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We consider the interaction between a plasma and a beam of relativistic electrons in that range of 
parameters where the instability of the system against the excitation of Langmuir waves is elimin- 
ated by their scattering by the nonlinearly damped sound. We find the distribution function of the 
beam electrons and the Langmuir wave spectrum. The range of beam densities covered by the 
quantitative relaxation theory is hereby broadened considerably-now this range stretches up to 
the limit of applicability of weak turbulence theory. 
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1. INTRODUCTION 

In a previous paper' we studied the elimination of beam 
instability by the scattering of Langmuir waves by induced 
fluctuations in the plasma density. The reciprocal scattering 
time r was assumed to be small compared to the damping 
rate v, of the density fluctuations; this enabled us to consider 
this process to be a four-plasmon one. In a plasma with an 
ion temperature higher than the electron one (Te ,< T,) the 
inequality r < v, is the same as the condition for the modula- 
tional instability of the Langmuir spectrum excited by the 
beam. When T, ) T, the region T > v, intersects the region of 
applicability of weak turbulence theory. The main part of 
these regions broadens rapidly when the parameter Te/T, 
increases and becomes very extensive in a strongly nonisoth- 
ermal plasma. The study of this region is of considerable 
interest: On the one hand, a plasma with T, ) T, occurs natu- 
rally in many experiments on beam heating because the ener- 
gy exchange between the electron and ion components is 
weak;" on the other hand, it is precisely at Te S Ti that the 
upper bound on the beam density (n,) turns out to be very 
stringent in the regimes studied earlier of the interaction of 
the beam with the plasma. 

The range of beam densities bounded from below by the 
inequality r> v, and from above bythe condition of applica- 
bility of weak turbulence theory is considered in the present 
paper. As the formal basis of our calculations we use kinetic 
equations describing the decay interaction between Lang- 
muir and ion-sound waves. We note that the turbulence 
spectra arising when there is this interaction have been often 
studied in the past (see, e.g., Ref. 2); both power-law3 and 
some other4 spectra which are possible in "inertial" frequen- 
cy range were found, but the spectra excited by real sources 
were not amenable to an analytical study. Numerical studies 

isotropic background and jets (in which a large part of the 
sound energy is concentrated). The reason for this difference 
is that when we change the three-dimensional problem to a 
two-dimensional one we lose the very important property 
that the growth rate of the beam instability averaged over 
angles is negative, and this happens in a very narrow range of 
wave numbers near k = o,/c. This fact, apparently, also 
leads to the applicability of the so-called satellite approxima- 
tion which well explains the results of Ref. 5. 

2. BASIC EQUATIONS 

We use in what follows the dimensionless variables of 
Ref. 1; references to that paper are preceded with a 1 inside 
parentheses [e.g., (1. I)]. In terms of those variables the colli- 
sion term of the kinetic equation for the Langmuir waves has 
again the form (1.18). The term j jk N ,  which describes the 
induced scattering of Langmuir waves by ions can be omit- 
ted as it is small in all cases considered in what follows (in 
some of them the calculation of j jk Nk would be even an exag- 
geration of the accuracy). The function Fq in Eq. (1.19) must 
now be determined from the kinetic equation for the sound 
waves. Using the fact that the ion sound frequency f2, = gq, 
where g is given by Eq. (1.20), is small as compared to the 
width of the Langmuir spectrum we can go over to the differ- 
ential approximation in that equation. The result can conve- 
niently be expressed in terms of the following correlation 
functions of the spatial Fourier components of the sound 
 perturbation^:^' 

have also encountered considerable difficulties and have The functions Fq and can be written in terms of the even 
been performed in the "planar" the problem and odd parts of the spectral density W ;  of the sound ener- 

of the beam excitation.* It will become clear in what follows 
that an analytical solution of this problem in the three-di- gy: 

mensional case differs strongly from the one obtained in Ref. Fq='/2(W-qsf Wqh),  Aq=1/2(W-qS- W q b ) .  
5: The Langmuir spectrum turns out to be nearly isotropic 
and to lie completely in the resonance range of frequencies The collision terms of the equations for Fqand A, are given 
(as in Ref. 1) while the sound spectrum consists of a nearly within the necessary accuracy by the formulas 
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(4)- S t ,  -hqFq- (v,+ \?,) A,; (2) 

