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We give a theoretical study of the problem of magnetic field generation in a uniform collisionless 
plasma with high-frequency (Langmuir or electromagnetic) waves. We obtain a nonlinear disper- 
sion equation for the magnetostatic oscillations of such a plasma, taking into account the effect of 
the anisotropy of the energy spectrum of the high-frequency waves. We study the generation of 
oscillations caused by this effect. We show that this generation may be due to two concrete 
mechanisms, one of which is a nonlinear wave-particle type process and is relativistic in nature 
while the other one is a wave-wave type process which occurs in the nonrelativistic approxima- 
tion. Both mechanisms lead to the same order of magnitude for the growth rate and the character- 
istic wavelength of the perturbations, but the first one is less sensitive to an isotropization of the 
high frequency wave spectrum and is therefore more important. 

PACS numbers: 52 .35 .M~ 

1. INTRODUCTION 

Let there be a collisionless spatially uniform plasma 
without a magnetic field in which high-frequency (HF); elec- 
tromagnetic or Langmuir) waves are excited. We are inter- 
ested in the non-linear magnetic field generation in such a 
plasma, meaning by this the spontaneous excitation, due to 
the development of some instabilities, of magnetic field fluc- 
tuations caused by these waves. 

Restricting ourselves to the uniform plasma approxi- 
mation we leave out of consideration the effect of plasma 
non-uniformity and HF-field nonuniformity on the instabili- 
ties studied by us, and also generation mechanisms caused by 
the non-uniformity. Taking the first effect into account must 
lead to a lower bound on the characteristic dimensions of a 
plasma in which the instabilities studied by us can develop. 
Such a problem can be studied later. As to magnetic field 
generation mechanisms caused by plasma and HF-field in- 
homogeneities, they have been studied extensively and con- 
tinue to be studied in connection with the observation of 
appreciable magnetic fields in experiments on the interac- 
tion of laser radiation with matter.'-3 Afanas'ev et have 
indicated the main directions of the corresponding theoreti- 
cal studies. 

The basic idea of the present paper consists in the as- 
sumption that the magnetic field can be generated thanks to 
the anisotropy of the energy spectrum of the H F  field. (The 
simplest case of an HF field with an anisotropic energy spec- 
trum is the field of a single monochromatic wave.) This as- 
sumption has its analogy with the linear magnetic field gen- 
eration in a plasma with an anisotropic particle momentum 
distribution (see Refs. 5, 6 and literature quoted there). 

Using this analogy and dimensionality considerations 
one can without calculations predict the characteristic scale 
of the spatial structure and the order of magnitude of the 
growth rate of the magnetic field generated in a plasma with 
anisotropic H F  waves. We recall that in the case of an aniso- 
tropic plasma (when there are no H F  waves) perturbations 
with a square of the wave number k of the 

turn out to be unstable, where w, is the electron plasma 
frequency, c the light velocity, T the average plasma tem- 
perature, and AT the temperature anisotropy (we assume 
that A T/T.( I). In the case of a plasma with anisotropic HF 
waves the part ofAT/Tis played by a quantity proportional 
to mC2/T, where 6 is the velocity of the oscillating particles in 
the HF field and m their mass. Instead of (1.1) we must thus 
have in this case 

k2_' ( ~ u ~ / c v T )  kt (I.2] 

where v, = ( ~ / m ) " '  is the electron thermal velocity and q, 
some function of the dimensionless parameter ( ~ , / c ) ~ .  The 
instability mechanism must also occur in a cold plasma 
(v,-+O) and thus we must have q, - (U,/C)~. In that case 

which is confirmed by the calculations. 
In the case of an anisotropic plasma the growth rate 6 is 

connected with the wave number through the following esti- 
mate 

Using (1.3) and the indicated analogy we may assume that in 
the case of a plasma with H F  waves and fi 5: u, 

This is also confirmed by calculations. 
By virtue of what we have just said we call the instabili- 

ties studied here "wave anisotropy instabilities" (WAI). 
The presence of the relativistic parameter q ,-(~, /c)~ 

indicates that the WAI theory must, in general, be developed 
taking relativistic effects of the plasma into account. In the 
following considerations we shall take that fact into consi- 
deration. 

