
Statistics of the levels in small metallic particles 
K. 6. Efetov 

L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR 

(Submitted 15 April 1982) 
Zh. Eksp. Teor. Fiz. 83, 833-847 (August 1982) 

The problem of the computation of the two-level correlation function in a disordered metal is 
considered for the case in which the sample is of dimension much smaller than the diffusion 
length. The supersymmetry method, which allows the problem to be reduced to a problem of the 
zero-dimensional nonlinear 0 model, is used. The symmetry of the collective variable is deter- 
mined by the presence or absence of magnetic and spin-orbit interactions. It is shown that the 
correlation function depends on these interactions, and coincides in the various limits with the 
corresponding correlation functions obtained with the aid of Dyson's hypothesis for orthogonal, 
unitary, and symplectic ensembles. The computed correlation function determines the response 
to an external electromagnetic field. 

PACS numbers: 71.25.Cx,71.70.Ej 

1. INTRODUCTION 

The principal result of quantum mechanics is the de- 
duction that the levels of a finite system are discrete, their 
positions and spacing being dependent upon the boundary 
conditions for, and the interactions in, the system. In the 
simplest cases the problem of the determination of these 
quantities can be solved either exactly or on the basis of some 
approximation. But in many cases the interactions are so 
complicated that it is impossible to calculate the levels. At 
the same time, the complexity and diversity of the interac- 
tions lead to the idea of a statistical description, in which we 
lose information about the individual levels and go over to 
mean quantities. Such quantities can be, for example, the 
density of states, the level correlations, etc. A similar ap- 
proach is used in statistical physics, where information 
about the individual particles is given up, and averages over 
a large number of particles are computed. 

The idea that the levels in a bounded volume can be 
considered statistically was first put forward by Wigner' for 
the description of the levels in complex nuclei. In such nuclei 
a large number of particles interact in unknown fashion. The 
resulting problem consists in the exact mathematical deter- 
mination of the ensemble of systems in which all the possible 
particle interactions are equally probable. The most conven- 
ient of the ensembles determined by Wigner is the Gaussian 
ensemble. According to the hypothesis on which the Gaus- 
sian statistics is based, each physical system possessing N 
quantum states appears in the ensemble with statistical 
weight D (H ): 

where the H,, are the matrix elements of the Hamiltonian. 
The basic assumption used is the assumption that the 

various elements H,, are statistically independent. This as- 
sumption is quite arbitrary. Furthermore, it is not possible to 
determine in terms of the H,, an ensemble in which all the 
interactions would be equally probable. 

The next step on the road to the construction of a statis- 
tical theory of levels was made by D y ~ o n , ~  who rejected the 
description with the aid of the Hamiltonian matrix elements. 
In the Dyson theory the major role is played by an N x N 
unitary matrix S, where Nis the number of levels. The eigen- 
values of the unitary matrices S are N complex numbers 
exp(i8, ) located on the unit circle. The exact correspondence 
between Sand H is not established. According to Dyson, the 
behavior of n ( ( N )  successive levels of a real system is statis- 
tically equivalent to the behavior of n successive angles 8, on 
the unit circle. It is assumed that all the possible unitary 
matrices S appear with equal probabilities. This assumption 
leads to nontrivial correlation properties of the levels. 

To describe centrosymmetric systems invariant under 
time reversal, Dyson used symmetric unitary matrices con- 
nected with an orthogonal group. Systems that are not invar- 
iant under time reversal were described by arbitrary unitary 
matrices. Noncentrosymmetric systems that are invariant 
under time reversal were described by symplectic matrices. 
The corresponding ensembles were called orthogonal, uni- 
tary, and symplectic. It  should be emphasized that the statis- 
tical description proposed by Dyson, as well as Wigner's de- 
scription, is a hypothesis, and not a rigorously substantiated 
theory. Apparently, other mathematical ensembles satisfy- 
ing the same physical assumptions can be constructed. 

Subsequently, such important quantities as level-corre- 
lation functions were computed on the basis of Dyson's sta- 
tistical The calculations required consider- 
able mathematical proficiency. The correlation functions for 
all the three ensembles were found in these calculations. In 
all the three cases these quantities were found to be slowly 
decreasing oscillating functions with period corresponding 
to the mean level spacing: At the same time no oscillations 
were observed in the density,of states. 