The term f, describes the sound generation by the low-fre- 
quency beats of the electrical field; A, and 5, are the nonlin- 
ear corrections to the damping of the sound caused by elastic 
and inelastic scattering of the Langmuir waves by them; 
vq = < --'aq is the damping rate of the sound due to the ions 
and electrons in the plasma, and < is a coefficient which de- 
pends on the ion and electron temperatures. 

Equating the collision terms (2) to zero we easily find a 
relation between the sound and the Langmuir spectra in the 
stationary regime: 

When the condition T <  v, is satisfied both nonlinear 
corrections to the damping of the sound are small and the 
expression for F, is the same as the one used in Ref. 1. In- 
creasing the beam density is accompanied by an increase in 
the corrections A, and Y, . The first of these becomes impor- 
tant. 

3. "ELASTIC" CORRECTION TO THE DAMPING OF THE 
SOUND 

In the formula for the quantity A, the integration varai- 
ble k ranges over a plane perpendicular to the vector q and 
passing through its mid-point. The variable k, ,  connected 
with k through the relation k, = k - q, ranges then over a 
plane which is the mirror image of the first one relative to the 
origin. Only the anisotropic part of the Langmuir spectrum 
(N;) which, according to (1.40), is nonvanishing in the vicin- 
ity A6 of the plane k, = 1 contributes to A,. Taking the fore- 
going into account we can easily show that the quantity /A, I 
has a maximum in the neighborhood of the point 
q = (0,0, f 2) where 

[In this chain ofestimates weused Eqs. (1.32), (1.33), and the 
definition of c.] The "elastic" correction to the damping of 
the sound is small compared to v, when yo < vsA6. 

We consider in more detail the case yo > v,, when the 
condition that IR I be small is violated for any beam with an 
angular spread.3' For the present we shall assume that the 
second correction Yq to the damping of the sound is unim- 
portant. 

If the difference vq - IA, I were to vanish in some point 
q, when the beam density is increased the quantity Fqo would 
become infinite and the elastic scattering of plasmons would 
instantaneously make their spectrum identical on planes 

passing through the points k = q0/2 and perpendicular to 
q,. However, for such a spectrum A , ,  = 0. This contradic- 
tion shows that the denominator in (3) does not vanish; it 
only becomes rather small after which the scattering of the 
plasmons symmetrizes the anisotropic part of the spectrum 
and arrests the growth of lA I at the level v,: 

The antisymmetric part 6N; of the spectrum then turns out 
to be small compared to the anisotropic part N; and instead 
of (4) we must use the estimate 

1 a 1 - g s ~ ' .  (6)  

From (5) and (6) it follows that 

6N'-v,/g. 

Such a small value ofSN' is guaranteed by the fast scattering 
of the plasmons from the region where they are excited into 
the symmetric region. The reciprocal time for this process is 
larger by a factor N/SN1 than the beam instability growth 
rate and is hence N '/SN ' times larger than T: 

The anomalously fast symmetrization of the Langmuir spec- 
trum relative to the plane k, = 0 is connected with the longi- 
tudinal sound jets which occur in the vicinity of the points 
q = (0,0, f 2) and which have a length of the order A6. The 
profile of the jet is clearly Lorentzian: 

Substituting this expression into Eq. (1.19) for T, we can 
relate the width A of the jet with the reciprocal of the time for 
symmetrizing the spectrum: 

I'c-I'A02 ln(A€)/A). (10) 

The quantity A /A6 turns out to be exponentially small in 
terms of the parameter r '/rAO 2. 

