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In the framework of Weisskopf-Wigner microscopic theory, a Fokker-Planck equation describ- 
ing the dynamics of an atom in a field of quantized radiation and a strong, elliptically polarized 
monochromatic wave that couples the l e v e l ~ p , ~ ~  with sIl2 orp,,, with s,,, is obtained. In the 
limiting case of momentum-independent relaxation constants, the force of the light pressure and 
the rate of growth of the temperature of the atom are determined as functions of the polarization 
of the strong field. 

PACS numbers: 42.50. + q, 3 1.90. + s 

Much attention is currently devoted to the dynamics of 
atoms in strong resonance fields' and, in particular, to the 
study of the forces that arise as a result of spontaneous tran- 
s i t ion~.~  In the theoretical treatment of this phenomenon, an 
atom is, as a rule, simulated by a system consisting of two 
levels nondegenerate with respect to the In the 
present paper, the behavior of an atom is investigated with 
allowance for the actual degeneracy of the levels with respect 
to the directions of the total angular momentum, which 
makes it possible to determine the dependence of the theo- 
retical quantities on the polarization of the strong radiation. 
The microscopic theory of Weisskopf and Wigner6 is used, 
which makes it possible to avoid the phenomenological ap- 
proach generally employed and consisting of the introduc- 
tion of a relaxation operator in the equation for the density 
matrix. 

We shall study the case of atoms of alkali metals, which 
is of practical interest, restricting ourselves to P3/2-S1/Z and 
p,,,-~,~, transitions, since for such transitions the problem 
of the behavior of an atom in a monochromatic field of arbi- 
trary intensity and polarization has an exact solution. 

Writing the expression for the electric field of a mon- 
ochromatic wave as an expansion with respect to the circu- 
larly polarized components, 

E='12E (ae++pe-) ei(kR-ai)+ c.c., (1) 

wherea2 +P2 = 1, e*  =ex  + ie,, and E is the field am- 
plitude in the case of circular polarization, we represent the 
Hamiltonian of the complete system in the form 

II=HA+HQ+Vc+ VQ, (2) 

where 
R,=Hc+p2/2M, IfQ= hoqbq0+bqu 

'40 

are the energy operator of the atom with allowance for the 
translational degree of freedom and the Hamiltonian of the 
quantized radiation, and V,  and V ,  are, respectively, the 
operators of the interaction of the atom with the strong wave 
and the quantized radiation: 

We shall distinguish transitions by specifying the 
change Aj in the total angular momentum and, choosing the 
quantization axis along the direction of propagation of the 
wave, we write down the matrix elements of E + and E ,f, 
that do not vanish in the resonance approximation (first as- 
sumption of Weisskopf-Wigner theory): 

<pm' I E+ I sm>=aS,.,+, (6,j,,+3-'A6,-1:,) 

-P6,.,-, (6m-~/ ,+3-"'6~~~,2) ,  
(4) 

for Aj = 1 transitions, and 

for Aj = 0 transitions. 
In Eqs. (3), d = - e(p(rls)/fi ,  where (p ( r ( s )  is the 

radial part of the matrix element of the dipole moment oper- 
ator. In Eqs. (4) and (S), equ * = equx f iequY, where e,, are 
the polarization vectors of the quantized radiation. The nor- 
malization volume is taken equal to unity. 

In what follows, to simplify the notation, we label the 
internal states of the atom by a single index v, so that v = 1 
will correspond to the excited state ( pjJ of the atom with 
maximal projection of the angular momentum, v = 2 corre- 
sponds to the state ( p j  - 1 I ,  and so forth. 

Having determined the Hamiltonian of the complete 
system, we turn to the solution of the problem, for which we 
represent the statistical operator of the system in the form7 

P (R, R'; t )  =Po (R, R'; t )  

-Po (R', R"; t') VQ (R") ] U(R", t ' ;  R't) d, dR' dR", 
(3) 

( 6 )  
where U is the evolution operator of the system, and Po is 
chosen in the form 
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Po ( R ,  R': t )  = p o  ( R ,  R': t )  pu. 

wherepQ is the canonical distribution of the quantized radi- 
ation, andp, is an arbitrary normalized solution of the equa- 
tion 

itlapolat= [H,+Vc, PO] -. 