In 1965 Gor'kov and Eliashberg4 applied the Dyson 
statistics to systems of entirely different nature. These auth- 
ors considered small metallic particles. They assumed that 
the electrons interact not with each other, but with the im- 
purities present in the volume. Thus, in contrast to the case 

467 Sov. Phys. JETP 56 (2), August 1982 0038-5646/82/080467-10$04.00 @ 1983 American Institute of Physics 467 



of nuclei, it was not the various interparticle interactions 
that were random, but the external potential. The computa- 
tion of the responses to an external electromagnetic field 
requires knowledge of the level correlation function. In Ref. 
4 correlation functions computed on the basis of the Dyson 
hypothesis are used for this purpose, the orthogonal ensem- 
ble being identified with the case in which only scattering on 
ordinary nonmagnetic impurities occurs. For systems con- 
taining magnetic impurities, or located in a magnetic field, 
the unitary ensemble is used; for systems with spin-orbit in- 
teractions, the symplectic ensemble. 

On the other hand, the statistical properties of the levels 
in metallic particles can be investigated by solving the Schro- 
dinger equation in the given impurity potential and averag- 
ing over the positions of the impurities. Such an approach 
would allow us to verify the basic principles used in the 
phenomenological description of the levels in a bounded vol- 
ume. Thus far, it has not been possible to solve this problem, 
since the existing traditional methods, which are based on 
perturbation-theory-series calculations,s lead to unsur- 
mountable mathematical difficulties. At the same time, it is 
quite easy to formulate this problem within the framework 
of the supersymmetry method proposed by the present au- 
t h ~ r . ~  Below we show that the problem of the computation 
of the level correlation function reduces to the problem of 
the investigation of the zero-dimensional variant of the su- 
persymmetric a model introduced in Ref. 6. The symmetry 
group of the u model depends on the presence of magnetic 
and spin-orbit interactions, as a result of which three differ- 
ent types of symmetry are possible. The zero-dimensional u- 
model calculations allow us to obtain theexplicit form of the 
level correlation functions. 

2. REDUCTION OF THE PROBLEM TO ONE IN THE ZERO- 
DIMENSIONAL SUPERSYMMETRIC u MODEL 

Let us consider a metallic particle with finite dimen- 
sions a. Let us assume that the dimensions a are much 
greater than the interatomic distances. The quantity a can be 
arbitrarily large if we are considering the case of zero tem- 
perature and are investigating the lowest-lying excitations. 
At finite temperatures the dimension a should not exceed the 
critical diffusion length LC = (Dr,)If2, where 7, is the inelas- 
tic-scattering time and D is the diffusion coefficient. The 
volume can contain randomly disposed impurities. The al- 
lowed energy values E, are the eigenvalues for the Schro- 
dinger equation: 

where the p, are the eigenfunctions corresponding to the 
energies E ~ .  

The angle brackets in (1) denote averaging over the posi- 
tions of the impurities, H i s  the regular part of the Hamilton- 
ian (the kinetic energy and the energy of interaction with the 
external magnetic field), and HI is the energy of interaction 
with the impurities. It is assumed that the Hamiltonian HI in 
(1) can cover both the scattering on the ordinary impurities 
and the scattering on the magnetic and spin-orbit impurities. 

Let us define the level correlation function R (o) with the aid 
of the following formula: 

(2) 
In (2) summation is performed over all the levels of the 

system and E, is the Fermi energy. Below we shall consider 
the limit of low temperatures T(A,  where A is the mean level 
spacing, equal to 

Y = mpO/2v2 is the density of states at the Fermi surface and 
V is the volume. 

The function R (o) is equal to the probability that two 
levels will be a distance o apart. It is precisely this function 
that determines the response to an external electromagnetic 
field in metallic particles. The expression (2) can be rewritten 
in the computationally more convenient form 

In the formula (3) G R, (E) and G A, (E) are the retarded and 
advanced Green functions of the Schrodinger equation (I), 
which are given by the expression 

The problem of the computation of the correlation 
function R (o) consists in the determination of the Green- 
function of the Schrodinger equation (I), the substitution of 
the function into (3), and the averaging over the impurities. 

