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The effect is considered of a strong magnetic field on the formation and recombination of Mott 
excitons localized at defects and impurities in semiconducting crystals. It is shown that the 
motion of the exciton mass center across the magnetic field plays a decisive role in the formation 
of localized excitons. It is found that by varying the magnetic-field intensity one can control the 
relative brightness (radiative recombination probability) of the spectral lines of optical recombin- 
ation and or absorption of bound excitons. This possibility is due here to the dependence of the 
effective mass of the transverse motion of the exciton mass center on the magnetic field intensity. 

PACS numbers: 71.35. + z, 71.50. + t, 78.60. - b 

A Mott exciton can move with constant velocity in a 
direction transverse to the magnetic field even though its 
constituent quasiparticles, the electron and hole, cannot do 
so individually. As shown by Gor'kov and Dzyaloshinskii,' 
this transverse motion of the exciton mass center is due only 
to the Coulomb attraction between the electron and the hole. 
The role of the exciton mass-center momentum is played 
here by the conserved quantity 

@=-ihvR- (e/c)A(r), 

where R and r are the coordinates of the mass center and of 
the relative motion of the quasiparticles in the exciton, and A 
is the vector potential of the constant magnetic field. The 
wave functions calculated in Ref. 1 and the energies of the 
internal (relative) motion of the exciton depend on the pro- 
jection P, of the vector P on a direction perpendicular to the 
magnetic field. It is just this transverse motion, as shown in 
the present paper, which plays the decisive role in the forma- 
tion of the bound state of the exciton with impurities and 
defects in strong magnetic fields. Indeed, the localized states 
are detached, under the influence of the defect field, from the 
exciton band, and their characteristics depend significantly 
on the "dispersion law" obtained in Ref. 1 for the exciton 

magnetic field, and A,,, are the vector potentials of the elec- 
tron and hole, respectively. We are interested in the state of 
an exciton that is weakly bound with a defect, such that the 
defect field, while localizing the motion of the exciton mass 
center, does not perturb in practice its internal motion. In 
Ref. 1 were obtained for the case of strong magnetic fields 
ro (r, (rO = (fic/eH ) ' I 2  is the magnetic length and 
r, = #dPe2  is the Bohr radius of the exciton) the exciton 
wave functions Y g'(r,R) and exciton energy E, (P): 

~ , ~ I J ~ '  ( r ,  R )  =Ey (P) Y r) (r, R )  9 (3) 

where Y is the aggregate of the quantum numbers of the rela- 
tive motion of the electron-hole pair in a diamagnetic exciton 
and YE(r)  are the wave functions of this relative motion. 

We seek the solution of (1) in the form of an expansion of 
the wave function Y (r,R)=!P(r, ,rh ) in terTs of the eigen- 
functions of the unperturbed Hamiltonian E0(3 ) ,  (4): 

band in a magnetic field. The diamagnetic-exciton localiza- Substituting ( 5 )  in and taking the normalization of the 
tion considered in this article should appear, for example, in wave functions (4) into account we obtain a system of equa- 
the course of their radiative recombination, which was in- tions for 
vestigated in the absence of magnetic fields by R a ~ h b a . ~  In 
our case, by changing the dispersion law of the diamagnetic [E,  (P) - El a, (P) +z a J (PI) 1 d3R eenp [$ (P' - P) R] 
excitons, one can control the relative brightness of the opti- P', V' 

cal-recombination lines of the bound excitons. 
The action of a defect on an electron-hole pair is taken 

into account within the framework of the effective-mass 
method by including in the Schrodinger equation the poten- 
tial field V produced by the defect: 

where go is the Hamiltonian of the electron-hole pair in a 

x ('rc;' ( r )  1 v 1 Y("?') (r)) = 0. 
P~ 

(6) 