The scale of the changes of the function A, with respect 
to q, in the vicinity of the jet is of the order A6, so that Eq. (9) 
is applicable in the region q, 5A6. For large values of q, the 
correction A, is small and the sound spectrum is nearly iso- 
tropic. Anisotropic sound occurring in the neighborhood of 
the points q = (0,0, + 2) leads, due to its finite angular 
width, not only to symmetrization but also to some smooth- 
ing of the anisotropic part of the Langmuir spectrum. It is 
easy to show, however, that it is automatically weaker than 
the smoothing caused by the isotropic sound. Indeed, the 
additional smoothing is diffusive and the diffusion coeffi- 
cient contains an integral of the type .fF,q:dq, over the re- 
gion g, 5 A 6  ; one can estimate this integral to be approxi- 
mately TA6 and hence the correction to the reciprocal r of 
the smoothing time is of orderrA6 2.  It is noteworthy that it 
is indepedent of the width A of the jet. This is explained by 
the fact that the expression F,q: is integrable as A 4 .  

The role of the jet is thus reduced to the symmetrization 
of the Langmuir spectrum relative to the plane k,  = 0. The 
beam instability is again eliminated by the scattering by the 
isotropic sound so that the estimates of the energy Wof the 
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Langmuir waves, the beam relaxation length I, and the an- 
isotropic addition to the Langmuir spectrum remain the 
same as in Ref. 1. The analytical solution of the problem of a 
beam with a small angular spread also reduces to the one 
obtained in Ref. 1. We show how this is done. 

We split the sound spectrum into the jet (9), an isotropic 
background, and an anisotropic extra term: 

(we can assume the jet profile to be &shaped since its finite 
width does not affect the further calculations). Substituting 
(1 1) into Eq. (1.19) and retaining in the equation St, = 0 the 
largest of the anisotropic terms we get 

2 y k ~ ~ - r ~ ~ k ' - r k ~  (NL ,kz - N : ~ , - ~ ~ )  =01 (I2)  
where r, is given by Eqs. (1.39), 

According to (12) the anisotropic part of the Langmuir spec- 
trum is nonvanishing in a neighborhood A6 of the planes 
k,  = f 1 and given by the formula 

In this neighborhood, apart from a small part that adjoins 
the cone k = k : (on which r f, = 0), we have r f, ST, and 
the Langmuir spectrum is practically even: 

Nk+=Nk-zykNk/rk. 

Substituting (14) into the equation St, = 0 averaged over the 
angles [see (1.41)], we again are led to the relation 

eff 
yr Nk-0. (15) 

Everywhere, except in a narrow neighborhood of the sphere 
k ' =  2, 

eff 
=Iyr-v.+ (2nrh) J doAyk2 

and Eq. (15) reduces to (1.43) by the substitution y0+2y0 
(with a fixed ratio v,/yo). 

The function Fc(q,) which describes the distribution of 
the sound energy along the jet (9) is determined from the 
condition A, I,, = o  -_v, = 5- -'aq and is given by the equa- 
tion 

To complete the picture we briefly give the results of a 
study of the Langmuir spectrum in the vicinity of the sphere 
k = 2. It turns out that a hump in the odd part of the Lang- 
muir spectrum, arising near the circle k,  = k ,  = 1 and due 
to the fact that r is small in that region, leads to the appear- 
ance of a weak sound jet4' lying on the cone q: = q: at dis- 
tances cc A6 417 from the origin. Scattering by this jet, which 
is not taken into account in Eqs. (12) and (14), changes them 
somewhat near the circles k ,  = Ik, I = 1; the changes are 
such that when k * ~2 a dip occurs in the effective growth 

rate yEK and a spherical gap of width oc A6 4'7 occurs in the 
Langmuir spectrum. This gap does not affect the integral 
characteristics of the Langmuir turbulence; in particular, 
the quantitative formulas of Ref. 1 for the energy of the 
Langmuir waves and for the beam relaxation length remain 
valid (apart from the substitution mentoined above). We 
note that the same result is obtained when Langmuir turbu- 
lence is excited by two identical counter-beams of half the 
density. 