The averaging of the product G El  ( E  + o)G R,, ( E )  is sim- 
ple if the mean free path in the metal is much greater than the 
interatomic distance. It is precisely this limit of sufficiently 
pure metals that will be considered. Limiting ourselves to 
the simplest perturbation-theory  diagram^,^ we find that for 
mo) l,A &r-I (r is the mean free time) 

We cannot compute the average of G t, (E + o)GA,, (E) 

at low frequencies by limiting ourselves to the consideration 
of a few orders of perturbation theory because of the appear- 
ance of divergent terms as a-0 (Ref. 7). For the purpose of 
carrying out the averaging of G f ,  (E + o)GLZ(&) over the 
impurities, we find it convenient to write the Green func- 
tions in terms of an integral over commuting and anticom- 
muting  variable^.^.^.^ Repeating the computations carried 
out in Ref. 6 for the density correlator, we obtain 
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where the Lagrangian L has the form 

In (6) and (7) X = r ,a ]  denotes the particle coordinate 
and spin and $ is a supervector having the classical Fermi 
and Bose variables as its components. In the case of spinless 
particles $ has 8 components, which can be written in the 
form 

In the expressions (8) the superscript a indicates affili- 
ation with the retarded or advanced Green function; x and 
x * are the Grassman anticommuting variables (the rules of 
computation with these variables can be found in Ref. 10); 
and s and s* are complex numbers. The letter T denotes the 
operation of transposition. The elements of the matrix C 
have the form 

where A is a diagonal matrix with elements 
A " = - A  " = 1. The matrices c, and c, are equal to 

In the absence of external fields Ho in (7) has the form 

If only elastic scattering by the ordinary impurities is 
possible in the metal, then H, = U (r), where U (r) is the impu- 
rity potential. Let us assume that the potential U(r) is a ran- 
dom quantity distributed according to the Gauss 6correlat- 
ed law: 

1 
(U(r)>=O, (U(r)U(r1))=-6(r-r'), 

nvz (10) 

where T is the mean free time. 
We average in (6) with the aid of (lo). The expression (6) 

has the same form after the averaging if by the Lagrangian L 
we mean the following quantity: 

The Lagrangian (1 1) is similar to the Lagrangian stu- 
died in field theory. It  is shown in the author's previous pa- 
per6 that the supersymmetry that is possessed by the Lagran- 
gian (11) at zero frequency is spontaneously broken, as a 
result of which the averages QaB = arise. The quan- 
tity Q is a supermatrix, containing both Bose and Fermi ele- 
ments. This matrix satisfies the charge-self-adjointness and 
hermiticity conditions: 

where k is a superelement of the form 

As in Ref. 6, by the operation of charge conjugation and 
the operation of Hermitian conjugation we mean the follow- 
ing transformations: 

Q=CQsTCT, QB+= (Qsr )  *. 

The indices ST and * denote supertransposition and 
complex conjugation. Upon the separation of the averages in 
the term (?$), in (1 I),  the Lagrangian L goes over into 

E= J [ $  ( - i ~ ,  + nv 

2 
dr, (13) 

where Ssp M S p  kM for any matrix M. The supertrace Ssp 
plays in the theory of supermatrices the same role played by 
trace in the theory of ordinary matrices. 

At low impurity concentrations, i.e., at concentrations 
such that the condition T E ~ )  1 is fulfilled, the eigenvalues of 
the supermatrix Q fluctuate slowly, and are determined by 
the saddle-point value of the free-energy functional corre- 
sponding to the Lagrangian Z, (13). At the same time, the 
ground state is highly degenerate at o = 0. The general form 
of the supermatrix Q corresponding to the ground state can 
be written as follows: 

where 

The matrices A, B, 2, and p are 2 x 2 matrices whose 
elements are ordinary numbers in the cases of A and B and 
Grassman variables in the cases o f 2  andp. The matrices A, 
B, 2, and p that guarantee the fulfillment of the condition 
(1 2) have the form 

The strong degeneracy of the ground state at zero fre- 
quency leads to the existence of Goldstone modes connected 
with the Q fluctuations. These modes and their interaction 
are described by a nonlinear generalized a model in whose 
free energy the frequency plays the role of an external field6: 

where D = Z T / ~  is the diffusion coefficient. 
At sufficiently low temperatures, at which the diffusion 

length determined by the inelastic processes is greater than 
the dimensions of the system, only the states with coordi- 
nate-independent Q are important. Allowance for the higher 
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harmonics leads to a great increase in the energy, and can 
therefore be discarded. The evaluation of the integral over qb 
with the Lagrangian z, (13), in the formula (6) is performed 
similarly to the computation of the density correlator in Ref. 
6, and leads to the expression 