For the cases considered by us, of excitons weakly 
bound to defects, the characteristic dimensions R and R, of 
the mass-center motion orbit (in directions parallel and per- 
pendicular to the magnetic field) exceed substantially the 
dimensions of the exciton itself: R, Sr, and R, Sr,. Explicit 
expressions for R and R, will be obtained below. It is clear 
that the main contribution to the formation of such an ex- 
tended mass-center wave function is made by the values of P, 
namely P, - ?i/R and P - WR, which are small in terms of 
the parameters: 

roPL/h-ro/RLK I, rBPl, /h-rB/Rl l~ I. (7) 
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The conditions (7) mean that the states participation in the 
formation of the local level are located near the "bottom" of 
the exciton band, i.e., when calculating the matrix elements 
in (6) the relative-motion wave functions, which depend on 
the dimensionless parameter r,,P, /fi (Ref. I), can be taken at 
P, = 0. The assumption that the internal motion of the exci- 
ton is weakly perturbed imposes the following requirements 
on the potential of the defect: 

I (Y:"' (r) I VIY;"" (r)) ( Y ~ ~ ' I V I Y ~ "  > 
E,-E,, 1 - I W..(H) 

where E, - E,. - W,, , and We, (H ) = - fi2A ;/2pri is the 
binding energy of the ground state of the exciton internal 
motion, ' an energy that determines the energy scale for tran- 
sition v-v' between excitonic states of the same Landau 
band. The conditions (8) signify a low probability of these 
transitions. It is clear that for strong magnetic fields transi- 
tions between states of different Landau bands are even less 
probable. 

Choosing for the sake of argument the case of an exciton 
in the ground state of the zeroth Landau band, and leaving 
out of (6) the terms that are small relative to (7) and (8), we 
obtain an equation for the amplitude ao(P) 

x j d 3 ~  eerp [+(Pf-P) R V (R) =O, I 
where 

is the dispersion law obtained in Ref. 1 for the ground state of 
an exciton in the small-momentum region r,,Pl 4fi;A is the 
width of the forbidden band; 
M = m, + m,;M, = p / E , - ' ~ / r ~  is the effective mass of the 
exciton motion in a direction transverse to the magnetic 
field; this will be called hereafter the magnetic mass. 

We rewrite (9) in a coordinate form, which is more con- 
venient for the solution, by introducing the wave function of 
the exciton mass-center motion 

We obtain 

AZ dZ  h2 

{ 2M dz' 2 M 0  
(R) =-I% (R) , (12) 

I= I E-A-fieH/Zpc-We,/, 

where I is the absolute value of the binding energy of the 
exciton mass center with the defect. As expected, the effec- 
tive mass in the kinetic-energy operator of the exciton mass- 
center motion transverse to the field is the magnetic mass 
M,(H ). Thus, the dependence of the external motion of an 
exciton in a magnetic field on the translational motion of its 
mass center' has appeared in (12) as the dependence of the 

transverse-motion mass on the magnetic field intensity. 
For a weakly bound exciton the solution of Eq. (12) out- 

side the range of action of the defect potential is of the form 

where 

It can be seen from (13) that the characteristic dimensions of 
the exciton mass-center orbit are determined by binding en- 
ergy I (H) of the mass center with the defect: 

R ( M I )  ' I ,  R,, = (fi'/2LW1) I . (144 

It should be noted that Mo$M in a strong magnetic field. 
The total wave function of the exciton is obtained, in accor- 
dance with (5), by multiplying (13) by the known internal- 
motion wave function 

The probability 9, of the radiative recombination of a 
bound exciton, per unit defect is 

where f2 is the frequency of the recombination quantum and 
depends little on H at A)iieH /2pc;n is the refractive index; 
(cIpIv) is the matrix element of the interband optical transi- 
tion; EB = fi2/2pri;mo is the free-electron mass. It follows 
from (1 5) that the probability of the radiative recombination 
of a localized exciton is determined mainly by the binding 
energy I and contains a weak explicit dependence (A,) on the 
field intensity. At the same time the radiative-recombination 
probability Y e ,  of a free exciton in a magnetic field in- 
creases with increasing field like 

where v, is the volume of the crystal unit cell (the probability 
P,, pertains to the one unit cell), HB = W e r i  is the mag- 
netic field intensity at which ro = r,. The probabilities 9, 
and P,, are proportional to the oscillator strengths f, and 
f,, of the considered optical transitions, and the relative 
brightness of the luminescence lines of the bound and free 
excitons depends on the magnetic field like 