Our analysis indicates the presence of two actual WAI 
mechanisms. One of them is relativistic in nature. The corre- 
sponding instability we call the "relativistic WAI." It is not 
connected with the occurrence of secondary H F  waves 
(beats) characteristic for the so-called magneto-modula- 
tional instabilities (MMI).'v8 (In that case, however, there 
occurs a modulation of the particle distribution function; for 
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details see below.) The second mechanism observed by us for 
the WAI excitation is connected with the appearance of sec- 
ondary HF waves. For that reason we call it a modulated 
mechanism. It can be studied neglecting relativistic effects. 
Our analysis of the modulational magnetic field generation 
differs from Refs. 7, 8 in that we consider a plasma with 
electromagnetic waves whereas the authors of Refs. 7,8 con- 
sider a plasma with Langmuir waves. Modulational effects 
in the magnetic field generation problem have also been dis- 
cussed in Ref. 9, but there this effect was used not as a gener- 
ation mechanism but as a mechanism to amplify a field gen- 
erated through other causes. 

2. BASIC EQUATIONS 

2.1 General relations. We write the electromagnetic 
field in the form 

(E, B) = (Eh, Bh) + (ES, BS) + (EhS, Bh*) . (2.1) 
Here Eh, Bh are the electric and magnetic fields of the pri- 
mary (high-frequency) waves; Es, Bs the fields of the low- 
frequency waves generated by the primary waves; E'" B" 
the fields of the secondary waves, the so-called virtual waves 
of beats produced by the interaction of the primary high- 
frequency waves with the low-frequency ones. Similarly we 
write the distribution function of each kind of particlef: 

f=fo+f"+f'+r'+fM (2.2) 

Here fo is the distribution function when there is no electro- 
magnetic field present (equilibrium distribution function), 
while f ', f s  , f '" have a similar meaning as the fields with 
the same upper indexes, f " is a correction to the equilibri- 
um distribution function caused by the primary waves, aver- 
aged over space and time. We get equations for f ', f s  , f hs, 
starting from the Vlasov equation 

Here i = d /d t  + vV; v, p are the particle velocity and mo- 
mentum, e the particle charge, 

c the light velocity. Apart from F we use in what follows also 
the notation Fh, FS, FhS, the meaning of which is clear from 
(2. I), (2.4). 

We take the equation for f ' in the linear approximation 
in the electromagnetic field so that 

Lf"+eFhdfoldp=O. (2.5) 

To describe f we use the equation 

Lrs+eFh8df,lap+eF"ajhlr3p=0.~ 

Here we neglected the term with FhfS which is unimportant 
for problems of modulational instabilities (cf. Ref. 10). Using 
(2.3) we find the following equation for f "  : 

Xf+eF.8(fo+f"")18p+er3<Fhsf"+Fhfhs)/8p=0. (2.7) 

The angle brackets denote the low-frequency part of the cor- 
responding quantity. Finally 

where Sp is the correction to the particle momentum caused 
by the field of the primary waves. The quantity Sp is deter- 

mined by the equation of motion of the particle 

We add to the equations given here the Maxwell equa- 
tions in their standard form and the expressions for the elec- 
tric current density 

The summation is over the different kinds of particles. 
For the sake of simplicity we dropped in (2.10) the super- 
scripts h, s, hs for j andf: 

2.2. Description of theprimary waves. We write the elec- 
tromagnetic field of the primary waves as a set of Fourier 
harmonics: 

F ~ = J  F r." exp (-iot-tikr) dk do.  (2.1 1) 

We assume that the equilibrium distribution function of 
each kind of particle fo is isotropic in momentum space: 
fo = fo( p). In that case we can split the primary waves into 
two kinds: longitudinal (the so-called electrostatic or Lang- 
muir) waves and transverse (electromagnetic) waves. In the 
case of longitudinal waves 

Fh=Eh=E', Ekw1Ilk, 

and in the case of transverse waves 

Fh=E'+ [vXB]/c, Ekwtlk,  Brwt=~[kXEkwt]/o. 

