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It is demonstrated theoretically for anumber of cases that thesharpness of an interference pattern 
of intersecting light beams with identical space-time structures may vary with the quantum state 
of the electromagnetic field. The interference pattern becomes smeared if the two interfering 
beams belong to orthogonal quantum states, i.e., if they consist of "unlike" photons. The smear- 
ing considered is not due to the randomness of the initial phases as in the case of incoherent 
sources. 

PACS numbers: 42.10.Jd, 42.50. + q, 42.60.He 

1. Communications that describe the results of optical- 
interference experiments wherein the quantum properties of 
the light might manifest themselves are published from time 
to time. Many papers were devoted to the investigation of the 
dependence of the sharpness of an interference pattern on 
the intensity of the In particular, the interference 
pattern was investigated under the condition that one pho- 
ton is present in the region where the components of the split 
beam The results of Ref. 3 did not agree with 
those of Ref. 4. In Refs. 5 and 6 measurements of the correla- 
tion of the photocounts were used to investigate the interfer- 
ence pattern of two laser beams. No dependence of the 
sharpness of the interference pattern on the light intensity 
was observed there. 

In the present paper, a standard quantum-mechanical 
formalism is used to calculate the probabilities of photode- 
tection at various points of the region of overlap of two light 
beams propagating at an angle to each other. In this case one 
and the same space-time structure of the beam can corre- 
spond to different quantum states of the field. In the experi- 
ment these can be, for example, the following light sources: 
1) a laser whose beam is split into two components that inter- 
sect at a certain angle; 2) two lasers whose beams follow the 
same directions as in the first case; 3) independent light 
sources of different nature having the same space-time struc- 
ture. 

We consider the following pure states of an electromag- 
netic field (making thereby no statements whatever with re- 
spect to the light source to which the patticular state corre- 
sponds): 

I) coherent state of a field whose spatial spectrum con- 
sists of two components; 

11) sum of two coherent states, each with its own beam- 
propagation direction; 

111) two- and four-photon states. 
The calculation leads to the following results. 
I. In the case of a coherent state with a beam "split" into 

two components one observes a sharp (corresponding to the 
classical) interference pattern. The same holds for arbitrary 
n-photon states that make up the given coherent state (each 
photon is split here into two components. 

11. For a sum of two coherent states, each of which 
forms one of the beams (each identical in its space-time 
structure to the corresponding component of the first exam- 
ple), the interference pattern is smeared more strongly the 
larger the number the interference fringes that must be con- 
tained in the beam-overlap region (the number of fringes is in 
this case a measure of the orthogonality of the considered 
two coherent states). 

111. For a two-photon state in which each of the photons 
is contained in a corresponding beam, the interference van- 
ishes under the same conditions as in case 11. An interference 
term, however, remains here if the probability of the coinci- 
dences is considered. If, on the other hand, not one but two 
photons are contained in each of the beams, partial smearing 
of the interference pattern for the coincidence probability 
takes place, too. 

Smearing of the interference pattern occurs for pure 
quantum states and therefore does not reduce to averaging 
over the random phases, as in the case of incoherent sources. 
As can be seen from the second example, this smearing is not 
necessarily connected also with the large quantum indeter- 
minacy of the phase, which takes place at a fixed number of 
photons1' (such an indeterminacy exists in third order but is 
absent in the second, where the average number of photons 
can be arbitrarily large). From the formal point of view, the 
interference vanishes in those cases when two interfering 
beams belong to orthogonal states (i.e., consist of "unlike" 
photons). 

