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It is known [L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon, 
19591 a probe charge cannot be in equilibrium in an electrostatic field (the Earnshaw theorem), 
since the potential p as a harmonic function can have a maximum or a minimum only at the 
boundaries of the region. Therefore, for example, all the free charges are gathered just on the 
surface of a charged conductor. Polarization charges are produced on the surface of a dielectric 
placed in an external field. Without a preliminary investigation, on the basis of the Earnshaw 
theorem alone, it is impossible to state whether such a system of surface charges will be stable, 
since these charges are at the boundary of the harmonicity region of the potential p. If this system 
ofcharges turns out to be stable, the body on which it is located will also be kept by the electrostat- 
ic forces in a fixed position. In this paper we study theoretically and experimentally the conditions 
for levitation of dielectric spheres in electrostatic and gravitational fields. The results of the 
theory and of the experiment are quantitatively compared. 

PACS numbers: 41.10.Dq 

1 .  THEORY z=0,  r>a : cp,=O; R<r<a : dcp,/dz=O; ( 1.2) 

We consider the equilibrium of a dielectric sphere in an 
electrostatic field and a gravitational field. We place a sphere 
of radius R, (dielectric constant E~ in a liquid dielectric (di- 
electric constant 6,) near a round opening of radius a drilled 
in a horizontal (z = 0) grounded metallic plate. In external 
homogeneous field E ,  is specified in the upper and lower 
half-spaces at infinity (z--t + co ). 

Under these conditions, in a uniform gravitational field 
g = - gk (k is the unit vector of the polar axis z) the dielec- 
tric sphere is acted upon by a gravitational force F, and by an 
electric force F, (Ref. 1): 

Herep, andp, are the densities of the sphere and of the outer 
medium, and n is the unit vector of the outward normal to 
the surface element df of the sphere. 

At certain values of the parameters, these two forces 
can cancel each other and the sphere can be at equilibrium. 
Let us find these equilibrium conditions. To this end we de- 
termine the field E = - Vp. 

We choose a spherical coordinate system (r, v, p) with a 
center at the midpoint of the opening. The angle f is mea- 
sured from the polar axis z, and the plane z = 0 coincides 
with the grounded plate. The equation of the surface of the 
sphere, displaced a small distance from the origin, is speci- 
fied by the equation r = R (c, p ). In particular, if the center of 
the sphere and the origin coincide, then R R , .  The poten- 
tials p, in the medium and p, in the sphere satisfy the follow- 
ing system of equations: 

The problem (1.2) we solved by the method of joinable 
asymptotic  expansion^.^ To this end we consider the case of 
small spheres R,(a. Then at distances that are large com- 
pared with the radius R, of the sphere but are comparable 
with the size a of the opening, the influence of the sphere is 
insignificant and its presence can be neglected. The distribu- 
tion of the potential p, in this approximation satisfies the 
mixed (Dirichlet and Neumann) boundary conditions on the 
surfacez = 0, and the remaining equations are the same as in 
(1.2). 

Acpo=O; z-++w : q , = - E ,  1 z l  ; 

z=0,  r>a : cp,=O; r<a : dq,/dz=O. 
(1.3) 

The solution of the problem (1.3) is regarded as the 
boundary condition "at infinity" for the problem of the dis- 
tribution of the potentials pi and p, near the surface of the 
sphere r = R (rga, r-R,): 

An exact solution of the system of equations (1.3) can be 
expressed in terms of the Weber-Schafheitlin  integral^^.^: 

2 E ,  
yl, =-rlcos61 

5c 

2a 
x arcsin 

(13+a2f 2ar sin 6 )  '"1- (?+a2-2ar sin 6 )  '" 
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The function q0 has a branch point (r = a,  = 77-/2). 
The choice of the required branch of the solution must be 
subjected to requirements that follow from the boundary 
conditions for po at z = 0. We expand (1.5) in powers of r: 

Here and elsewhere P, (cos g) are Legendre polynomials. 
Using (1.6), we obtain the solution of the problem (1.4) in 
series form (R r R o ) :  

Equation (1.7) enables us to estimate the accuracy of the em- 
ployed calculation method. Since it has been assumed that at 
distances of the order of a the influence of the sphere is negli- 
gible, the second term in the square brackets of (1.7) which 
takes the influence of the sphere into account, should be 
small compared with unity at r-a. 

The force F, calculated from formulas (I. 1) and (1.7) is 
zero because of the symmetry of the problem. Thus, the cen- 
ter of symmetry of the problem is the sphere's "equilibrium" 
point in the electrostatic-force field (without the gravita- 
tional field). To ascertain whether this equilibrium position 
is stable, we must find the forces acting on the sphere when it 
is slightly displaced from the equilibrium position. 