For both types of waves it follows from (2.5) that 

ie 
fkwh =-- h 8fo 

vEro - a-kv 8 8  

Here 8 = mc2y is the relativistic particle energy, m its rest 
mass, y = (1 + w ~ ) " ~  the Lorentz factor, and w =p/mc the 
dimensionless particle momentum. Substituting (2.12) into 
(2.10) and using the Maxwell equations we get the well 
known dispersion equations of the linear approximation for 
primary longitudinal and transverse waves: 

el(k, o )  =0, (2.13) 

e t  (k, o )  - (~k /a )~=O.  (2.14) 

~ e r e ~ l ,  E' are the longitudinal and transverse permittivities 
of the linear approximation given by the equations 

4nez J (eVv) "afo ev(k, o ) = l  +z- -- 
a a-kv 8 8  dp, 

where v = I, t, ev = E;,/E ;, is the unit polarization vector 
of the wave of kind v and E ;,=I E;, I . 

We assume the function fo to be Maxwellian: 

n a 
fo = 

4n (mc) Kl (a) 
exp (--ay) . 

Here a = mc2/T is a parameter characterizing the degree of 
relativity for the corresponding plasma component, T is the 
temperature of that component, and K ,  a Macdonald func- 
tion. A nonrelativistic plasma corresponds to a )  1 and an 
ultra-relativistic one to a 1. 
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We assume that the primary waves are long: w%kv. In 
that approximation, and with f,  of the form (2.16), Eq. (2.15) 
means1 ' 

ev(k, o)  =I-zopz 7 [g; ( a )  + ( c2kZ/a2)g lV(a )  I ,  (2.17) 
0 

where wi  = 4re2n/m is the square of the nonrelativistic 
plasma frequency of the corresponding kind of particle, 

91' ( a )  = g l t ( a )  -gl  ( a )  = L~ w d x ,  (2.18) 
K 2 ( a )  x2 

It follows from (2.13), (2.14), (2.17) that the eigenfrequencies 
of the primary waves w = o;l are given by the relations" 

or'=oo+'/2 ( g Z i / g , )  ( c 2 k Z l o 0 ) ,  (2.20) 

~ k ~ = ~ o + ~ / z ( l + g z ' / g l )  ( c2k2 /oo) ,  

where 
'h 

Oo-Opgr . 
We assume here that in the case of an electron-positron plas- 
ma o, is calculated using the total particle density while in 
the case of an electron-ion plasma we use the electron den- 
sity. We note also that, due to our assumption that we are 
dealing with long-wavelength waves, terms with k in (2.20), 
(2.2 1 )  are corrections compared to o,, so that approximately 

I 
W k  Z W ;  zoo .  

2.3. Linear theory of magnetostatic oscillations. The 
low-frequency waves studied by us are magnetostatic oscil- 
lations. Like the high-frequency (normal) electromagnetic 
waves, magnetostatic oscillations are described by the dis- 
persion equation (2.14). The formal difference between these 
two kinds of waves consists in that in the case of the normal 
electromagnetic waves w > kv while in the case of magnetos- 
tatic oscillations o ( k u .  

We take the electromagnetic field of the magnetostatic 
oscillations in the form of a single plane wave, i.e., in the 
form (2.11) without an integral on the right-hand side of the 
equation. The distribution function f,, has a form analo- 
gous to (2.12) (with the substitution EL,-+E~,). The trans- 
verse permittivity of the plasma in the linear approximation 
corresponding to the magnetostatic oscillations and denoted 
by E; , has the form' ' 

where 
n ( I + a )  exp (-a) 

g ( a )  = - 
2 a K z ( a )  

Equation (2.23) follows from (2.15) when o ( k v .  The sub- 
script zero of P' indicates the linear approximation. 