2. When calculating the photorecording probabilities 
we start from the thegry of photodetection, expounded, e.g., 
in Refs. 7 and 8. Let E(r,t ) be the Heisenberg operator of the 
transverse part of the electric field. It can be represented in 
the form 

I3 (r, t )  =&+, (r, t )  +&-I (r, t )  7 (1) 
h h 

where E( + , and E( - , areJhe positive- and negative-frequen- 
cy parts of the operator E: 

i,,, (r ,  t )  = """"̂ J #kk"e. (k) [i  ( h - k ~ t )  ] b (k) , 2n 
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Here k = I kl ,e, (k)(A = 1,2) are real polarization unit vec- 
tors, for which k-e, (k) = 0, e, (k)*e, (k) = 6,, , and 
e, '(k)e, '(k) = 6, - (k, k,/k ') (summation is carried out over 
repeated polarization indices). The operators 2, and 2, + sa- 
tisfy the canonical commutation relations 

~ ( k )  , en.+ (k/) ]=6hh,6 (k-kt). (4) 
It is that the probability dp(r,t ) of the record- 

ing a photon at a point r in the time interval (t,t + dt ) is equal 
to dp(r,t ) = v,(r,t )dt, where 

?ere I$) is %e state vector of the electromagnetic field, 
E, *, (r,t ) = nE(, , (r,t ),n is a unit vector along the direction 
of the dipole moment of the detected atom. The coefficient q 
is connected with the effective photodetection cross section 
a by the formula 17 = cu/4.rrfiw. 

The probability of joint registration of two photons at 
the points r, and r, in the time intervals (t,,t, + dt,) and 
(tz,t2 + dt,) is equal to 

dp(r,, ti; r,, tz)=vz(r,, t,; r2, t2)dtldtZ, 
where 

3. We consider hereafter the following states of the elec- 
tromagnetic field. 

I. Coherent state Jz), for which 

G(k) ~z)=zh(k) 12). (7) 
The coherent state of the electromagnetic field can be ex- 
pressed in the form 

~z)=exp{-fi/~ j dak~zA(k) ~ z ) e x ~  { J d ~ k z ~ ( k ) ~ ~ + ( k ) }  IO), 

(8) 
where 10) is the vacuum state (2, (k)10), (010) = 1. To de- 
scribe the coherent state of the electromagnetic field it is 
convenient to introduce the operators 

a+=r J d3kzh(k) &+ (k) , ;=Y jd3kh* (k) ~ ( k )  (9) 

and choose the coefficient y to satisfy the condition 

It is easy to verify that 

7 = [Jd'klz, (k) 1 2 ] - Ih = I/N', 

where 

is the average number of photons in the state I$) = 12). We 
can then rewrite (8) with the aid of the formula 

which is analogous to the formula for the coherent state of an 
oscillator. The possibility of expressing the coherent state of 
a field with the aid of the operator i.+ in the form (12) has a 
definite physical meaning: In the coherent state of the field 
we encounter photons that always have one and the same 
structure, and these photons are generated by the operator 
2+. 

We shall assume in the present paper that the function 
z, (k), which determines the spectral makeup of the field, is of 
the form 

zh (k) = a n  (k) +pi (k) , (13) 

where a, (k) is concentrated in a small vicinity of the point 
k, = k,n ,, while fl, (k) is located close to the point k, = k,n,. 
The unit vectors n, and n, specify the propagation directions 
of the two components of the beam. The dimensions 27/1 
and 27/b of the regions in which the functions a,(k) and 
flA(k) are concentrated (see Fig. 1) determine the dimensions 
of the wave packets. We shall put kJ> l,k&> 1, correspond- 
ing to quasimonochromatic and quasiplane wave packets. 

We shall find it convenient to introduce the operators 

(14) 
;+=N;'~ d'kp,(k) ;+ (k) , i=NZ Jd3kbh* (k) CA(L-). 

where 

FIG. 1. Regions in wave-number space where the functions a, (k) and 
(k) are concentrated: I-longitudinal and b-transverse scales of the 

wave packets; n, and n, are unit vectors along their propagation direction. 
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We then have according to (9) and (13) 

^~+=(N,IN)~%++ (N,IN)'G+, c= (N~IN) ' :Z~~+  (N,IN)'"~^. 

(15) 

The operators ii and h satisfy the commutation relations 
A ,. 