The choice of such a p, is dictated by our desire to re- 
strict the calculation to the stochastic part of the density 
matrix, which determines the steady state of the system. Cal- 
culations show that a different choice ofp, leads to the ap- 
pearance of oscillating terms in the density matrix of the 
atom, these being damped over times long compared with 
the spontaneous decay time. 

All the following calculations will be made by the meth- 
ods of perturbation theory in the interaction with the quan- 
tized radiation; i.e., under the assumption that the interac- 
tion parameter, which is of the order of the reciprocal time of 
spontaneous decay, is small compared with the remaining 
frequencies of the system (second assumption of Weisskopf- 
Wigner theory). For this reason, it is convenient from the 
very beginning to go over to a representation in which the 
operator H A  + V ,  is diagonal; i.e., to represent 

P ( R ,  R'; t )  = Lp ( R ,  t )  Ppp- ( I )  Lp,+ (R',  t )  , 
PP' 

(7) 

C ( R .  t ;  R', r r ) =  CL;(R, t )  u p p , ( t ,  t r )  L . . ~  (R' .  t l ) .  
PP' 

etc. The unitary operator by means ofwhich this transition is 
realized is determined by the equation 

(- ifid/at+ Hl+HQ+ V , )  Lp ( R ,  1 )  = L p  ( R ,  t )  Ep, 
h 

where E ,  is diagonal. It is easy to see that L,(R,  t ) can be 
represented in the form 

where fiw, is the digerence between the levels of the atom, 
and the eigenvalues E ,  and the operator T, for the transition 
Aj = 1 are given by 

Ep,=Eptf iQp,/2,  Ep= [p2+ ( f ik /2)2J /2M,  
Qp,=-Qp5,  QPZ=-Ope, Q P 3 = Q P . = ~ o - ~ ,  

Qp,= [ ( o o - o + p k / M )  '+4(dE/h)  2 (a2+B2/3) ]  'la, 

Qp2= [ ( a o - o + p k / M )  '+4 ( d E / f i )  z ( p 2 + a 2 / 3 ) ]  '", 

with amplitudes u and v determined by the relations 

u,2+ vIZ=I, ( U ~ + U ~ ( ) / ~ ( U ~ V ~ ) ~ = A ~ ,  i= { p l ,  p2) ,  
where 

A p , = 1 + A 2 ( o D - ~ + p k / M ) 2 / 2  ( d E ) 2 ( a 2 + p 2 / 3 ) ,  
Ap2=1+A2(oo-of  pk/M)' /2 ( d E ) ?  ( P ' f a 2 / 3 ) ,  (9)  

The corresponding quantities for the transition Aj = 0 are 

Finally, determining the advanced and retarded 
Green's functions of the atom, 

-iUpp. ( t ,  t') for t>t' 
G:, ( t ,  t o  = { 0 for K t ' ,  

which satisfy the equations 

(id/dt-&?,/ti) G p p f  ( t ,  t ' )  = a P P 4  (t-tr)  

and taking the trace with respect to the variables of the quan- 
tized radiation, we obtain for the density matrix 

&r=TrbPpv, pv 

of the atom the representation 

?pv(t) = p'v' P P V V ,  (o)PP,", ,p"(t) ,  

where the matrix of the conditional probabilities is given 
by 

.Pp,v,,pY ( t )  =8p,p6v,v 

A -Vpv , . ,prq , . .  ( t ' )  G,. . , ,- , , ,(t' ,  t )~pR,,~' , . '  ( t ,  t ' )  >a tr ,  

(14) 
inwhich (...) = Tr,pQ{ .. . I .  

