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It is shown that the vector-like field of the relative displacements of the ions in the unit cell during 
optical oscillations of an ionic crystal leads to a nonexponential (power-law) decrease of the 
amplitude of the local optical oscillations at large distances from point and linear defects. In the 
case of a planar defect the amplitude decreases exponentially over a macroscopic distance equal to 
the wavelength. The dispersion laws of oscillations localized near linear and planar defects are 
obtained. 

PACS numbers: 78.20. - e, 61.70.E~ 

The theory of local oscillations in a crystal have been 
quite fully developed and expounded in detail in many re- 
views and monographs (see, e.g., Refs. 1-4). Principal atten- 
tion was paid in the study of defects to the spectrum of the 
local oscillations; there was little interest in the coordinate 
dependence of the local-oscillation amplitude. It turns out, 
however, that in ionic crystals, where the mechanical oscilla- 
tions of the atoms are inevitably connected with electric 
fields, the question of the coordinate dependence is not tri- 
vial and is worthy of a detailed examination. 

We consider in this paper optical local oscillations near 
various types of defects in an ionic crystal and discuss the 
nonexponential dependence of the local-oscillation ampli- 
tude near point and linear defects. 

It is customarily assumed that the amplitude of a local 
oscillation of a crystal with a point or linear defect (the dis- 
crete local-oscillation frequencies lies outside the contin- 
uous frequency spectrum of an ideal crystal) decreases ex- 
ponentially with the distance from the defect.14 A similar 
decrease takes place in the wave function of an electron lo- 
calized near a short-range attraction center in a crystal. The 
electron wave function, however, is a scalar quantity, so that 
the character of the decrease of the function itself is the same 
as that of its gradient. The crystal, oscillations are described 
by a vector function, therefore the character of the decrease 
of the displacement itself and of its divergence or curl can be 

symmetric point defect is given by the e ~ ~ r e s s i o n ' ~ ~  

Ei (r) =a3UGijU (r) Ej(O), ( 1 )  

where G is the Green's tensor of the stationary oscillations 
of an ideal crystal, U is the intensity of the perturbation in- 
troduced by the defect (in the case of an isotopic defect 
U = w2(Ap/p), where A p  = p - pg is the defect of the re- 
duced mass of the atom pair in the unit cell of the crystal), 
and a3 is the atomic volume. 

It is known (see, e.g., Ref. 2) that in a crystal of the NaCl 
type the internal electric field splits the long-wave edge 
(k = 0) of the optical branch into a longitudinal oscillations 
(with limiting frequency (a,) and two degenerate transverse 
oscillations (with limiting frequency w,). The frequencies w, 
and w, are connected by the relation w: = w: + he2/pa3. 
The difference between the frequencies w, and o, is the main 
effect of the action of the quasistatic electric field on the 
dynamics of the mechanical oscillations of the ionic crystal. 
It is this which is the main cause of the power-law decrease of 
the Green's function at large ) r ) .  

In a number of crystals, for example NaCl, KI, KBr, 
and KC1 the frequency w, is the maximum frequency of the 
long-wave longitudinal optical mode. In a coordinate system 
connected with the principal crystallographic axes of the 
crystal the dispersion of the longitudinal oscillations at small 
values of the wave vector k can be expressed in the form6.' 

different. When it comes to optical oscillations of an ionic 
oyk) = ~ , 2 [ 1 - m ( a k ) ~ - n a ~ ( k ~ ~ k ~ + k ~ ) / k ~ ] .  (2) 

crystal, they are inevitably connected with quasistatic elec- 
tric oscillations that manifest themselves differently when 
the oscillations are longitudinal and transverse. As a result 
the decrease of the local-oscillation amplitude may turn out 
to follow a power law. This was already pointed out in an 
investigation5 of impurity absorption of infrared in ionic 
crystals. 

We discuss here both the physical and the formal causes 
of the nonexponential amplitude decrease of local optical 
oscillations in an ionic crystal such as NaCl. 

