter. 

2 ) ~ n  expression similar to (13), with replacement (in our nota- 
tion) of @ by 02, was obtained in Ref. 9 in the exchange 
approximation. As already noted, however, in this approxi- 
mation the interaction between spin waves and two-level sys- 
tems in weak at low energies; in the corresponding expres- 
sion it i s  then necessary to replace @ by ( ~ J ) Z E  / ff. At 
high energies the exchange approximation becomes decisive. 
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