(18) 
This behavior of the relative brightness has a simple physical 
explanation. Following Rashba,* we find from (15) and (17) 
that the relative brightness 
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is determined by the characteristic volume of the region of 
motion of the mass center of the localized exciton; this vol- 
ume is 

The increase of the magnetic mass with increasing magnetic 
field strength (Mo a H In-'(H /HB)) causes a corresponding 
decrease of the volume R, 2R . Thus, according to (19), the 
relative brightness of the recombination line of the bound 
excitons decreases with increasing H against the background 
of the flareup (of the increase of the recombination probabil- 
ity) of the free-exciton luminescence line (17). This increase 
of the probability 9'2x -H ln (H/HB) of free-exciton re- 
combination offsets almost completely the decrease of the 
volume R,  2R due to the increase of the magnetic mass, 
and the absolute brightness of the bound-exciton lumines- 
cence lines does not depend explicitly1' on H: 

We note that such a compensation is possible only for the 
analytic form obtained in Ref. 1 for the Mo(H) dependence. 

The increase of the transverse (magnetic) mass with in- 
creasing magnetic-field intensity creates more favorable 
conditions for the localization of the exciton mass center on 
defects. It follows therefore that the defects, which are in- 
capable of capturing an exciton in the absence of a magnetic 
field, can localize the exciton in a sufficiently strong magnet- 
ic field H>H,,, where H,, is the critical value of the field 
needed for the onset of a bound state. Let us estimate its 
value. The conditions for the onset of a bound state in a 
perturbing potential field were discussed in the book by Lan- 
dau and Lifshitz3 for the case of isotropic masses. The Schro- 
dinger equation (12) for the wave function of the mass center 
can be reduced to the standard isotropic form3 by deforming 
the coordinate axes. The dimensionless parameter that de- 
termines the possibility of the appearance of discrete level in 
the field of a defect, 

MOW) 1 j P(R)d3R 1 T=T (H) = --- 
2nh2 k [ z 2 + ~ o p 2 / ~ ] ' h  ' 

depends on the magnetic field intensity. If T< 1 there is no 
localization, but if T 2  1 discrete energy levels can appear in 
the defect field. From the last condition we obtain an esti- 
mate of the critical field H,, . 

where To is the corresponding localization parameter at 
H = 0. Thus, at H 2 H,, there appear localized states of exci- 
tons and defects that cannot hold-on to an exciton in weaker 
magnetic fields. 

The appearance of a bound-exciton luminescence line 
in the immediate region of appearance of a level at H-H,, 
can be perceived as an additional broadening of the radia- 
tive-recombination line of the free excitons. In fact, a small 
increase of the magnetic mass with increasing H is equiva- 
lent to an increase of the depth of the potential well of the 
defect (see (20)). Then, in analogy with Ref. 4, we can esti- 

mate the behavior of I (H ) near the level-appearance thresh- 
old at 

I (H) =const (H-H,,)'. (21) 

In this case, according to (15), the brightness (recombination 
probability) of the considered bound-exciton recombination 
line decrease with increasing field like 

YL=const (H-H,,) - 3 .  

Further increase of H should lead to a "detachment," from 
the free-exciton recombination line, of localized-exciton lu- 
minescence spectral lines whose oscillator strengths (15) are 
large because of the sufficiently low detachment energies 
I(H). 