F,  [Q] =- (n14A) (a-i6)SSp AQ. (18) 

The expression (1 8) has been derived in the limit of suffi- 
ciently small mean level spacing, i.e., under the assumption 
that 

The inequality (19) allows us to go over in the sums of 
the type 

arising in the computation of (18) to integration over 
6 = E, - E ~ .  In (18) we evaluate a simple, and not a func- 
tional, integral over Q, which corresponds to the retention of 
only the zeroth harmonic of Q. A simple analysis shows that 
such an approximation is admissible if the frequency is not 
very high: 

The ratio @ / A  = wvV can be either much greater or 
much smaller than unity, since the condition (19) and the 
inequality 

are satisfied. 
Formally, in deriving (l8), we used the assumption that 

the disorder in the system is created by the impurities that 
are located in the interior, and are distributed according to 
the 6-correlated law (10). The particle boundary was consi- 
dered in this case to be regular. At the same time, we need 
not, in deriving (I  8), impose an additional limitation on the 
quantity v~ /a .  The only exception is the case of a pellet of 
perfectly spherical shape, in which the levels are highly de- 
generate and widely spaced. For a particle of any other shape 
only the conditions (19) and (21) need be fulfilled. Therefore, 
it may be inferred that an irregular shape of the surface will 
also lead to the expression (18). Notice that the quantity T is 
not contained in this expression at all. All the formulas ob- 
tained above are for the case in which both magnetic and 
spin-orbit interactions do not occur in the system. The pres- 
ence of an external magnetic field leads to the replacement in 
the Lagrangian (17) of VQ by (VQ + c-'eA[Q,r,]) (Ref. 6), 

where T, is a matrix of the form (0 3 in the space of the 

matrices A, B, 2 ,  and p. As a result, the symmetry of the 

ground state is lowered, and some of the modes acquire a gap 
even at zero frequency. Such modes can be neglected in the 
limit o(DeH/c. In this case the expressions (14), (15), and 
(18) preserve their form if by A, B, E, and p we mean the 
following matrices: 

To allow for the magnetic impurities and the spin-orbit 
interactions, we must double the dimensions of $ and Q be- 
cause of the allowance for the spin structure. These interac- 
tions also manifest themselves in the form of effective fields 
that lower the symmetry of the Lagrangian (17), and freeze 
out some of the diffusional modes. When the condition 
OT, & 1 or W T ~  4 1 (where rS and T, are the mean free times 
corresponding respectively to the magnetic and spin-orbit 
impurities) is fulfilled, we neglect these modes. The expres- 
sions (14), (15), and (18) remain valid in this case. When wr ,  
4 1, the matrices A, B, 2 ,  andp are given by the formulas (22), 
in which the quantities A,,  B,, a,, andp, should be taken to 
be 2 x 2 unit matrices. When T,/T, & 0 ~ , &  1, the freezing of 
the modes is milder. Accordingly, for the matrices A, B, 2 ,  
and p we have 

In (23) and (24), the A,, Bi, Xi, and pi  are 2 x 2  unit 
matrices. 

Thus, the problem of the computation of the level corre- 
lation function for a particle with small dimensions reduces 
to the evaluation of the definite integral (18) over Q. The 
symmetry of the supermatrix Q depends on the presence of 
magnetic and spin-orbit interactions. 

Although the problem under consideration has been re- 
duced to the definite integral (18), the evaluation of this inte- 
gral is not simple because of the large number of variables (8 
for the case with magnetic interactions, 16 for potential scat- 
tering and spin-orbit interactions). In the following section 
we shall show how this calculation can be simplified by going 
over to "polar" matrix coordinates. 