Expanding the Green's functions in (14) with respect to 
the interaction with the quantized radiation and using 
Wick's theorem for the mean over the canonical distribution 
of the product of an arbitrary number of photon operators, 
we arrive at a diagram form of the perturbation theory. Some 
of the diagrams which then arise are shown in Fig. 1 (cases a 
and b ) ,  in which the continuous lines correspond to the 
Green's functions of the atom averaged over the initial dis- 
tribution of the quantum radiation, 

A ( R )  1 A ( R )  t Gp.,p... ( t ,  t l )  ) = - 6 p p ~ b . +  gpv (e )  e-"('-"dr. 
2 n 

(1 5 )  

71 1 SOv. Phys. JETP 56 (4), October 1982 T. K. Melik-Barkhudarov 71 1 



FIG. 1. 

and the broken lines correspond to the radiation function arguments in the region of integration, this last reduces to 

Calculating the self-energy part in the first order of per- 
turbation theory under the assumption that the spectrum of 
the quantized radiation has an almost thermal nature (the 
third and last assumption of Weisskopf-Wigner theory), and 
retaining in it only the imaginary part, which we shall need 
in what follows, we obtain for the Green's functions 

g$ (e) = e - Epvlh - Zpv, 

+I ~S,,, , ,(~cr) 12N,6 (Ep,,,-EPv-A (61,-o) ) 6p*-p,n(,-r)), 

Nq= [exp (fiw,/k,T) -11 -'. (17) 

Turning now directly to the calculation ofp,,, we note 
that the perturbation series for p contains not only diagrams 
of order y/O,,,,, , where y is of the order of the reciprocal 
time of spontaneous decay, but also diagrams that make a 
contributionoforder yt /max [ 1,yt 1, whicharises on integra- 
tion of the product of the advanced and retarded Green's 
functions for values of their arguments that are nearly equal; 
when yt 2 1, such diagrams must be summed. 

The "singular" diagrams are conveniently summed by 
introducing the vertex function A, which is related to the 
Fourier transform of the mean value of the product of the 
advanced and retarded Green's functions, 

by the relation 
A 

IIp,vr.pv (E-r E+) =gpvvV (E-) 6p*pGv.v+Ap'v',pv (E-, E + )  lg;v* (E+) . 
(19) 

The vertex function satisfies the equation shown 
graphically in Fig. 1 (case c), the analytic form of which is 

E,'=E'+ %/2. (20) 

Because of the weak dependence of the vertex function on its 

the equation 

Using the quantities determined above, we can write the 
matrix of conditional probabilities in the form 

Pp,Y.,pv ( t )  =6PP,6VY--i dt'eix("-" J [npl.r,p.(~-, E+)Z.~~(E+)  

whence, after integration over t ' and E,  we obtain 

Comparing (22) with (21), we find that the density ma- 
trix of the atom describes a stochastic process with matrix of 
conditional probabilities satisfying the Kolmogorov equa- 
tion 

with initial condition ~p ,v , ,pv(0)  = Sp,pSv,v. 
By means ofp, we can find the dynamical quantities for 

the atom. For example, the momentum is given by 

P V  

where k, for the transition A j  = 1 is 

and for the transition A j  = 0 

It can be seen from (24) that it is convenient to make the 
transformation 

etc., after which (24) becomes fi = Bpvppv(p). 
Finally, using the relative smallness of the momentum 

transferred to the atom, we can go over from the Kolmo- 
gorov equations to a Fokker-Planck equation. Following the 
well-known procedure,8 we obtain the representation 

~ . ( P , ~ ) = ~ P ~ ~ ( P ~ , o ) P ~ ~ ~ ( P ~ . P ;  t), 
P' Y' 

where P satisfies the equation 
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a 1 a2 + - [P ( p ' ,  p ;  t )  Pji' ( p )  ] -t - --- 
3 ~ 1  2 d p ~  d p ,  

[ P ( P ' ,  p ;  t )  rlz,' (p) 1 

(27) 
with matrices of the relaxation parameters given by 

r$) ( P )  = [Tvv, (p, qo) -6". rr~-*  ( P ,  90) ] 
PQ v' ' 

In the case of greatest interest, namely, optical frequencies 
w,  w, > k, T/ f i ,  we have 

An analytic solution of Eq. (27) for the case of strong 
"effective" fields, i.e., for OPli , ,  > kp/M, when the depen- 
dence of the relaxation parameters on the momentum can be 
ignored, can be readily obtained by going over to Fourier 
transforms: 

1 
p( , ,  p f ;  t )  = - j p (x, r )  e-t 'xt+(~-~')r '  a. ax. 