We get from (2.14), (2.23) the following formula in the 
linear approximation for the frequency of the eigenoscilla- 
tions of the magnetostatic waves: 

oo8=-i  ( I k  1 3 ~ 3 / o p 2 )  g  ( a ) .  (2.25) 

As in (2.20) to (2.22) w,  is evaluated here using either the 
total particle density or the electron density depending on 
the composition of the plasma. 

The wave number k in (2.25) is assumed to be sufficient- 
ly small, kc/w,  ( 1  so that o / k c < l .  As o / l k  Ic is small the 
magnetic field of waves such as (2.25) 

is large compared to the electric field, J B;, 1 & J EL I . More- 
over, it is clear from (2.25) that the real part of the frequency 
of the waves considered vanishes, Reug = 0 .  This justifies 
the name "magnetostatic oscillations." It is also clear that 
Imwi < 0 , i.e., in the linear approximation the magnetosta- 
tic oscillations are aperiodically damped plasma perturba- 
tions. The following analysis reveals some nonlinear excita- 
tion mechanisms whereby magnetostatic oscillations 
become growing waves. 

3. DERIVATION OF THE NON-LINEAR DISPERSION 
EQUATION FOR MAGNETOSTATIC OSCILLATIONS 

3.1. General consequences of the set of nonlinear equa- 
tions of Sec. 2.  We write the solution of Eq. (2.3)  in the form 
Icf. (2.12)] 

r - - - e t - '  (Fhafolap)  , (3.1) 

where i - is the operator which is the inverse o f i .  Similar- 
ly, using (3.1)  we get from (2.6)  

(3.2) 

Using (2.8) ,  (2.9)  we find 

Substituting (3.1)  to (3.3)  into (2.7) and acting on the result 
with the operator i - ' we find 

where 

It is clear that the term f  corresponds to the linear approxi- 
mation of the theory of magnetostatic oscillations [cf. (3.5) 
with (2.12)]. The term f; describes the anisotropic nonlinear 
effect studied in Ref. 12. Finally, it is clear from (3.7)  that the 
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term f ;  is caused by the virtual wave effect. This effect was 
studied in Ref. 7. 

Using (2. I), (3.2) to evaluate the electric current jhs and 
substituting this current into the Maxwell equations we can 
express EhS in terms of Eh and Es so that 

Ehs=Ehs (Eh.  E l )  . (3.8) 

From (3.8) it is clear that all terms on the right-hand side of 
(3.4) are proportional to E". We then conclude, taking (3.41, 
(2. lo), and the Maxwell equations into account, that the non- 
linear dispersion equation for the magnetostatic oscillations 
must haye the form 

Here is the linear permittivity tensor which is related to 
(2.23) through the equation 

E!? = (6,!- kikJlk2) E,"+ ( k i k , / P )  e,', (3.10) 

&!I, E:) are the parts of the nonlinear permittivity tensor pro- 
duced by the non-linear anisotropy and virtual waves effects. 
We have added in (3.10) also a term with the linear longitudi- 
nal permittivity &A, the form of which is unimportant for 
what follows. 

Using (2. lo), (3.2) and the Maxwell equations we can 
check that in the case of an electron-positron plasma with 
identical electron and positron distribution functions there 
is no virtual wave effect: 

Eh'=O. (3.11) 

This was pointed out in Ref. 12. In that case we have the 
dispersion Eq. (3.9) with &jf1 = 0. 