3. EVALUATION OF INTEGRAL OVER THE SUPERMATRIX BY 
GOING OVER TO INTEGRAL OVER THE EIGENVALUES 

The independent variable in the integration over the 
supermatrix Q is the superelement Q 12. The superelement 
Q l 2  with symmetry given by the relations (16), (22), (23), and 
(24) can be reduced to the quasidiagonal form 

The elements el, and 02, are equal to 
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in the case of potential scattering; to 

in the case of magnetic interactions; and to 

in the case of spin-orbit interactions. 
The matrices u and u in (25) satisfy the conditions 

Let us recall that the operation of conjugation in the 
spin-orbit case differs somewhat from the corresponding op- 
eration in the case of potential scattering. Using the results 
of the author's previous paper,6 we can easily make the ap- 
propriate changes. To do this, it is sufficient to interchange 
in all the formulas containing the operation of conjugation 
and pertaining to the spin-orbit case the matrices c ,  and c, in 
(9). 

Using (251, we can write the supermatrix Q in the form 

cos 6 isin0 
Q=U( A 

-isin8 -cos 0 (27) 

It is not difficult to verify that the conditions (26) ensure 
the fulfillment of the equality (12). The expression (27) de- 
scribes the transition to the "polar" coordinates. To effect 
such a transition, we must write down the corresponding 
Jacobian. (It is customary to call the Jacobian arising in the 
simultaneous transformations of the boson and fermion var- 
iables the Berezinian. Below we shall use this terminology.) 
We can write down the Berezinian of the transformation if 
we know the quadratic form (ds)' formed by all the integra- 
tion variables: 

In (28) d@, and d@ are the old variables, d8, and 
d* are the new variables, and g,, is a supermatrix. Let us 
assume that the components d@, are ordinary numbers for 
1 < n < p  and Grassman differentials forp < n < N. If the su- 
permatrixg,, is diagonal, then the Berezinian reduces to the 
product 

This formula follows directly from the rules for the 
change of variables in the integrals over the Grassman and 

ordinary variables. Ifg,, is a nondiagonal supermatrix, then 
the above-obtained product goes over into S det g. The su- 
perdeterminant S det g is connected with the supertrace by 
the following relation: 

S det g=exp (Ssp 1n g). 

The properties of superdeterminants and other useful 
relations can be found in Berezin's review article." 

Let us, in accordance with the foregoing, construct the 
quadratic form from the elements of the matrix dQ, and go 
over to the variables and u through the use of the formula 
(27): 

+2 Ssp (26u sin 86v sin B+ (Su cos 8)' 

+ (6v cos 6) ') -2 Ssp (6u) '-2 Ssp (6v)', (29) 

where Su = Edu = - Sii, Sv = Zdu = - SZ. 
In deriving (29) we used the invariance property of the 

supertrace under cyclic transpositions of the supermatrices. 
Let us rewrite the expression (29), explicitly separating 

the Grassman Su,,, Su,,, Sv,,, Sv,, and ordinary Su,,, 
Suz2, Sv, ,, Su,, elements of the supermatrices Su and Sv: 

-26u2, sin BZiSv,, sintrz2+ 4Su,? sin Bzz6vzi sin Bit 

$ 2 6 ~ ~ ~  cos OZ26uzi cos $ 2 6 ~ ~ ~  sin Bii6vli sin 6,, 

+26vlz cos B226vzi cos Bil-26~i26~2i-26vlz.6u21). 

(30) 
The quadratic form (30) consists of two parts, one of 

which contains only the boson elements of the matrices Su, 
60, and d6; the other, only the fermion elements. Therefore, 
the general Berezinian is equal to the ratio of the two Jaco- 
bians corresponding to these parts. For the specific calcula- 
tions we should write the matrices u and v in their explicit 
forms. Let us represent these matrices as follows: 

- u=u,u2, v=u1v2, ui~l=Z2u2=Uivl=~2v2=i, 

- + i 2  211 (1-2iv) 
"= ( -2(1-5qg)71 1-2q1+6(;4)2 ) *  u2=(:iz), 

1-i-2xZ-l-6 (XK) 2ix (i+2iSx) 
vi= ( mi 0 ) v2=(  ) .  

-2i(l+ 2Rx)x 1+2xx+6(xx)2 ' 0 a 
(31) 

In (3 1) the symmetry of the matrices 7, x ,  F,, F,, @,, and 
0, depends on which of the three models in question we are 
carrying out the calculations for. Below, for brevity, we shall 
call the model with potential scattering the model I; the 
model with magnetic interactions, the model 11; and the 
model with spin-orbit interactions, the model 111. The 7 ma- 
trices for these three models are equal to 
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The i j  matrices coincide with the Hermitian conjugates 
r]+.  (It must be borne in mind here that (7t)* = - qi .) The x 
matrices have the same structure as the r ]  matrices. 