[ci, ciC]=[b, b+]=l, [ci, ;+]=R, [z, &+I=%, (16) 

where the quantity 

R= (N,N2) -Ih fd3kac (k) PA (k) 

determines the degree of overlap of the states (a) and (P ) 
[see (23)l. According to the Cauchy-Schwarz inequality we 
have 

IRl<l. (18) 

Returning to the state (12), in which z, (k) takes the form 
(13), we note that this model can be set in correspondence 
with coherent radiation passing from one source through an 
optical system that splits the beam into two components that 
propagate at an angle to each other. 

11. The second state we shall consider is a sum of two 
coherent states: 

I$>=M[la)+Ib>]. (19) 

Here 

e x p ( - ~ , / 2 ) e x ~ ( ~ ~ ~ c i + )  lo), <ala)=l ,  

1 $)=exp (-A',/2)exp (N%';+) If)), ( P I  $ ) = I  
(20) 

are coherent states that are generated by the operators (14) 
and satisfy the relations 

l ~ ) = a r ( k )  la), G(k) I ~ ) = ~ x ( k )  1 b). (21) 

The normalization coefficient M is determined from the 
condition ($I$) = 1 and is connected with (a lB ) by the re- 
lation 

2MZ[1+Re<aJb)]=1. (22) 

On the basis of (20) we have 

< ~ ~ ~ > = ~ X ~ [ - ( N , + N ~ ) / ~ ] < O ~ ~ X ~ ( N ~ ~ ) ~ X ~ ( N ~ ~ + )  10). 

Using the known Glauber formula 

exp (A+B) =exp(A) exp (B) exp (-'lz[A, 81 ) 
=exp(~)exp(A)ex~(~ l~ [A,  ~ l ) ,  

we easily reduce the averaged equation to a normally or- 
dered form: 

exp (~ , '~c i )  exp (NiAi+) =exp (N: ;+) exp (N;l'&) exp[R (N,N2) I h ] .  

Taking into account the equality 

(01 eup ( N P ~ ; )  exp ( ~ ~ ' ~ 2 )  10) =i  

we then obtain 

<a[ ~ ) = ~ X ~ { - ~ ~ ~ [ N ~ + N ~ - - ~ R ( N , N ~ ) ' ~ ~ ] ) .  (23) 

In particular, if N, = N, =No,  i.e, the mean values of the 

From this we see that if 

then ( (a10 ) I (  1, i.e., the states ( a )  and IP ) areapproximate- 
ly orthogonal. 

We note that the considered state (19) outside the region 
of intersection of the wave packets leads to the same space- 
time picture of the electromagnetic field as the "split" coher- 
ent state (12). This will be seen directly from the formulas for 
the quantity v,(r,t ) calculated for these states. 

111. In the next example we consider states of the form 

i ~ ~ , ) = ~ ~ , ( i i ~ ~ b ^ + ) ~ ~ 0 )  (26) 

at n = 1 and 2. Here and 6 + are defined as before by Eqs. 
(14), but the quantities N , ,  no longer have the previous 
physical meaning, but are simply normalization factors. The 
coefficient M,, is determined from the condition 
( jV2n ( YZn ) = 1, and its values for n = 1 and 2 are 

Mz=(1+lRj2)-'h, M,=[4(1+41R12+IR14)]-%. (27) 

Each state (26) contains n photons that propagate in the di- 
rections n, and n,. 

4. We now obtain the values of v, and v2 for the consid- 
ered states. 

I. For the coherent state (12), using (7), we obtain 

z(+,(r ,  2 )  lz)=jz)[E, (r, t)+Ez(r, t) I ,  (28) 
where 

i (tic) " 
EiB2(r, t )  = - I d3k k% (nei (k) ) exp[i(kr-kct) c:k, 

2n 
(29) 

are analytic signals corresponding to the coherent states la) 
and (p ) . Equation (5) leads next to the expression 