4. NONLINEAR SOUND DAMPING 
1. Estimates 

After taking into account the "elastic" corrections to 
the damping of sound the upper bound on the beam density 
can be connected with the assumption that the "inelastic" 
corrections are small (v, > Fag2  W) or with the condition 
that the kinetic equations which describe the decay interac- 
tion between Langmuir and ion-sound waves be applicable. 
The standard form of these equations is certainly applicable 
if the ion-sound frequency is considerably larger than the 
reciprocal of the time for the nonlinear processes (g > r for 
an even excitation, g >  Tc in the opposite case) while the 
renormalization of this frequency is small (W< 1). The first 
of these conditions turns out to be not very important. In- 
deed, the elastic scattering of Langmuir waves by density 
fluctuations occurs in the zeroth approximation in the pa- 
rameter g and proceeds exactly as in the case of time-inde- 
pendent fluctuations. It is described by the standard kinetic 
equation as long as the reciprocal scattering time is less than 
the width of the Langmuir spectrum. As to the validity of the 
kinetic equation for the sound, in the case of a Langmuir 
spectrum which changes with the characteristic scattering 
time a necessary condition for it would, of course, be r < g 
(Tc <g). However, in the stationary case one requires for the 
validity of this equation only that the renormalization of the 
sound frequency and the randomness of the phases of the 
Langmuir waves be small. This can be checked using the 
generalized kinetic equations obtained in Ref. 6, which differ 
from the standard ones by the renormalization of the sound 
frequency and the presence of the higher-order time deriva- 
tives of the sound perturbation correlators: In the stationary 
case the time derivatives are unimportant. One can thus use 
the weaker restriction: 

r < i  (rc<i) .  
Comparing the conditions listed here one easily establishes 
that for an even excitation the limit of applicability of the 
results obtained is determined by the nonlinear sound damp- 
ing if v, <$, and by the renormalization of the sound fre- 
quency if v, >g2. When the sound is smeared out (Ad- 1) 
these conditions can be written in the form 

yo~min{vs/gz,  gzlv,). (16) 

If the excitation is odd one must use the condition r c <  1, 
which for smeared-out sound reduces to the inequality 

yo<v;" . (17) 

wheng3 < v, <g312 inequality (17) is more stringent than (16) 
and the region of applicability of the theory is restricted by 
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the requirement that the phases of the Langmuir waves be 
random. Let v, <g2 when we are dealing with an even 
growth rate, and v, <g3 in the opposite case. In that case, in 
the region 

y o > ~ ~ l g ~ ,  (18) 
adjoining the limit of applicability of the results obtained 
above, the Langmuir turbulence is still weak and the "inelas- 
tic" correction to the damping of the sound is already impor- 
tant for any beam with an angular spread. This correction is 
sometimes called "nonlinear sound damping." We shall also 
use this term in what follows. We must merely bear in mind 
that in spite of the prevailing opinion (see, e.g., Ref. 2) the 
nonlinear sound damping is not necessarily positive even 
when the Langmuir spectrum is isotropic. 

Since Eqs. (1.32) remain valid under the same assump- 
tions as in Ref. 1 ,  to close the system of estimates we need to 
establish a connection between the time for the scattering of 
Langmuir waves and their energy. If we use for the nonlinear 
sound damping the rough estimate C-g2W we obtain 
T-g2W2/C- Wand, hence, using (1.32), W-yo/A6 3. The 
condition C > v, that the nonlinear sound damping be small, 
which was assumed above, is, indeed, satisfied because of 
(18). Nonetheless, it is impossible to assume that the esti- 
mates obtained here are substantiated, as there are a number 
of other principally different, but equally probable possibili- 
ties. For instance, the quantity Cq could be negative, but the 
sum v, + Cq positive and in some region close to zero. In 
that case the value of T given by the estimate (1.32) would be 
reached for a relatively low energy of Langmuir waves: 
W- C/? - v,/g2. On the level of estimates it is impossible to 
choose a particular variant. We therefore now turn to an 
exact solution of the problem. 