The diagonality of the r] and x matrices in the model 
with magnetic interactions leads to a situation in which only 
the terms linear and quadratic in 7 and x remain in u, and v ,  
(31). It is not difficult to verify that in all the cases 
ii ,u, = E,v, = 1. It is no coincidence that we have written the 
matrices u, and v, in the form (31). The coefficients have 
been chosen so as to ensure the satisfaction of the equality 

Figuring in this equality are the products of the inde- 
pendent elements of the matrices Su and Sv. The vanishing of 
these integrals allows us to regard the elements (Sv,,), and 
(Su,,), as Grassman differentials. The matrices u, and v, 
can be parametrized as follows: 

Here 

and m, p ,  and ,y are real numbers. 
The substitution of (3 1)-(33) into (30) enables us to write 

the quadratic form in terms of the independent variables r ] ,  

x ,  M, p,  andx. Because of the fact that the Grassman varia- 
bles 7 and x separate from the ordinary variables, the vol- 
ume element dQ can be written in the form of the product 

where J,dR, is the volume element in fermion space; J2dR,, 
the volume element in boson space. 

Constructing the Jacobians with the aid of the fermion 
and boson quadratic forms, we obtain 

d ~ : "  =dm dm, dm,' dq dx, d0(I)=d0 do, do,, 

Y 

2z (35) 
J ; I I ) =  - Isin 0 I Ish @,I, d~:I"=dq dX, d0"I)=d0 dB1, 

n 

dO(I1')=dO do, do,, d~,'"" =dm dm, dm,' dq d ~ .  

Substituting the expressions (27), (31)-(35) into (18), we 
obtain an expression in which the integration over R , and R ,  
can easily be performed. Carrying out the appropriate calcu- 
lations, and substituting (18) and (5) into (3), we reduce the 
expressions for the correlation functions to the form 

R'" (x) = 1 

+Re j j j. (h-hlhz)2(h2-l) exp ( i  (x-is) (hlAz-A)) dh, dh, dhz 
9 

1 -1  0 
(h9+h,"+h,'-2h,nzh21) 

where x = m / A .  
In reducing the integrals to the form (36), we made the 

following change of variables: A = cos 0, A ,  = cosh O,, and 
A, = cosh 8, for the case I; A = cos O and A,  = cosh 0, for 
the case 11; and A = cosh 8, A,  = cos O,, and A, = cos 0, for 
the case 111. Notice that, to find the x-0 limit, we must 
evaluate the integral for nonzero x values before passing to 
the limit. Passage to the x-0 limit directly in the integrand 
results in divergent integrals. 

The investigation performed in this section shows that 
integration over the group of a supermatrix Q having quite 
large dimensions reduces to double or triple definite inte- 
grals. In the following section we shall evaluate these inte- 
grals and consider physical applications. 

4. THE TWO-LEVEL CORRELATION FUNCTION AND THE 
RESPONSE TO AN ELECTROMAGNETIC FIELD 

The integrals (36) completely determine the solution to 
the problem of the computation of the two-level correlation 
function (2) in all the three possible cases. It is remarkable 
that in all the three cases the integrals (36) can be computed 
analytically. This assertion is obvious for the case 11, but is 
not trivial for the cases I and 111. Therefore, let us show how 
the integral I in (36) can be computed. The integral 111 can be 
computed, using a similar scheme. 

Let 
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Let us go over to the Fourier representation with the aid 
of the formula 

(D 

T ( t )  = J I ( x )  eixtdx. 
- P) 

For I (t ) we immediately obtain 

Going over to the variables u = il ,A2 and z = il :, we 
reduce the integral i ( t  ), (38), to the form 

OD u' 
( I -  ( ~ - t ) ~ )  e ( u - t f l )  0  (I-u+t)zdzdu (39) r ( t )  =nt2 J J 

(z2+z ( t2-u2-1)  + u Z )  I 
1 1  

where 

The integrand turns out to be a rational function of z, 
which allows us to perform the integration over z. As a re- 
sult, we obtain 

f 0 )  =Ti ( t )  +r2 ( t )  , 
OI 

e ( u - t + i ) e ( i - ~ + t )  ( ~ 2 - I )  

du9 (40) 

m e (u - t+ i )  e (1-u+t )  ( t 2 -uz - I )  
I ,  ( t )  =2nt2 J 

( ~ + ~ - t ) ' " ( l + u + t ) " ( l - u + t ) ' ~ ~ ( u + t - l ) ~ ~ ~  

uZ+t2-1 
- arctg ) du. 