The values of m and n for different crystals are given in Ref. 
6, where it is indicated that In 1 > Iml for a number of crys- 
tals. 

Consider a defect whose local oscillations have a fre- 
quency w close to the edge of the longitudinal optical mode: 
w > w, and w - w, (o, - w, (this can take place, for exam- 
ple, at Ap = 0). The Green's tensor of the considered crystal 
is then determined in the long-wave approximation mainly 
by its "longitudinal" part 

1. POINT DEFECT 1 an,ear dsk 
~ i ;  (2n)l J ;i2-oz-p2 (n) kz 

The coordinate dependence of the relative atom displa- 
cements $ that describe the local optical oscillations near a where n is a unit vector in the k direction, and the function 
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fl '(n) reflects the angular dependence of the dispersion law 
(2) 

This includes the projections (n ,,n2,n3) of the unit vector n on 
the crystallographic axes of the cubic crystal. 

For a more lucid illustration of the calculation of the 
main contribution to the integral in (3), we consider first a 
spherical dispersion law, whenp '(n) = P = const, and then 
take into account deviations from sphericity. 

We direct the z axis along the vector r and consider the 
asymptotic behavior, as r-+a,, of the element i = j = z of the 
tensor (3) 

1 
G~: (r) =- - dk k2 j cos2 Beik. 0.. . 

(237)' P2+p2k2 
sin 0 dB 

wher L? = o2 - a:. It can be seen that (5) contains compo- 
nents of two types. The first, traditionally discussed, con- 
tains 1 s a factor the exponential exp( - Or/P ) and decreases 
over distances on the order of several lattice constants; it is 
"generated" by elastic forces. The main contribution to the 
pre-exponential factor of this component is made at large 
distances by the term inversely proportional to the first pow- 
er of the distance. The second component, proportional to 1/ 
r3, is unexpected from the viewpoint of defect-containing 
crystals with nonelectrostatic interaction, and reflects in fact 
the long-range interaction in ionic crystals. At distances 
r >f l  /L? the components of the first type can be left out, and 
we are left only with the last term of (5), proportional to l/r3. 
Analysis of the remaining elements of the Green's tensor of 
the optical oscillations leads to the conclusion that its 
asymptotic form describes a dipole field 

The asymptotic form (6) thus causes the relative displace- 
ments (1) to have a coordinate dependence described by a 
power-law decrease. Expression (6) was in fact obtained in 
Ref. 5. 

We call attention to the fact that the exponentially de- 
creasing terms in (5) depend on the parameter P, i.e., are 
determined by the character of the dispersion of the crystal 
longitudinal oscillations. The last term, which has a power- 
law decrease and remains at distances r)p /L? does not con- 
tain the parameter 0 ,  i.e., does not depend at all on the dis- 
persion of the longitudinal oscillations. Therefore 
expression (6) can be obtained from (3) by putting P = 0 and 
by using, after integration with respect to cos 8, the formula 

Let us discuss the causes of the unusual (power-law) 
decrease of the amplitude of the local oscillation. The dis- 
placement of interest to us is in the long-wave approximation 
in fact the "longitudinal" solution of the following system of 

equations: 

(wLooo")-P%)+ep-'E=aSUE (0) 6 (r) , 
(7) 

div D=O, D=E+ (4ne/a3) %, rot E=O. 