3.2. The evaluation of E!). We simplify the expression 
for f f by using the fact that for waves such as (2.20), (2.2 1) we 
have the approximate relation 

Moreover, using the fact that the magnetostatic oscillations 
are low-frequency waves we put approximately 

In that case (3.6) reduces to the form 

where 

When Fourier transforming (3.14) the operator - ' is 
replaced by i(w - k.v)-' and A by A,, where A, differs 
from A through the formal substitution 

Therefore 

ie3< (Eh) '> 
fl:ko=- (ehv) [ehv]  [ k ~ ~ , ' ]  df,/d&. 

m Z o o 2 a  ( a - k v )  c2y" 

Here eh = Eh/E is the unit vector along Eh [cf. (2.15)j. In 
the case of primary waves with different directions of eh we 
must in the right-hand side of (3.16) also sum (or integrate) 

over the appropriate directions. 
When evaluating the electric current j;,,,, using (3.16), 

it is convenient to write the velocity v as a sum of longitudi- 
nal and transverse parts: 

v=v'+vt, v ' = k ( k v ) / k 2 ,  v t = [ k [ v k ]  ] / k z .  (3.17) 

Substituting (3.17) into (2.10) we evaluate the integral over 
the momenta assuming that o < kv (see Sec. 2.3). We then 
consider only the principle part of the integral. The current 
js found in this way we write in the form 

We then find 
(1) eij =ahij /aZ,  

where 

a=war(G, ( a )  JooZ, w=< (Eh) ' ) /4znT,  
(3.20) 

Here w is the dimensionless energy density of the high-fre- 
quency waves, e k  = k/lk I. The particle density and plasma 
frequency are taken here in the sense indicated in Sec. 2.3. 

We show that E!' is non-zero only when the energy spec- 
trum of the primary HF waves is anisotropic. Indeed, in the 
opposite case, i.e., when the spectrum is isotropic, 

<(E,"E,h>>= (Eh) 26,J/3. (3.22) 

The double brackets indicate here an average over time and 
over the phases of the waves. Substituting (3.22) into (3.15), 
(3.16) we verify that f,,,, = 0, and hence that &):I = 0. 

3.3. Evaluation of &jfl. When evaluating we shall as 
primary waves consider a single monochromatic wave with 
wave vector q and frequency w:, i.e., put 

Eh=E+h exp (-iaphtfipr) +E-h exp (ialht-iqr) , (3.23) 

where ET = Eh,', the asterisk being the symbol of taking 
the complex conjugate. In terms of Fourier harmonics such a 
choice of fiekl means [see (2.1 I)] 

Er.h=E+h6 (k-q) 6 (a-mah) +E-*6 ( k + q )  6 ( @ + a t )  . 

The results obtained for the case of a single monochro- 
matic wave can be generalized to the case of many waves by 
summation over the wavenumbers q. We must then use the 
fact that E: = E: (q).  

In accordance with (3.23) we write the electric field Ehs 
and the electric current jks of the virtual waves in the form 

We write out explicitly Eq. (3.7) for the function f; and after- 
wards evaluate the current j; connected with it. As a result 
we get 
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The index (k + q) is understood to be four-dimensional, 
k + q  = (k + 4, '2 +a;); 

Using (3.2) and (2.10) we evaluate the current jY+,, 
writing it in the form 

hr 
j,,,= jL+jNL, (3.28) 

where jL is the linear part of jhs, induced by the field Ehs, 
while jNL is the non-linear part produced by the fields Eh, ES. 
The expression for jL has the standard form 

x (hi-x,x,/xZ))E/1., (3.29) 

where E' and E' are given by Eqs. (2.17). We use here the 
notation x = k + q. The expression for jNL is given by the 
equation 

Here the index k ( k , w ) .  
We write the field and the current of the virtual waves as 

a sum of a longitudinal and a transverse part: 

where the quantities with the superscripts I and t are under- 
stood in the sense (3.17) with the substitution k-+k + q. Us- 
ing (3.27) to (3.29) we then find from the Maxwell equations 

ieap2Gz 
E:=* 

mowoJDt ( x )  
( [ x  X[k XEI.11 

where 

Dl(%) =x2e1(x), DL(%) =x2[e1 (x) -c2xZ/02], o y = o + o ~ .  