The last term is here the interference term. To express it in 
explicit form, we obtain an approximate expression for E,,2. 
To this end we introduce in the integral for El a new integra- 
tion variable, putting k = k+, + n. Since x<k, in the region 
essential for the integration, we can use the expansion 

k=(ko2+2koxnl+xz)~=k,+xn,+. . . 
and retain two terms of this series in the exponential, and one 
term in the pre-exponential factor. We then obtain 

El (r, t)  =A, (r-n,ct)exp[iko(n,r-ct) 1, (31) 
where 

photons in both wave packets are equal, then have 

is the wave-packet envelope, which is a smooth function of 
the coordinates in the wavelength scale. We obtain exactly 
the same expression for E2(r,t ). Substituting (31) in (30), we 
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It can be seen directly from (33) that in this case the interfer- 
ence pattern is sharpest (the modulation depth equals unity). 

It follows from (28) that the coincidence counting rate 
v, is given in this case by the known formula 

It can also be shown that an equation that differs from 
(33) only by a common numerical coefficient holds also for 
states of the type 

This state can be treated as an n-photon state in which 
each of the photons is split into two components that propa- 
gate along the directions n, and n,. 

11. We consider now the state (19). Using (21), we obtain 

kt(+, (r ,  t )  I$)=M[ I a )E i  (r ,  t )  + l B)Ez(r, t ) I ,  

<1~18,-, (r,  t )  =M[Ei0(r,  t )  ( a  1 + E z * ( ~ ,  t )  ( B  11.  
(36) 

Then 

v l ( r r  t )=qM2{iEi(r ,  t ) lZ+lEZ(r ,  t ) I 2  
+2 Re[<al p>El*(r, t ) E 2 ( r ,  t ) ] } .  (37) 

Equation (37) differs from the corresponding (30) in the pres- 
ence of an additional factor (alp ) in the last term. This fac- 
tor can according to (23) be very small in absolute value if the 
condition (25) is satisfied. In this case, as follows from (37), 
the interference pattern becomes smeared. 

We ynsider also the quantity v,. Applying to (36) the 
operator E, + , (rl,t ') and again using (21), we obtain 

E(+, (r', t ' )E(&,  (r ,  t )  I$>=JI[ 1 d E 1  (r', t ') El ( r ,  t j  

+Ip>E2(rf ,  t f ) E z ( r ,  t )  I ,  
<+lE(-,  (r ,  t ) E ( - )  (r', t ' )  =MIEla(r',  t ' )El*(r ,  t )  (a1 

+ E,' (r', t') E,' ( r ,  t )  (i3 1 ] . 

( Y ~ I E ( - ,  (r ,  t )=M2{[El '(r ,  ~ ) / N : " I ( ~ I ~ + [ E ~ * ( ~ ,  t)/iV; 1 (Olci). 

(40) 
We have then for the counting rate vl(r,t) 

v ,  (r ,  t )  =qMZ2 ( ( 0  I ^b6+] 0 )  I El (r ,  t )  I ' /N1 
+<O 1 6ci+ 10) I E2 (r ,  t )  I '/IV,+ [ ( O  1 kg+ / O>El (r, t )  E2* (r ,  t )  

+(01 ~ & + I O ) E , ' ( ~ ,  t ) E 2 ( r ,  t ) ] I (N,N2)" ' ) .  

But according to (16) 

<Olcici+l O > = < O ~ % > ~ O > = I ,  <016C+l0>=~, ( 0 1  L~+~o>=R*, 
whence 

It can be seen from this formula that as IR 14 the interfer- 
ence term vanishes, just as in the preceding example. 

We now gbtain v,. Acting on the first equation of (40) by 
the operator E, + , (rl,t ') and using (39), we obtain [designat- 
ing for brevity E,,, = El, (r,t ),E ',,, = El,, (r't ')I 
&+, (r',  t ' ) i , + ,  ( r ,  t )  I Y 2 ) =  10) [M2/ (NlN2)  I b ]  [ElE,'+Ei'E2J, 
( Y ,  lB,- ,(rt ,  t ' )  E , - ,  (r ,  t )  = [ilf2/(NlN,)'"] [E,E2'+Ei'E,]*(OI. 