2. EQUATION FOR THE SPECTRUM 

As in Ref. 1 ,  we obtain an analytical solution of the 
relaxation problem for a beam with a narrow angular spread 
(AO(1). The anisotropic part of the Langmuir spectrum ex- 
cited by such a beam is small. The isotropic parts of the 
quantities rk, u,, Fq are again given by Eqs. (1.39) and we 
need solely replace in the last of them the linear damping of 
the sound by the total damping5': 

The derivation of the relations for the Langmuir spectrum is 
completely analogous to the one given in Ref. 1: To begin 
with the anisotropic part of the spectrum can be expressed in 
terms of the isotropic one, and by averaging St, over angles 
we derive for the latter an equation which contains the aver- 
age growth rate of the beam instability and its square-the 
first of these can be evaluated at once and the second after 
finding the angular distribution function for the beam elec- 
trons. which turns out to be universal and the same as in Ref. 

1 ;  afterwards the equation is written in a form convenient for 
further study. Using the condition for the external stability 
of the spectrum we can write the result in the form of Eqs. 
(1.61) and (1.62). The function N ( w )  in these equations is 
again introduced in accord with (1.56) and satisfies the nor- 
malization condition (1.57); the quantity a is given by the 
formula 

W=y0Aa/2nZAB3,  (20) 

where A is the number (1.55), p ( w )  is given by Eq. (1.63), 
while the function r ( w )  is connected with T ,  through the 
relation 

that is, through Eq. (1.58) in which 

To find the Langmuir spectrum we must thus solve a nonlin- 
ear integral equation. It depends on the angular spread of the 
beam through the parameter 8. It is impossible to neglect the 
small quantity S in (22) inasmuch as at S = 0 the integral 
F (w ,) in (1.58) diverges at the lower limit. Moreover, it is not 
clear a priori whether S is small compared to the second 
terms in @ (w): Ony one of the two possible kinds of solution 
mentioned at the start of this section satisfies that condition. 
Moreover, the above-mentioned simplest possibilities by no 
means exhaust the list of plausible variants. Omitting an 
enumeration of these variants and a proof of the initial con- 
tradiction of most of them, we dwell in detail on the self- 
consistent solution of the problem which is, apparently, 
unique. 

The spectral density of the Langmuir waves turns out to 
be nonvanishing in a spherical layer 

O~<O<OM, mrn>I. 

According to (1.61) and (1.62) inside this layer r (a) = (w)  
and outside it r (o)>p (a). Hence 

Using the definition (1.58) of the funciton r ( w )  we can write 
the boundary coditions (23) in the form 

F (mM+O) 2 F  (ox-01, (24) 
F (om-0) <F (w,+O) . (25) 

The function F ( w )  which has the meaning of the spectral 
density of the sound energy is everywhere non-negative and 
vanishes in the region w > w,. Therefore (24) is satisfied only 
when 
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We can, by using (22), replace the condition (25) by the re- 
quirement that 

from which it follows that 

Since (23) includes equalities, the following conditions must 
also hold: 

a" ( o m )  1 2--- 
0-0 ,,-0 dam2 -=) do"  I w-urn +O - 

However, they do not lead to additional restrictions as they 
turn out to be equivalent to the requirements 

which are automatically valid for the functions N ( w )  and 
F ( w )  which are positive in the range (a,, a,). 

3. Construction of the spectrum 

In the range w < o m  the functional form of F ( w )  is 
known and Qi (o) and $(w) are here second degree polynomi- 
als: 

@ ( a )  =6+ (1 , -oZz) ,  Ip ( o )  =Jo-Jio+Jzo2. 