(3.34) 

Substituting (3.31) to (3.33) into (3.26) we evaluate the cur- 
rent j;. We write the result of our calculations in the form 

j2*= j;" +jf" , (3.35) 

where j;', j;' are the contributions to j; from El,, EL, respec- 
tively. Similarly we write 

p) - c z v  +&(a)# 
~ t j  -8%) lj . (3.36) 

We then get for E;" 

where 

We have used here the notation: 

be=[k[k+q, eh]], 

(-1) " (k-q, eh) " (k+q, eh) " Y, = + , n=O, 1,2,  
D-' D+' 

(3.41) 

D,'=D1(k*q), D,'=Dt (k*q) . (3.42) 

Equations (3.37) take into account the contribution to E;' 
from a single Langmuir wave. In the case of a large number 
of primary waves we must sum the contributions from all 
these waves in the right-hand side of (3.37). 

3.4. Canonical form of the nonlinear dispersion equa- 
tion. We find from (3.19) to (3.21), (3.26) to (3.41) 

(2) - k,~!:) = k , ~ , ,  - 0. (3.43) 

From this it follows, in particular, that there is no non-linear 
contribution from the low-frequency perturbations to the 
longitudinal permittivity: 

( 2 )  kie!:' k,=k,e,, kl=O. (3.44) 

We assume that the wave vector k lies in the xj-plane, i.e., 
k = (k, ,O,k,). Using (3.43) and the symmetry of the tensors 
E!) ,  E:' in their indexes we conclude that these tensors can be 
characterized by three independent quantities 
EL, E:, EL = E ; ~  (y = 1,2) where 

We then get from (3.9) the dispersion equation 

where 

The quantities E$" are given by Eqs. (3.19), (3.37) with 
the substitution (i, j)-+(afi ), and the expressions for the coef- 
ficients A,, ,u& by Eqs. (3.21), (3.38), (3.39) with the change 
in notation following from (3.45). 

4. RELATIVISTIC INSTABILITY CONNECTED WITH WAVE 
ANISOTROPY 

In the present section we consider WAI caused by the 
non-linear dielectric permittivity &!A. Such a kind of insta- 
bility is (within the framework of the assunptions made) the 
only possible mechanism for magnetic field generation in the 
case of an electron-positron plasma as, according to what we 
have said above, in such a plasma = 0. 
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It follows from Sec. 3 (for details vide infra) that E$ #O non-resonant.I3 Such a heating is characterized by the func- 
only when we take relativistic effects in the plasma into ac- tionyhh which according to (2.8), (2.9) is in the case consid- 
count. In this connection we call the instability discussed in ered given by the relation 
the present section the relativistic WAI. 

For the sake of simplicity we restrict ourselves in the 
main to the case where the electric field of the H F  waves has 
the same direction as the wave vector of the perturbations 
Eh Ilk. We take the vectors Eh and k to be directed along the 
z-axis. At the end of the section we discuss briefly perturba- 
tions with an arbitrary angle between Eh and k. 

4.1 Dispersion equation 

We obtain under the stated assumptions from (3.46) two 
identical dispersion equations for perturbations with differ- 
ent polarizations: 

E o ( 6 ) f  E(1)-C2k2/02=0, (4.1) 

where 

E(')=w ( w p / a )  'T/mc2.  (4.2) 

We assume here that the plasma is non-relativistic, T4mc2. 
It follows from (4.1), (4.2) that 

m=ic3k (ka2-kz)  /mpZ1 (4.3) 

where 

ke2=w ( ~ ~ / c ) ~ T / m c ~ .  (4.4) 

It is clear that when 

k<k.  (4.5) 

there occurs an aperiodic instability, 6 d m  w > 0, 
Re w = 0; this is the relativistic WAI. The wave vector k, 
plays the role of the boundary of the instability. The growth 
rate S reaches a maximum when k, = k, /3 '12.  In that case 

6mox=2z-~'a~3k.3/3'ii~P2. (4.6) 

From (4.4), (4.6) follow the estimates (l.3), (1.5) with 6 zeEh  / 
ma,. 