(4u2- (t8--uz-1) =) % 

The subsequent integration in j,(t ) is fairly simple. The 
integration in j2(t ) can, in spite of the rather unwieldy inte- 
grand, also be performed analytically. To do this, we use the 
equality 

d ( l + ~ - t ) ' ~ ~ ( l - u + t ) ' "  
-[ du ( l+~+ t ) '~~ ( t+u- l ) '~~  

- - 2t ( t2-u2-1)  

I 
(~+u-t) '"( l+u+t)"( i-u+t) '"  (u+t -I )" '  

Integration by parts with the use of this equality re- 
duces 12(t ), (40), to the form 

" e (u - t+ i )  e ( I - u + t )  ( 3 ~ ~ - t ~ + i ) d ~  
Tz ( t )  =nt  J 

( l +u+ t )  (u+l-  I) u (41) 
1 

Evaluating the integrals of the rational functions in 
i , ( t  ), (40), and j2(t ), (41), we obtain 

T ( t )  =nt  2- ln( t+  1 ) ,  O<t<2. 1 0, t<o  

Going over to the x representation, and separating out 
the real part, we reduce the correlation function R (')(x), (36), 
to the form 

Performing the corresponding calculations for the re- 
maining two models, i.e., for R '") and R '"')in (36), we obtain 

sin2x d sin x ' sinxt  A(=") ( x )  = I  - - f-- - d t .  (44) 
x2 x x ) J  t  

0 

The correlation functions R 'I), R '"), and R 'I1'), (42)- 
(44), coincide exactly with the corresponding correlation 
functions obtained for the orthogonal, unitary, and symplec- 
tic Dyson ensembles.' Let us note that this coincidence ap- 
pears only in the final result (42)-(44). No similarity occurs at 
any intermediate stage. In the x 4  and X+CO limits the 
functions R (x), (42)-(44), have entirely different asymptotic 
forms: 

n 1 1  
R ( x )  - x 0 I - - + - (1+cos2 x ) ,  x-m, 

6 x2 x1 

x' n cosx 
R I I 1  ( x )  s - x+o; I + - -  

135 ' , x-m. 
2 x 

Long-range correlations manifest themselves most 
strongly in the case 111; least strongly in the case I. The for- 
mulas in (45) indicate the existence of a level-repulsion effect 
[R ( x ) 4  as x-01. This effect also manifests itself most 
strongly in the case 111. 

As has already been noted above, the two-level correla- 
tion function determines such quantities as the response to 
an electric field, the magnetic susceptibility, etc. Using Dy- 
son's results for the orthogonal, unitary, and symplectic en- 
sembles, Gor'kov and Eliashberg4 computed these quanti- 
ties. The coincidence of the formulas (42)-(44) with the 
corresponding Dyson expressions allows us to use the results 
obtained in Ref. 4. Let us briefly give the main points of the 
computations. The investigation is limited to the case of a 
single pellet with dimension a,  located in a weak electric 
field, such that the inequality eEa(A is satisfied. For the 
computations we used the Kubo formula 

(da)=i  << [ d ,  ( t ) ,  d e ( t l )  ] BEB ( t l ) d t ' ,  J (44) 

where the d ,  are the components of the dipole-moment op- 
erator and [,I is a commutator. The angle brackets denote 
averaging over the states of the system and over the impuri- 
ties. Performing the averaging over the states of the system 
in (46), we reduce the expression to the form 

where d,, is the Fourier transform of the a-th component of 
the dipole moment and e, is the coordinate matrix element 
connecting the states k and I. The summation is performed 
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over all the states of the system. The angle brackets in (47) 
now denote only averaging over the impurities. The expres- 
sion (47) allows us to obtain the polarizability a,: 

where a, is the static polarizability, equal to 

In the limit w <v/a the averaging of the matrix elements 
and everything else can be performed independently. 