The formal cause of the power law decrease of the 
asymptotic form of the Green's tensor is the absence of a gap 
in the spectrum of the differential operator, whose eigenva- 
lue problem is equivalent to the system (7). Indeed, assuming 
that curl f = 0, we can put f = V$ and easily verify that the 
system (7) is equivalent to a single equation for the scalar 
function +, namely 

E$- (Q"fipaA) A$=aWE (0) grad 6 (r) . (8) 

At all the allowed values ofa2  the spectrum of the operator2 
is gapless (it begins with zero), so that it is not at all surprising 
that the eigensolutions of (8) decrease nonexponentially with 
distance. Clearly, the decrease of the eigensolutions of (8) 
with distance is determined by the cgordinate dependence of 
the Green's tensor of the operator L. In the usual situation 
one studies the Green's function of the operator L? - p 'A, 
which decreases exponentially with distance like r-' 
exp( - L?r/P). This coordinate dependence sets the coordi- 
nate dependence of the function A$ = div f;. The coordinate 
dependence o f f  at large distances, however, follows then a 
power law, since the function A$ determines in fact the dis- 
tribution function of a field of electrostatic type: 

div A rot g=0. 

Thus, in an ionic crystal the relative displacements at large 
distances from a defect should have a power-law decrease. 
The polarization field of the crystal, P = (e/a3)f, behaves 
similarly: the density p = div P of the bound charge de- 
creases exponentially while the polarization vector has a 
power-law decrease. The same can be said concerning the 
electric field E. It follows from the latter that the dynamic 
interaction between the considered defects in an ionic crystal 
has a power-law dependence on the distance between the 
defects, and this determines the specific concentration ef- 
f e c t ~ . ~  

We proceed now to investigate the influence of the 
nonsphericity of the dispersion (2) on the coordinate depen- 
dence of the Green's tensor. We transform (3) into 

1 a2 
G , ~  (r) = -- 

( 2 ~ ) ~  ax, axj J(r), 
dk do eZk' 

where do is a solid-angle element in the direction of the unit 
vector n. 

To calculate the integral J (r) we write k-r = kr cos 8 and 
introduce an angle q, in a plane perpendicular the vector r. 
We can then write 

where u = cos 8, and the functionB '(u,q,) contains the angu- 
lar dependence of the dispersion (2) in a new coordinate 
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frame. We use the fact that the functions '(u,p) is symmetric 
because the initial dispersion law is invariant to the replace- 
ment of k by - k. After performing the last integration in 
(10) we then obtain 

j d u [ -  ex~[-QrulB (u,  c p )  I .+ exp[-QrulB(-u, c p )  I 
0 B(u, 9 )  B (--a, c p )  

(11) 
To find the behavior of the Green's tensor at large distances, 
we find the asymptotic form of the integral J as r+m. The 
internal integral in (1 1) can be calculated by the Laplace 
method. The main contribution to the asymptotic value is 
given by integration near u = 0, so that we can write 

(12) 
Substituting (12) in (1 1) we obtain the final result 

J=-2n2/Q2r. (13) 

The asymptotic form of the Green's tensor is consequently 

and coincides with (6) in the case of spherical dispersion. 
We arrive thus at the very important conclusion that 

the anisotropy of the dispersion law (2) does not influence the 
asymptotic form of the Green's tensor, a form characterized 
by a power-law decrease at large distances. Peculiarities of 
the dispersion law, however, can manifest themselves in the 
behavior of the Green's tensor at short distances from the 
defect, i.e., when the frequency of the local oscillation are 
determined. l4 

2. LINEAR DEFECT 

In the case of a linear defect, when the perturbation is 
concentrated, say, on the z axis, the solution of Eq. (8) must 
be sought in the form 

$=cp (x,  y) exp ( i k , ~ ) .  

The operator 2 in (8) is then replaced by a two-dimensional 
one 

22--  (QZ+ B2k2-A,) (kzZ-A2) ; A2=d2/dx2+ d2/dy2, (15) 

in w h i c h ~ e  assume fl = const. At a fixed value of k,, the 
operator L, has an eigenvalue spectrum with a gap (the spec- 
trum begins with k,). Consequently, at sufficiently large dis- 
tances the amplitudes of the optical oscillations (if they ap- 
pear) decrease exponentially (at k, #O). For example, in the 
casep) l/k, we have 

a21 Ul k," xixjEr" 
f i ( P ,  k z )  =- - 

(8n)"(02-or7p'" p2 

At distancesfl/O( p( l/k,, however, a power law decrease 
of the amplitude sets in, and the displacement field is the 
field of the linear dipole in the two-dimensional problem. 
There exist thus intermediate distances ( fl /fig p.4 l/k,) at 
which ci(p,z) takes the form 