4.2. Role of relativistic effects, plasma heating when there is 
non-resonant wave-particle interaction, and rigidity of the 
system 

The approach developed in Secs. 2 ,3  while rather gen- 
eral, does not allow us with the necessary clarity to elucidate 
several aspects of the relativistic WAI. Therefore we give in 
the present subsection a certain interpretation of it. 

To fix the ideas we assume the magnetic field of the 
perturbations to be oriented along the y-axis, i.e., 
Bs = (0,B ;,0). We assume that the system is at the boundary 
of the instability. Taking into account the aperiodic nature 
of the instability we may then assume that the low-frequency 
perturbations are time-independent, df./dt = dBs/dt 
= E" = 0. Under the stated assumptions the kinetic equa- 
tion (2.7) for the low-frequency part of the distribution func- 
tion takes the form 

(4.7) 

The first term on the right-hand side of (4.7) is connected 
with plasma heating when the wave-particle interaction is 

- 

fhh=' /2(6p,2>a2fo/dpz21 d6pZ/8t=eElh. (4.8) 

The second term on the right-hand side of (4.7) we treat as a 
manifestation of the rigidity of the system caused by the os- 
cillatory particle motion in the high-frequency field with re- 
spect to the low-frequency perturbations. The basis for such 
a treatment is the analogy with the perturbed motion of a 
particle in a plasma in a static magnetic field. The particle 
then performs Larmor oscillations which are analogous to 
oscillations in a high-frequency field. It is well known that 
the presence of a static field makes the response of particle to 
the excitation of an electromagnetic field (magnetization ef- 
fect) more difficult and this produces the system rigidity. 
Using the above-mentioned analogy we are led to the con- 
cept of the rigidity of a system in a high-frequency field. Of 
course, such an analogy is not complete but it gives us a 
correct way to orientate ourselves. 

When we use the above-mentioned interpretation of the 
terms on the right-hand side of (4.7) it becomes clear that the 
effects described by us are competing. The calculations given 
in Sec. 3 show that if we neglect relativistic effects in the 
plasma such a competition leads to a complete cancelling of 
theseeffects, i.e., the right-hand side of (4.7) vanishes. When 
relativistic effects are taken into account the rigidity effect 
dominates over the heating effect and this is the physical 
reason for the relativistic WAI. 

4.3. Excitation of oblique perturbations (k.ES#O, k x ES#O) 
and stabilization of the instability when the anisotropy of the 
HF waves decreases 

When kxES#O we have instead of (4.1) the following 
two dispersion equations 

~ ~ ~ - t ~ i i )  - c ~ ~ ~ / o ~ = O ,  (4.9) 

E ~ J - ~ E ~ ;  - c2k2/m2=0, (4.10) 

where 

while the expression for &'I1 is given by Eq. (4.2). Equation 
(4.9) describes perturbations with Es = (O,E;,O) and (4.10) 
those with E" (E: ,O,E :). 

It is clear that the problem of oblique perturbations re- 
duces to the one considered in Sec. 4.1 with the substitution 

where : denotes the right-hand side of (4.4). Perturbations 
with EVJ y are unstable up to 6 = ?r/2 (their growth rate de- 
creases with increasing 0 )  whereas perturbations with F l y  
are stabilized for 6>?r/4. 