The coefficients are given by the formulas 

Knowing F(w)  in the range w < o m  we can evaluate the func- 
tions 

mm 

r. ( u )  = J dm, ( o - 2 ~ , ) ~ ~ ( o t ) ,  r l ( o )  = f ' ( a ) - r o ( m ) .  (30) 

We can further find F (w)  in the range w ,  < w < @ M  from the 
integral equation 

(D 

r , ( o ) = j  d o . ( o - 2 0 1 ) 2 F ( o l ) .  

This equation is to be solved under the condition 

The solution is 

where k ,  is the linear operator (1.69). 

The ratio of the functions $(w) and Qi (a) is thus known 
for all frequencies. If we'knew the functions $(a) and Qi (w)  
themselves, we could find the Langmuir spectrum using one 
of the formulas: 

1  - dg 
N Z ( o ) =  -Rz-  

o2 d o '  

where k ,  is the linear operator (1.70). Now these formulas 
enable us only to rewrite the oringinal integral equation in a 
different form: 

As will become clear from the results, the quantity S is im- 
portant only for the evaluation o f r , ( o )  and can be omitted in 
(34) and (35). This does, however, not greatly simplify Eq. 
(35). It is possible to simplify it considerably near the upper 
limit of the spectrum in the region 

(wM-0)  / 0 n r <  I. (36) 

There 

d O M - o  
N2  ( 0 )  +F' -- N ( o )  =O.  

d o  O M  

One can easily solve Eq. (38): 

N  (o) =BF1/  ( o ~ \ ~ - o + B o M ) .  (39) 

The integration constant B can, as becomes clear in what 
follows, be written in the form 

B=6E,  O < t < l ,  

where 6 is a parameter which depends on v,/y,,. We consider 
first the case 

E >  (ln ( U 6 )  ) - I ,  (40) 

where B< 1. In this case the main contribution to $(o) comes 
from a narrow vicinity of the upper limit of the spectrum and 
this enables us to evaluate $(w) in the whole range w < w ,  
using Eq. (39) for N (w): 

Knowing $(a) one can easily find the whole Langmuir spec- 
trum. Clearly, now Eq. (33) is unsuitable for this purpose but 
in turn we can evaluate 

@ ( a )  = $ ( o ) I F ( o )  

and use Eq. (34). The function N (w)  found in this way de- 
pends on six parameters whose values are as yet unknown6' 

o m ,  Q.W, B ( or E l ,  F', It, l o .  

They are uniquely determined by the conditions (26), (27), 
(28), (31), and (37). 
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All further calculations are appreciably simplified if we 
neglect terms which are small in the parameter [ln(l/B ) ] - I .  

In this approximation only the region (36) contributes to 
(R, - 1)@ (o)o- ' and this enables us at once to use Eq. (34) to 
evaluate N (w): 

UP' 4BF' 
i j 7 ; o ;  = ------ 

O).M- w+I;)oM OM 

The first term in (42) is important in the region 

( o . , ~ - o ) / o ~ B  (ln (I /B))- ' .  

It must be omitted when writing out the condition (27). As a 
result it follows from (27) that 

Oar - 
- erp - (n- arctg Y 7 ) )  a4.31. 

-- O m  r; 
Using (42) we can easily express the parameters (28) in terms 
of the others: 

41?%3F1 oM " 1 
I = ( - )  ln-, B 

Turning to the calculations connected with the function 
(w),  we restrict ourselves to the case7' Y,  <yo. In that case it 

turns out that 

l < O 2  <yo/ve, (44) 

and (a) can be simplified in the region of the spectrum: 

The function r,(a) is simple from the very beginning: 

ro ( 0 )  =czoZ-CIW+CO. (45) 

The necessary information about the coelilicients of qua- 
dratic trinomial (45) is given by the relations 

" 1-g 

(46) 

Therefore, r , ( w )  has the form 

r, (o) = ( I - c~ )  uZ+ 

Because of (3 1) 

