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The influence of superconducting fluctuations on the single-particle current in various types of 
tunnel junctions is considered. It is shown that there are two different fluctuation contributions to 
the current. The first is due to the fluctuations of the density of states in the superconductors that 
make up the junction, and the second to the interaction of the fluctuations through the barrier. 
Both contributions decrease the current flowing through a Josephson junction, but manifest 
themselves at different voltage scales. The type of the extrema that appear in the dependence of 
the differential resistance on the voltage is determined by the sign of the electron-electron interac- 
tion constant in the metals that make up the junction. 

PACS numbers: 74.50. + r, 74.40. + k 

1. INTRODUCTION 

The study of fluctuation phenomena in Josephson 
structures was initiated by Kulik.' He has shown that above 
the superconducting-transition temperature Tc fluctuations 
appear in the superconducting current and produce in it ra- 
pidly oscillating increments, and as a consequence, fluctu- 
ation emission of electromagnetic waves by the junction. 
Owing to the junction resistance, however, these fluctu- 
ations do not manifest themselves, since their average contri- 
bution to the current flowing through the junction is zero. 

This paper deals with the influence of superconducting 
fluctuations above T, on the single-particle current of a Jo- 
sephson junction between two amorphous or sufficiently 
dirty films. It turns out that allowance for the interaction of 
the fluctuations through the barrier produces st tempera- 
tures close to T, a junction-resistance increment that de- 
pends strongly on the temperature. It is interesting that the 
sign of such a fluctuation contribution depends on the char- 
acter of the effective interelectron interaction in both metals 
making up the junctions. If both metals are superconductors 
(with corresponding effective interaction constants g,, < 0 
andg,, < 0), allowance for the interaction of the fluctuations 
through the barrier increases the junction resistance at low 
voltages. If one of the metals is normal (g,, > 0) the correc- 
tion reverses sign and the effect considered decreases the 
resistance. 

The obtained differential-resistance corrections depend 
not only on the temperature (at temperatures T - T,g  Tc)  
but also on the voltage applied to the junction, and manifest 
themselves as singularities of the junction current-voltage 
characteristic (CVC) at low voltages (the characteristic scale 
of variation of these corrections is e V- T - T,). The relative 
value of the contribution of the effect considered depends 
substantially on the electron mean free path and on the pres- 
ence of pair-breaking mechanisms. 

2. ANALYSIS OF DIAGRAMS 

We consider the influence of superconducting fluctu- 
ations on the single-particle current in a Josephson junction 
within the framework of the temperature diagram tech- 

nique. To this end it is necessary first to represent this cur- 
rent in the form of a correlator of temperature Green's func- 
tions. To describe the junction we use the model of the tunnel 
HamiltonianZ 

whereii; and 6 ,  are the creation and annihilation operators 
in the half-spaces on the left and right of the barrier, and T,, 
is the matrix element corresponding to the electron tunnel- 
ing from the state p in the left half-space to the state k in the 
right. 

The total current through a junction was first calculat- 
ed using a Hamiltonian in this form by Ambegaokar and 
B a r a t ~ v . ~  Their result was formulated in the form ofa sum of 
correlators of time-dependent Green's functions of the right 
and left half-spaces. This sum contains both the normal qua- 
siparticle current and the superconducting Josephson cur- 
rent. This approach is widely used4 and explains many phe- 
nomena in the theory of Josephson junctions, but is not 
convenient for the analysis of fluctuation phenomena. The 
superconducting fluctuations are simplest to take into ac- 
count by using the temperature diagram technique, and we 
must therefore represent also the single-particle tunnel cur- 
rent in the corresponding form. 

It turns out that in the temperature diagram technique 
the tunnel current flowing through the junction can be rep- 
resented as the imaginary part of the diagram shown in Fig. 1 
(see Appendix A). The thick lines in the figure denote the 
total Green's functions of the right and left half-spaces, and 
at the vertices are the matrix element of the tunnel Hamil- 

FIG. 1. Diagram for tunnel current flowing through a junction 
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tonian T,,, and the common factor in front of the diagram is 
- e. Since the electron momentum is generally speaking not 

conserved in tunneling through the barrier, the summation 
over the electron states p and k is carried out independently. 
For this reason, the expression corresponding to the diagram 
contains in fact Green's functions integrated with respect to 
energy and independent of the value of the chemical poten- 
tial in the considered half-space. 