It must be emphasized that Eqs. (17) are valid atp@ /Q -a,  
and therefore cannot yield a dispersion equation that deter- 
mines the frequencies of the local oscillations. It is obtained 
from the asymptotic solution as p+O, and takes the form 
(k,-a-') 

The local oscillations described by Eqs. (1 5)-(18) appear only 
at U <  0 and their dependence on the perturbation U is that 
typical of linear 

3. PLANAR DEFECT 

We consider now the oscillations near a planar defect, 
such as a stacking fault. Let the plane of the defect coincide 
with the plane z = 0. Such a defect is described in the initial 
equation by a one-dimensional S function 

Assuming as before that w - o, go, - w,, we can confine 
ourselves only to the "longitudinal" part of the Green's ten- 
sor and obtain 

Here x is the projection of the wave vector k on the (x,y) 
plane, i.e., k = x2 + k t, and 

Putting z = 0 in (20) we obtain the dispersion equation for 
the local oscillations. It breaks up into two independent dis- 
persion-law modes w2 = w:, (w) whose frequencies are given 
by the relations 
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FIG. 1. 1 and 2) plots of dispersion laws of local oscillations o:., , 3 )  plot of 
dispersion law oZ = o: - P X ) ~ .  

where a:,, = o:, - o: + B x2 and at, > 0. 
Solving (21) and (22) for wt, we easily obtain the explicit 

form of the dispersion laws for the first mode (Fig. 1) 

O ~ ~ ( X ) - U ~ ~ =  (aCr/2/2P)Z-al Ulx, x<B--a1 U1/2p2 (23) 

and for the second mode 

0 z 2  (x) -oL2=-p2xz 

+'/z{aI U17~+(/3x)~-[2al UI ~ 2 x 3 + ( P ~ ) 4 ] ' h ) .  

(24) 
Both dispersion laws correspond to local oscillations 
(w:,, >o:) and their eigenfrequencies are separated from the 
continuous spectrum by some gap. For oscillations of the 
first type the gap remains finite and equal to 
w:(O) - w: = (UU(O)/V)~,  as x-0, while for the second the 
gap is proportional to x. The frequency spectrum of the first 
mode at the point x = B (see Fig. 1) merges with the frequen- 
cy spectrum of the bulk oscillations. At  x > B  there are no 
oscillations of the first type. The oscillation frequencies of 
the second type are separated at x,B from the edge of the 
bulk-oscillation frequencies by a gap 

02 ( x )  -o12+P'x2= ( ~ U ( X ) / ~ P ) ~ .  

A characteristic feature of both spectra is the nonanaly- 
tic dependence of the frequency on the wave vector U. This 
nonanalyticity is due to separation, in the initial equations of 
motion, of the macroscopic electric field,8 whose Fourier 
component is an nonanalytic function of k as k 4 ,  namely 
E(k) - k(k.gO)/k [see Eq. (20)l. A detailed discussion of this 
question can be found, e.g., in Refs. 7-10. 

The linear dependence of a , ,  on x at small x, i.e, at 
x(aI U 1/2p ', is a manifestation of the dimensionality of the 
effect (in this case, its two-dimensionality) and does not de- 
pend on the dispersion law of the ideal crystal. We note that a 
similar (linear) dependence of the frequency on the wave vec- 
tor appears in surface oscillations of optically active crys- 
t a l~ ." . '~  

We see that the w: (x) and w:(x) curves intersect at the 
point x = B /2. The intersection of the dispersion curves is 
due to simplified model of the perturbation. It can be seen 
from (19) that the perturbation matrix is chosen in diagonal 
form, and by the same token the interaction between the 
different displacement components is excluded. The situa- 

tion here is similar to that in a layered crystal.13 When ac- 
count is taken of the simplest off-diagonal elements of the 
perturbation matrix (Uxz = Uyz = - U,, = - U,=U,) 
we obtain in place of (21) and (22) the dispersion equation 

As expected, the interaction cc U, leads to "pushing apart" 
of the modes at the intersection point and has little effect on 
the dispersion law (21)-(22) far from this point. 