At a virtual displacement 6,(R0 of the center of the 
sphere along the z axis, the functions q ,  and q, change with 
changing S,/Ro. To estimate them we must solve the prob- 
lem (1.4), in which the equation of the surface is 

r=R(t3) =R0+6, cos .6--'/p612 sin2 0+ . . . 
and 

Solving (1.4) by expanding the solution in powers of the small 
parameter S,/Ro, we can find with the aid of the obtained 
solution the resultant force (F,), exerted on the sphere by the 
electric field: 

(1-l-1) (14-2). . . ( l+n+i -k)  ~ 1 + ~ ~ 1 - ~ + n + i ~ : ~ + '  
X- 

( n - k )  !k! ( l + l )  &,+lei ' 

It can be seen from (1.8) that a stable state of equilibrium 
of the sphere corresponds to the inequality .ci < E,.  

We estimate from the first terms of the expansion (1.8) 

(Fz) ,-Q~61+861~Q4+ . . . 
the maximum distance S, up to which the force (F2), in- 
creases with increasing 8,: S. za/8.  Since the solution meth- 
od is based on the assumption that Sl(Ro9 and also in view of 
the inevitable difference between the theoretical and experi- 
mental models of the setup, S, must be taken with an empiri- 

FIG. 1. Diagram of experimental setup. 

cal adjustment coefficient k: 6. = ka/J8. 
Equating the Archimedean force (F,), from (1.1 1) to the 

electric force (F,), from (1.8) at 6, <S., we can find the stable- 
equilibrium condition for a sphere in the electric and gravita- 
tional fields. We write down this condition, introducing in 
place of e, E ,  the experimentally measured potential differ- 
ence U, divided by the distance h between the plates in the 
capacitor, &,Em = U /h : 

For a virtual displacement of the sphere by 6,<R0 along 
the x axis, the force (F,), turns out to be 

1 (1+1) . . . ( l+k)  ( H i )  (1+2). . . (1-k+n) 
X - 

( n - k )  ! k! 

Here 

S, is the Kronecker delta, and PIm are generalized Le- 
gendre polynomials. It can be seen from (1.10) that a stable 

FIG. 2. Dependence of the critical field E. on the distance h between the 
electrodes for bubbles of different diameters 2R,(e -R, = 1 . 1  mm, O- 
R,  = 0.7 mm, 0-R, = 0.34 mm). Hole diameter 5.2 mm. 
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FIG. 3. Dependence of U./h on the bubble radius R,. Hole diameter 5.2 
mm. 

position of equilibrium relative to the displacement in the 
plane z = 0 corresponds to the same inequality E~ < E,  . 

Thus, the critical field (U. /h )' determined by the equa- 
lity in (1.9) does not depend on the dimensions of the sphere 
and increases linearly with the radius of the opening. 

2. EXPERIMENTAL RESULTS 

We investigated in the experiments the equilibrium 
conditions for air bubbles in toluene. Figure 1 shows the 
experimental setup. The horizontal electrodes 1 and 2 were 
copper plates 1 mm thick and placed in a glass vessel 3 filled 
with a dielectric liquid. A hole of the required radius a was 
drilled in the lower electrode. A potential difference 2-20 kV 
from a highvoltage transformer 4, which served as the load 
for power amplifier 5, was applied to the plates and was mea- 
sured with a C-19 kilovoltmeter (6). A signal from a G 3-33 
generator (7) was applied to the input of the amplifier. 

FIG. 4. Dependence of (U. / h  )l on the hole radius a. 

To decrease the intensity of the electroconvective mo- 
tion and alternating electric field of frequency 150 Hz was 
produced between the plates. In view of the small electro- 
conductivity of toluene ((T- 10-12 fl - ' cm- ' ) and the small 
dimensions of the model ( - 10 cm), this field can be regarded 
as electrostatic. 

An air bubble blown through a glass tube was fixed by 
the electric and gravitational forces near the opening at a 
certain voltage U. between the electrodes. In this position, a 
cathetometer was used to measure the bubble diameter and 
the diameter of the opening. While the plates were gradually 
moving apart, we measured the maximum distance h 
between the electrodes, at which the bubble was still at equi- 
librium. The results of these measurements are shown in Fig. 
2. It can be seen from the plot that the bubble equilibrium in 
a hole of a specified radius can be characterized by a uni- 
form-field intensity U. /h. 

Experiments performed with bubbles having different 
diameters have shown that U./h does not depend on their 
radius (Fig. 3), as follows from (1.9). This result has the fol- 
lowing simple explanation. The bubble located in the electric 
field is a dipole whose moment is proportional to the radius 
of the bubble, and the charge induced by the field on its 
surface is proportional to the square of the radius. Conse- 
quently, the electric force and the Archimedes force are pro- 
portional to R :. 

Figure 4 shows the measured dependences of the square 
of the critical field (U./h )' on the hole dimensions, per- 
formed with bubbles of different radii. 

On all the plots, the solid line was drawn in accordance 
with Eq. (1.9) with k = 3.27. Analysis of the data obtained 
has shown that the discrepancy between the results of the 
theory and the experiment is within the measurement error. 
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