Therefore 

v,(r, t ;  r', t ' )  ={qZ/[NiN2(1+I R I 2 ) ] )  
X {  I EiB2' 1 '+ ( E,'E2 1 '+2 Re [ ( E 1 E Z f )  (ElrE2)  *I  ) . (42) 

We see that as IR I--0 only a common numerical coefficient 
changes in this equation, but the interference term does not 
vanish. Thus, as I R 1-0 the usual interference pattern for the 
state I ly,) becomes smeared but the interference pattern for 
the coincidences remains sharp. 

The situation is similar in the case of the state I Y4). 
Since the calculations here are more unwieldy, we present 
only the final equations: 

We then have for the coincidence counting rate 
v* = 

2q[l+21RI2] IEi12 IE,12 
vz(r ,  t ;  r', t ') =q2M'{IEl(r,  t ) E l  (r', t ') 1 2 +  1 E2 (r ,  t ) E z ( r f ,  t') 1' 1+41R12+lRI' {r+r 

the last term which is responsible for the interference, also 
vanishes in this formula if I (a 10 ) 14 1. Thus, in this case the 

(43) 

interference patterns become smeared both for v, and for v,. 21' { l E E l ' l Z + l E 2 E 2 ' 1 2  2 
111. We consider now the states I Y,, ) (26). We note that v z  = +- 

1+41R(2+IHJ' N12 Nz2 
the method of exciting states with a finite number of photons 

NiN2 

was proposed in Ref. 9 and realized in Ref. 10. First, using XIElE,'+El'E21Z+Re- 4R [ (E1E;+El1E2) (E2E2') ' 

the definition (14), we can find the formulas (NlN,) '" N2 

[ P A  ( k )  , C+]=ar(k) /N: , [c;. (li) , if ] = P A  ( k )  IN? , (ElE,'+Et'Ez) ' (EiE,') 2 + 
after which it is easy to derive the commutation relations 

Nl I +x 
[E,,, ( r ,  t ) ,  ci+] =El(r,  t ) / ~ ? ,  [E(+,  (r ,  t )  ,%+I = ~ z ( r ,  t ) / ~ ? .  xi lRIzIE.E~+El'E,12+Re((E1E.') (E2E,')'R2) ] 1 
Using them we obtain in the case n = 1 
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Just as in the preceding case, as IR 1-0 the interference 
term vanishes in the formula for Y ,  but remains in the for- 
mula for v,. However, the depth of modulation of the inter- 
ference pattern for Y ,  in the state I Y4) is less than in the state 
1 Y 2 ) .  To verify this we substitute in (42) and (44), taken at 
R  = 0, the representation (31) for E,,, . For simplicity we 
assurnethatN,=N,=N,and IA , I=IA21=IA;I=IA; I  
(i.e., we consider the interference pattern in the central part 
of intersecting identical wave packets). Then 

2q21A14 
v2 = - 

N 2 
{l+cos [ k ,  (n,-n2) (r-r') 1) for I Y,), 

It can be suggested that at R  = 0 and when n is increased the 
depth of modulation of the interference pattern in the 
expression for Y,  will decrease. 

Let us cast light on the physical meaning of the param- 
eter R ,  which determines the sharpness of the interference 
pattern. According to (17), it determines the fraction of the 
"common" photons in the two interfering beams. The condi- 
tion under which I R  I ( 1 is that the regions in which the func- 
tionsa, (k) andP, (k) are concentrated must not overlap. It is 
seen directly from Fig. 1 that this takes place in the case b<1 
if arctan(a/k,b )(8 or 

On the other hand, K is the number of classical-interference- 
pattern fringes that are contained in the cross section of the 
beams intersecting at the angle 8. Indeed, according to (33) 
the period A of the interference pattern is determined by 
condition 2kJ sin8 = 227 and is equal t o n  = a/k0sin8. The 
transverse dimension of the region of intersection of two 
beams of diameter b is equal to b /cos8. Therefore the num- 
ber of interference fringes is 

Thus, ifK, 1, i.e., if the classical interference pattern should 
subtend over a large number of fringes, then I R  1 < 1, and in 
example I1 and I11 the interference pattern should be 
smeared out. Conversely, ifK( 1, the regions where the func- 
tions a, (k) and P, (k) are concentrated overlap almost com- 
pletely, and in this case IR I=: 1. 