The situation considered here corresponds to extremely 
strong anisotropy of the H F  wave spectrum. When the de- 
gree of anisotropy decreases Eqs. (4.9), (4.10) must be mixed 
up with one another so that instead of two dispersion equa- 
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tions we shall have a single one-Eq. (3.46). Moreover, the 
quantities occurring in (3.46) will be integrals of angular 
functions such as (4.1 I), where now 8 has the meaning of the 
angle between the wave vectors of the perturbations and the 
direction of the electric field of the various HF waves. The 
characteristic value 8 = 8, then means the same as the char- 
acteristic solid angle of the wave numbers of the HF waves 
(or the characteristic angle of the direction of the polariza- 
tion in the case of electromagnetic HF waves). It is thus clear 
that the instabilities considered above must occur up to 
8 , ~  1. 

5. ROLE OF MODULATIONAL EFFECTS IN THE WAI OF A 
PLASMA WITH ELECTROMAGNETIC WAVES 

We supplement the analysis of Sec. 4 with taking into 
account the effects connected with ~ h f l j  AS in Sec. 4 we start 
with considering the case k((EhJlz. The primary H F  waves 
are assumed to be electromagnetic, qlEh. To fix the ideas we 
take qllx. We assume the plasma to be non-relativistic. 

Using the formulae in Sec. 3 we conclude that 
E Y ~ '  = E?' = 0, i.e., the tensor E$ is diagonal. Moreover, 
~ l t ) l =  0. Two dispersion equations then follow from (3.46): 

&ie' + E(')+e::"- ~ 2 k 2 / ~ ~ = 0 ,  (5.1) 

E ~ ~ + & ( ~ ) + E ~ ~ '  - c2k2/a2=0. (5.2) 

The first one describes perturbations with Eslly, Bsllx, and 
the second one those with E'((x, B"l(y. 

We assume perturbations which are long-wavelength 
ones relative to the primary HF waves k4q. The quantities 
ey)', &?'are then small like k 2/q2 SO that (5.2) reduces to (5.1). 
Hence, modulational effects are contained solely in (5.1). 
The quantity EE characterizing these effects turns out to be 
exactly the same as the quantity E"' given by Eq. (4.2). In 
other words, the role of the modulational effects in the case 
considered turns out to be the same as the role of the relativ- 
istic effect discussed in Sec. 4. The concrete results following 
from (5.1) differ from the ones given in Sec. 4.1 by a numeri- 
cal factor of order unity so that the estimates (1.3), (1.5) re- 
main in force. 

In this connection there arises a paradox: a relativistic 
effect turns out to be of the same order as a nonrelativistic 
one. This paradox is cleared up by the fact that the secondary 
HF waves, with which the modulational effect is connected, 
are electromagnetic and due to this their electric field is 
small as 1/c2. Indeed, according to (3.33) as w 4  the field 
Ehs is given by the equation 

[a*,kt (a*,) -c2 (kf q)2] Eyha+ekElhapE~/ma=O. (5.3) 

We have here for the sake of simplicity omitted the index 
k f q, f w: of E? and the subscript + of E l. In the case 
considered 

(a*,) -c2 (kf q)2=-~2k2, (5.4) 

so that E h k  l/c2. 
We show that the modulational effect discussed here is 

important only when the spectrum of the primary HF waves 
is appreciably anisotropic. To see this we turn again to (5.3) 
and note that, if we use (5.4) 

Eh" allk. (5.5) 

Such a result is obtained only in the case considered by us, 
klq. When there is a spread in the directions of the wave 
vectors ofthe primary waves we must assume that kq#O and 
instead of (5.5) it follows then from (5.3) that 

Ehsak/ (k2-2qk). (5.6) 

The expressions for E% obtained using (5.6) have a charac- 
teristic structure 

It is clear that when q>k the field of the secondary waves Ehs 
must decrease appreciably even for a small angular spread 
A8 of the wavevectors of the primary waves, A8 k k /q. The 
modulational mechanism for generation will then be appre- 
ciably weakened whereas the relativistic one is not weakened 
up to A8=: 1 (see Sec. 4.3). 

The authors are grateful to E. G. Tatarinov for his assis- 
tance with this paper. 
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