Recalling the definition of the correlation function R, 
(2), and computing the matrix elements r,,r,, in the same 
way as is done in Ref. 7, we obtain 

The coefficient f l  in (49) depends on the relation between 
the mean free path I and the sample dimension a. In the 
limiting cases this coefficient is equal to7 

i39 1 a" ( __- for D a ,  
150 2nv v 

48 1 a' 
for ZKa. 

The expression (49) establishes the connection between 
the two-level correlation function R and the polarizability in 
the complex frequency region. In Ref. 7 the integral (49) is 
evaluated, and the frequency dependences of the real and 
imaginary parts of the polarizability are obtained. A charac- 
teristic of the expressions obtained is the fact that they pre- 
serve the oscillations when the frequency is varied. 

5. CONCLUSION 

The investigation carried out in the preceding sections 
shows that the random potential preserves the correlation 
between the levels in a metallic particle. The coincidence of 
the two-level correlation functions (42)-(44) with the results 
obtained for the orthogonal, unitary, and symplettic Dyson 
ensembles seems remarkatf'e. At the same time we cannot 
avow that the formulas (42)-(44) have a universal character, 
and are applicable to any system in which the various types 
of interactions are realized. The assertion that they do not 
have a universal character is made, for example, in Ref. 12, 
where the applicability of the Dyson formulas is on the 
whole called into question. At the same time there exist a 

class of systems to which the formulas (42)-(44) are applica- 
ble. In the case of a single particle located in a random poten- 
tial, it seems probable that a necessary condition for the ap- 
plicability of the Dyson hypothesis is the possibility of a 
prolonged travel over the whole sample. This corresponds to 
the above-considered limit of long mean free times TE& 1. In 
the limit of sufficiently high impurity concentration, the par- 
ticle is localized, and does not feel the boundaries. This leads 
to the disappearance of the correlations in the level disposi- 
tion. For this same reason, apparently, the Dyson formulas 
are also inapplicable even in the limit of long mean free times 
to a one-dimensional chain of finite length because of the 
localization. Let us recall that, in the limit of short mean free 
paths, the above-developed theory is again inapplicable to 
one-dimensional chains. Above we assumed that the disor- 
der is created by the impurities located inside the sample. It 
may be inferred that the obtained results remain valid for 
pure samples with surfaces of irregular form. 

In the preceding sections the main attention was given 
to the computation of the two-level correlation function. 
The density of states is also an important characteristic of 
the system. But in the model in question this quantity is 
identically equal to v. The random potential in the limit un- 
der investigation completely smooths out all the oscillations 
in the density of states. Let us note that this quantity can be 
obtained even in the standard first-order perturbation the- 
ory.' For the two-level correlation function calculations 
even allowance for the diagrams the summation of which 
yields the diffusion modes is not sufficient.' This is due to the 
fact that such diagrams give rise to an expansion in powers of 
x-', wherex = nw/A.  The terms of the type x - "cos 2x that 
are oscillating functions of x cannot be obtained within the 
framework of such a perturbation theory, since they are non- 
analytic in x-'. The consideration of the problem with the 
aid of the o models obtained by the replica rneth~d". '~ also 
leads to unsurmountable mathematical difficulties due to 
the complexity of the computation of the integral over Q 
under the constraint Q = 1. Therefore, at present the com- 
putational procedure proposed above and based on the 
method of supersymmetry6 seems to be the only possible 
method of solving the formulated problem. 

Experimentally, the level correlation could be observed 
by measuring the polarizability of metallic particles in a 
weak alternating electric field. Quite a large number of dif- 
ferent granular materials exist. Unfortunately, quite a large 
spread in the particle dimensions is usually found. This leads 
to large fluctuations in the mean level spacing. Numerical 
estimates of the washing out of the oscillations for actually 
existing granular materials are given in Ref. 15. It is conclud- 
ed in that paper that the observation of the oscillations is at 
present practically impossible. The production of granular 
materials with a smaller spread in the granule dimensions 
will be of great interest from the point of view of the observa- 
tion of the correlations between the levels. 

The author is grateful to L. P. Gor'kov, A. I. Larkin, 
L. P. Pitaevski?, D. E. Khmel'nitskii, and G. M. ~ l i a s h b e r ~  
for a discussion of the results of the paper. The author is 
especially grateful to A. I. Larkin, who also drew the auth- 
or's attention to the problem considered in the paper. 
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