2x 

Analysis of the exact solution shows that the establishment 
of the distribution with respect to the internal and transla- 
tional degrees of freedom proceeds simultaneously over 
times of the order of the spontaneous decay time. 

We give the expression for P Cy,r) when x / y  -kr 4 1 ;  
i.e., for times long compared with the spontaneous decay 
time: 

from which it follows that when t , l / y  an initial Maxwel- 
lian distribution of the atom in the momentum space evolves 
into the distribution 

p ( t )  =pm [2n (ks M T o + D i t )  ] - "  
i 

i.e., besides the establishment of a steady distribution with 
respect to the internal degrees of freedom a distribution is 
established in the momentum space with center that is dis- 
placed with acceleration; i.e., the atom behaves as if it were 
subject to the force F. The diffusion constants Di determine 
the rate of growth of the temperature of the atom, which is 
determined in terms of the variance of the momentum. 

In the resonance case w, - w 4 w, the quantities p ", F ,  
and D, in (3 1 )  can be found for the transition A j  = 1 from the 
relations 

where A = a 2 / ( a 2  + 3,9 2) ,  p  = ,9 2/(8 + 3a2) , and 
y = 8w:d 2/3fic3 is the reciprocal decay time of the excited 
state, and A,, and A,, are defined in (9).  

For the transition A j  = 0 ,  the corresponding quantities 
are 

F ( p )  =hkyl ( A p , + A p z ) ,  D z ( p )  =D, ( P )  = ' / 3 f i k F ( p )  

(33) 
D2 ( p )  =fikF ( p )  

with A,, and A,, from (10). 
We recall that the solution (31) is valid in the limit of 

strong fields, when the dependence on the momentum can be 
ignored. In the general case, the dynamics of the atom after 
establishment of the distribution with respect to the internal 
degrees of freedom is described by the scalar Fokker-Planck 
equation for p(p) = 2,p, (p) ,  namely, 

with F(p) and D,(p) determined by Eqs. (32) and (33). 
It can be seen from (32) that for the transition A j  = 1 in 

the case of circular polarization (when either1 = 1,p = 0 or 
1 = 0, p  = 1 )  we obtain, as was to be expected, the well- 
known r e ~ u l t , " ~  since in this case the transition when t > y- ' 
takes place only between two states. The dependence of the 
force on the polarization of the strong field for the transition 
A j  = 1 is weak and vanishes in the case of saturation, i.e., 
when Apli,, + 1 .  For the transition A j  = 0 ,  the force takes 
maximal value in the case of linear polarization and vanishes 
for circular polarization. This last is explained by the de- 
population of the excited state when t > l / y .  

We formulate the main result of the paper. On the basis 
of the microscopic theory, we have found a Fokker-Planck 
equation that describes the dynamics of the atom in the 
strong field with allowance for the degeneracy of the levels 
with respect to the directions of the total angular momen- 
tum. In accordance with the assumption of Weisskopf- 
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Wigner theory, the relaxation parameters are found in the tended to take into account collisional processes. It is hoped 
first nonvanishing order of perturbation theory, in which the that much attention will be devoted to the investigation of 
expansion parameter is y/.O,,,,, . the viscosity, thermal conductivity, and other kinetic char- 

In Ref. 9, the dynamics of an atom in a strong field was acteristics of such systems. 
considered in a general formulation, i.e., for arbitrary orbital I should like to thank Professor V. M. Arutyunyan for 
angular momenta of the levels, arbitrary polarizations and interest in the work and stimulating discussions. 
numbers of modes of the strong field, etc. However, it is 
readily seen that the result obtained in Ref. 9 has no bearing 
on the force of the light pressure due to the spontaneous 
transitions2; this follows from the vanishing of the force ob- 
tained in Ref. 9 in the case of a single mode of the strong field 
with frequency equal to the transition frequency of the atom. 

Finally, we note that the restriction to strong fields jus- 
tifies the neglect of the hyperfine structure, since, as is well 
known, the line width increases with increasing intensity of 
the field and for sufficiently strong fields it exceeds the hy- 
perfine splitting. 

The present paper is part of a program of study of the 
gas dynamics of resonance atoms in strong fields in the 
framework of microscopic theory. In what follows, it is in- 
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