The small corrections to c, are not always important so that 
it is useful to bear in mind together with (48) also the cruder 
condition 

cz-1. (49) 

Substituting (47) into (32) we can easily evaluate F(o,) and 
F ' ,  and eliminate, by using (48), the difference 1 - c, from 

the result: 

When 

the terms containing c, and c ,  are negligibly small and it 
follows from (26), (50), and (5 1 )  that 

Fr=5/ (2ornoM) '"-5.7 (~e/yo)'/~. (54) 

Combining condition (49) with Eq. (46) we can find &': 

E=5/160~-0.22 (~e/ya)"'. ( 5 5 )  

The assumptions (40) and (52) turn out to be equivalent and 
are satisfied in the region 

yo/ve< (ln(116) )"/'. (56) 

Knowing the Langmuir spectrum we can evaluate all the 
characteristics of the relaxation. For the sake of simplicity 
we restrict ourselves to estimates.'' 

The energy of the Langmuir waves is given by Eqs. 
(1.57) and (20): 

If the angular spread of the beam is not too small: 

we can write the estimate (57) in the form 

According to (1.52) the angular spread of the beam in the 
region (58) changes as 

AO5=AOO5+z/1, (60) 

where 

is the angular relaxation length. 
The fraction of energy lost by the beam is connected 

with the angular spread through the relation 

E- ( Y ~ / ~ ~ ) ' / ~ A O ~ .  (62) 

At the point z, - I  where the instability is cut off (due to the 
isotropization of the beam) this fraction is 

E-  elyo yo)"^ (63) 

All estimates given here referred to the case (56). If the 
opposite condition holds, 
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yo/v.B (ln ( 116) )"*, (64) 
the Langmuir spectrum is independent of v, and remains 
qualitatively the same as on the boundary of the regions (56) 
and (64). The dependence of all physical quantities on the 
boundary of the region (56) on S is known so that when (64) is 
satisfied it is not difficult to obtain a universal equation 
(without any parameter) for the spectrum and to solve that 
equation numerically. Relations analogous to (57) to (61) are 
obtained from the latter by substituting yo[ln(l/S for 
v,. In particular, the relation (60) is unchanged and the esti- 
mates (59) and (61) take the form 

The energy lost by the beam is given by the equation 

We note that (65) is the same as the rough estimate in 
Sec. 4.1 apart from the logarithmic factor. The appearance 
of the latter is caused by the shift of the spectrum into the 
region 

km- o: - (In (g2 yo/v,) ) 'la> 1 

and by the logarithmically large contribution from the re- 
gion @<a,, where Y a O, to r (a). Indeed, knowing these 
facts enables us to improve the estimates of (1.29), (1.30), and 
T as follows: 

The estimates (66) lead to correct expressions, i.e., expres- 
sions agreeing with the exact solutions of the problem corre- 
sponding to the case (64), for the energy, the scattering time, 
and the anisotropic addition to the Langmuir wave spec- 
trum: 

'Yo 'Yo I?' A0 W-- , r-- -- -. (67) 
kma ABS km AB' ' N k, 

It is remarkable that the spectrum due to the shift to the 
region k ) l  turns out to be almost isotropic even when 
A 0 -  1 .  

5. CONCLUSION 

The results obtained above are applicable as long as the 
renormalization of the ion sound frequency is small and the 
phases of the Langmuir waves are random. The first condi- 
tion is satisfied when 

W < o m ,  (68)  
the second is satisfied provided the reciprocal scattering 
time of the waves is less than the scale of the changes in 
frequency of the Langmuir spectrum. If the growth rate is 
even we must have 

r<o,B, (69) 

and in the o~posite case 

r"<o,B. (70) 

In both cases the condition that the phases be random is the 
more stringent one. Condition (68) can compete with it only 
for an even excitation in the region of the universal spectrum 
(64). In that case (68) is equivalent to (69) and for a smeared 
beam it reduces, apart from a logarithmic factor, to the ine- 
quality 

yo<l. (71) 
Comparing the region (71) with the region where the 

results of Ref. 1 are applicable one establishes easily that the 
former is broader by a factor v; '. In the case where the 
sound is damped by the electrons in a deuterium plasma of 
temperature T, = T = 20 keV we have 

v,- (m,/mi) "lg- 

As for the effect of the magnetic field and of the electro- 
magnetic waves on the relaxation, everything said at the end 
of Ref. 1 remains valid. 