We investigate now the coordinate dependence of the 
amplitude of the local oscillations. The first type of oscilla- 
tions corresponds to the following displacement compo- 
nents: 

Cg -* igzOAX ( e - ~ I ~ l - e -  1 
l ( ~ t - ~ t f )  

x- 
= i ~ l l B ) ~ '  , 

where 

In Eq. (25) for 6, the plus sign is for the half-space z > 0 and 
the minus sign forz < 0. Atz = 0 only thez-component of the 
displacement is left, and gX (0) = l,, (0) = 0. 

It follows from (25) that a wave localized near the sur- 
face defect is a superposition of two oscillations. One is char- 
acterized by the standard decrease of the amplitude with 
increasing lzl, which is determined by the local-oscillation 
frequency, away from the edge of the continuous spectrum: 
6(,, a exp( - alzl/P). The second oscillation is due to the 
onset of a macroscopic electric field; the amplitude of this 
oscillation decreases over a distance determined only by the 
wavelength. At distanceszsp /a, withx&a,/P, only thesec- 
ond wave remains: 

g,==tiEZoA?c exp {-%I zI +i(xr-o,t)), 

E,=-%,OA?c exp { - x  1 z 1 +i(xr--wit)). 

At a fixed point of space, the wave (26) has circular polariza- 
tion, and in the upper and lower half-spaces the polarization 
vectors rotate in opposite directions. 

Notice should be taken of the formal similarity of the 
wave described by (26) to a Rayleigh surface wave. 

Homogeneous oscillations (tt = 0) of the first type are 
concentrated near the defect 

EZ=EznA (a,/P) e - a ~ i z i f R ,  +O. (27) 

It can be assumed that this is the eigenoscillation of the de- 
fect (the remainder of the lattice remains at rest). Since the 
condition U < 0 corresponds to an increased "rigidity" of the 
defect region in the crystal, the frequency of local oscilla- 
tions of this type will exceed w, . This explains the presence of 
activation energy of the oscillations of the first type. 

We proceed now to the second type of oscillations with 
dispersion law w,(n). This wave has the following displace- 
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ment components: 

where 6 0, = f O x/x. An essential feature of this wave is that 
its amplitude, unlike practically all surface waves (acoustic 
and electrosonic), it does not contain the wave number K as a 
factor. The reason is that the oscillations considered are of 
the optical type (they do not vanish as x 4 ) .  

At z = 0 the x and y components of the displacements 
differ from zero, and f ,  (0) = 0. Far from the defect plane, at 
z>B /a2 and x(a2/p the wave is described [in analogy with 
(25) and (26)] by the following equations: 

Ex=ExO exp {-?c I z I + i ( x r - 0 2 t ) ) ,  . 

E,=f it,' esp { - x  I z I + i ( x r - a p t ) ) .  (29) 

Just as before, the plus sign is taken for z > 0 and the minus 
sign for z < 0. The polarization vector in the wave (29) rotates 
in a direction opposite that of the wave of the first type. As 
x 4  the oscillations of the second type are transformed into 
bulk oscillations, so that the gap in their spectrum vanishes 
as x 4 .  

In conclusion, we thank G. F. Bass for discussions that 

stimulated our interest in this problem, as well as M. A. 
Ivanov, M. A. Krivoglaz, and S. I. Pekar for helpful discus- 
sions of the results. 
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