By way of example we consider the case of coherent 
states with Gaussian spectra 

According to (31) and (32), they correspond to electromag- 
netic wave packets of the form 

(alE(+, (r, t )  la) iA (2nfioo) " } =Ei,2(r, t )  = -- (ne, (kOnlt) 
<PIE(+) (r* t )  1 fi) .lb2 

(ni,2r-ct) ' (48) 
xexp{ ik. (n,,2r-d) - 

212 
- $1, rL=r-nl,2(ml,2~. 

It is easy to find that in this case 

R=lb [ (1' cos2 8+b2 sin2 8) (1' sin2 8+ba cos2 8)] -Ih 

xexp {-kO2l2b2 sin2 0/ (1% cos2 8+b2 sin2 O)), (49) 

and if (I /b ))tan8, then R a exp( - K 2). 

5. Let us summarize the main points. From the view- 
point of quantum theory a situation is possible wherein the 
interference pattern of intersecting light beams is partly or 
completely smeared out. The size of this smearing depends 
on the quantum state of the electromagnetic field and is a 
consequence of the orthogonality of the states to which the 
interfering beams belong. In other words, if the quantum 
states are orthogonal, the photons that enter in the different 
beams are "unlike" and do not interfere. By the same token 
we make somewhat more specific Dirac's known state- 
ment" that a photon interferes only with itself. Here is a 
manifestation of the difference between classical and quan- 
tum electrodynamics, namely that the former is linear in the 
fields and the latter is linear in the state vectors. It follows 
also that orthogonal coherent states do not interfere. 

In connection with the arguments advanced above, 
when experiments on interference of light are performed and 
interpreted attempts should be made to identify to some de- 
gree the quantum state of the field; this is of course a difficult 
task. Without this identification, however, it would be diffi- 
cult to point out the cause of the discrepancies between the 
results of different experiments. 

Although it follows from the results of the present pa- 
per that the character of the interference pattern should de- 
pend substantially on the quantum state of the electromag- 
netic field, it is difficult to indicate a priori which quantum 
state is generated by one or other light source or by their 
aggregate. If it can be assumed, for example, that the model 
of the coherent state Iz) with the function 
zA (k) = a, (k) + PA (k) is applicable for laser emission passing 
through an optical system that splits the beam into two inter- 
secting components, for a field produced by two lasers it 
would be possible, generally speaking, to propose-different 
models of quantum states. If the operators i+ and b + intro- 
duced above are used, all the quantum states of the form 

lead to one and the same space-time structure of the electro- 
magnetic field. All the field-state examples considered above 
were particular cases of (50). Yet we have verified that the 
calculation results depend essentially on the choice of the 
coefficients A,, of this expansion. It is not clear beforehand 
to which particular case of the general expression (50) corre- 
sponds, for example, radiation produced by two lasers. 

Of course, it is difficult to create in experiment condi- 
tions under which there would be no smearing of the inter- 
ference pattern on account of random losses of phase coher- 
ence. However, as can be seen with Refs. 5 and 6 as examples, 
such experiments can be organized. It is in the interpretation 
of these experiments that the question arises of the quantum 
state of the field, and without answering this question it is 
impossible to conclude whether the theoretical conclusions 
agree with experiment or not. 
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At any rate, however, it must be borne in mind that 
smearing of an interference pattern for pure quantum states 
of an electromagnetic field does not contradict, generally 
speaking, quantum theory. 

The author is grateful to B. Ya. Zel'dovich for a discus- 
sion of this work. 
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