The study of the interaction of beams with a plasma that 
is even denser than assumed above requires going beyond the 
framework of weak turbulence theory. At the present time it 
is not known how the transition takes place to strongly tur- 
bulent relaxation regimes which, possibly, are described by a 
phenomenological theory of the'kind considered in Ref. 7 .  
The only thing which is clear is that the occurrence of Lang- 
muir collapse8 may qualitatively change the whole picture of 
the relaxation. 

' I  For instance, in a deuterium-tritium plasma with T, = 10 keV the time 
for the equalization of the electron and ion temperatures is close to the 
Lawson time. 

')The weak spatial inhomogeneity of the spectra which is connected with 
the smooth change of the beam parameters has been neglected here for 
thesakeof simplicity. It is well known that taking it intoaccount leads to 
the appearance in the kinetic equation of linear terms containing spatial 
derivatives of the spectral functions. These terms are unimportant for 
what follows for the same reasons as in Ref. 1. 

-"The condition T <  v, that the sound "static," which is equivalent to the 
inequality yo < v,AB ', is then also violated for any beam with an angular 
spread. 

4'The total sound energy in this jet is of the order rAB6".  
51U~ing (19) one can easily construct examples of isotropic spectra for 

which Cq is negative in some interval of q. 
@The parameters (29) are already expressed in terms of the rest by virtue of 

(41). 
'I If v e ,  yo, the instability is cut off at a small angular spread of the beam 

and the effective heating of the plasma cannot be large. 
R'The numerical coefficients in the following formulas can be established 

only by retaining small terms in the parameter [In(l/B )I-'. Otherwise4 
is determined up to terms of order 6 [In(l/B )]-'-[ln(1/6 )I-' while 
B = 65 up to a factor of order unity. 

'V. M. Malkin, Preprint Inst. Nucl. Phys., 81-107, Novosibirsk, 1981; 
Zh. Eksp. Teor. Fiz. 83, 88 (1982) [Sov. Phys. JETP 56,48 (1982)l. 

*V. N. Tsytovich, Teoriya turbulentno1 plazmy (Theory of a Turbulent 
Plasma) Atomizdat, Moscow, 1971 [English translation published by 
Plenum Press]. 

'V. E. Zakharov and E. A. Kuznetsov, Zh. Eksp. Teor. Fiz. 75,904 (1978) 
[Sov. Phys. JETP 48,458 (1978)l. 

4A. A. Kanashov and A. M. Rubenchik, Dokl. Akad. Nauk SSSR 253, 
11 12 (1980) [Sov. Phys. Dokl. 25, 631 (1980)l. 

%. L. Musher, I. Ya. Rybak, and B. I. Sturman, Fiz. Plazmy 5,58 (1979) 
[Sov. J. Plasma Phys. 5, 34 (1979)l. 
6V. M. Malkin, Fiz. Plazmy 8, 357 (1982) [Sov. J. Plasma Phys. 8,202 
(1982)l. 

'A. A. Galeev, R. Z. Sagdeev, V. D. Shapiro, and V. I. Shevchenko, Zh. 
Eksp. Teor. Fiz. 72, 507 (1977) [Sov. Phys. JETP 45,266 (1977)l. 

'V. E. Zakharov, Zh. Eksp. Teor. Fiz. 62, 1745 (1972) [Sov. Phys. JETP 
35, 908 (1972)l. 

Translated by D.ter Haar 

1003 Sov. Phys. JETP 56 (5). November 1982 V. M. Malkin 1003 