We establish now the character of the dependence of I 
on the magnetic-field intensity H at H)H,,. The large differ- 
ence between the masses of the longitudinal and transverse 
mass-center motion, M /Mo(H )< 1, permits an "adiabatic" 
separation of these motions. The longitudianl-motion wave 
function xll (z,p) (p  plays the role of a parameter) satisfies a 
one-dimensional equation obtained from (12) in the zeroth 
approximation in M /Mo (Mo+ w ): 

E ~ (  p) will be the potential energy for the two-dimensional 
transverse-motion equation obtained when account is taken 
of the next terms in M/Mo of Eq. (12) averaged over the 
zeroth-approximation wave function xIl (z,p): 

For a weak potential P ( Z , ~ )  that does not bind the exciton 
mass center without a magnetic field, the energy of the one- 
dimensional longitudinal motion is according to Ref. 3 

- - " 
There is no transverse motion as Mo-+ w . For large but finite 
values of Mo(H)(H)H,,) the exciton mass center executes 
small transverse oscillations about the equilibrium position, 
to which the lowest value of&,( p) corresponds. We consider 
for simplicity a spherically symmetrical potential with a 
minimum at p = 0. Expanding &,(p) in (23) in powers of p 
and retaining the quadratic term, we obtain an equation for a 
planar harmonic oscillator displaced in energy by an amount 
E,, = go@ = 0) (24) and having an oscillation frequency 
w,(H): 

Then 

I (H) = 1 EO 1 -hal (H) . (26) 
It follows from (25) that 

at H)H,, . In the limit of an infinitely large magnetic mass 
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M0(H-+co) we have fiw,-+O and the binding energy I (H ) 
tends to the binding energy I&,/ of the ground state of the 
one-dimensional motion. Thus, for arbitrary H, 

At H)H,, the wave functionx, ( p)  is strongly localized 
because of the large magnetic mass Mo. The characteristic 
scale R, of the variation of the transverse wave function is 
not determined as in (14a) by the binding energy I- /&,I, but 
depends on the energy fiw, of the transverse oscillations: 

R,= [A/Moo,]'"=ro [2EBko/ho1] Ih, (27) 

with R, - t O  as H-t w . Despite the strong localization we 
have R, )ro and the condition for the applicability of the 
parabolic dispersion law (7) 

remains valid also in the case of very strong fields H,Hcr. 
Using the explicit forms ofx, and x , we obtain the radia- 
tive-recombination probability 9, as H-+w : 

Since &, - I E ~ I ( H ~ , / Z ~ I H ) ~ ~ ~ ,  it follows that 
9, a H 'I2 l n 3 I 2 ~ .  The square-root dependence on H in (28) 
is due to the dependence of R, on the transverse-oscillation 
energy fiw, : 

PL a (RL2/rO2) = oI-' =HIh 

(the longitudinal dimension R and the binding energy 
I- I & , (  are practically independent of H as H-+w ). 

The decrease of Mo (or of H ) leads to an increase of the 
energy fiw, of the transverse oscillations. Clearly, at 
H k Hc,(fiwI - the transverse motion becomes "weakly 
bound" and, according to Ref. 3, the energy of such a state is 

exponentially small. The adiabatic approximation (22), (23) 
is therefore violated in the immediate vicinity H-Hc, : The 
longitudinal and transverse motions exert a strong influence 
on each other. The foregoing estimates show that the scale of 
variation of I at H,, < H < co is determined by the binding 
energy of the one-dimensional motion of the exciton mass 
center, and the functional form of I (H ) is given by Eqs. (21) 
and (26). 

The considered characteristic features of the radiative 
recombination of diamagnetic excitons in the presence of 
defects can be observed only at low temperatures, 5 10 K. 
The critical values Hcr of the magnetic fields, in a situation 
typical5 of the observation of diamagnetic excitons, can 
reach values from lo2 to lo3 kOe, depending on the charac- 
teristic of the perturbing field of the defect. 

All the foregoing results and estimates are applicable 
also to the case of localization of excited diamagnetic exci- 
tons. Owing to the large magnetic mass of such excitons, 
M, -v3M0(v is the number of the excited state) their local- 
ization should set in at lower values of the critical fields: 
HE' -v-~H,, . 
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"Accurate to a logarithmic term /Z - ln2(H/H,). 
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