The tunnel current itself, however, is determined just by 
the difference between the chemical potentials on the right 
and left of the barrier; this difference Ap is taken into ac- 
count in the diagram of Fig. 1 in the following manner. The 
matrix elements T,, at the vertices of the diagrams not only 
transfer to the electron from state p in one half-space to state 
k in the other, but impart to the electron a certain boson 
frequency wv = 2nTv (v = 1,2,3, ...), with respect to which 
an analytic continuation is effected into the upper complex- 
frequency plane, with the substitution ioV+ = eV (Vis the 
potential difference across the junction). 

Thus, the single-particle current I, of a Josephson junc- 
tion is defined by the expression 

where K,(o) is the analytic continuation, into the upper 
half-plane, of the complex frequency of the correlator of the 
Green's functions K (o,), which corresponds to the diagram 
of Fig. 1 and is defined on Matsubara frequencies w, > 0: 

E,  = 2nT (n + 4) is the fermion frequency, and the indices of 
the total Green's functions G identify the half spaces to 
which they belong. 

We can now take into account the influence of the su- 
perconducting fluctuations on the tunnel current in the usu- 
al manner.5 To this end we expand the total Green's func- 
tions in terms of the fluctuation propagator that takes into 
account the fluctuation pairing of the electrons in each of the 
half-spaces, up to second order. The expansion yields the 
diagrams shown in Fig. 2a. A wavy line denotes a fluctuation 
propagor L defined by the expression 

wherep is the density of states, $(x) is the logarithmic deriva- 
tive of t h e r  function, a, = ~ ( ( v q ) ~ ) / 4 ~ T ,  and angle brack- 
ets denote averaging over the Fermi surface. 

We note that the diagrams shown do not contain the 
anomalous Maki-Thompson diagram6.7 or diagrams of the 
Aslamazov-Larkin type.5 In our problem the processes cor- 
responding to these diagrams are possible only in second 
order in the barrier transparency (their contributions to the 
tunnel current is cc IT,, 1 4 ) .  Two such diagrams are shown in 
Fig. 2(b). In the considered case of low barrier transparency, 
the contributions of these diagrams are small and are disre- 
garded here. 

We discuss now the question of allowance for impurity 

FIG. 2. Diagrams for the tunnel current with allowance for the fluctu- 
ation pairing of the electrons and for scattering from impurities. The solid 
lines denote the Green's functions of the normal metal with allowance for 
electron scattering by the impurities, the dashed lines denotescattering by 
impurities, the wavy lines correspond to the fluctuation propagator, and 
the shaded three-prong sections correspond to the vertices A (q, a),,  roJ. 

scattering. The Green's functions in the diagrams of Fig. 2 
are assumed to be already averaged over the impurity posi- 
tions, and the shaded three-prong vertices A (q, a,, w,) are 
sums of ladder diagrams that occur when account is taken of 
the interference of the Green's functions. In the cases of in- 
terest to us, when the impurity density is high enough ( E ,  

>r- '>T)  we have for the vertex A the expression8 

where 
1 

o.=o),,+ -sgn o,, 
2.t 

T is the time between the electron-impurity collisions, and 
9 (x) is the Heaviside theta function. 

For the diagrams of type 8 in Fig. 2(c), which do not 
reduce to the diagrams of Fig. 2(a), it is easy to verify by 
direct calculation that they are equal to zero. Finally, we can 
draw formally also the diagrams of type 9 [Fig. 2(c)]. As 
regards their meaning, however, they correspond to scatter- 
ing of an electron in the left and right half-spaces by one and 
the same impurity, which is impossible, and their contribu- 
tion is also zero. For the same reason we do not renormalize 
the vertices for the matrix elements T,,. 

As shown in Ref. 3, when considering a Josephson junc- 
tion the true function of a semi-infinite metal can be replaced 
by the Green's function (averaged in our case over the impu- 
rity positions) of a homogenous metal: 
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Thus, in the case of low barrier transparency, the con- 
tribution of the superconducting fluctuations to the tunnel 
current is determined, accurate to second order in the super- 
conducting fluctuations in the system, by the five diagrams 
of Fig. 2(a). The first two diagrams are corrections to the 
tunnel current and are due to the change of the density of the 
single-particle states in the presence of superconducting 
fluctuations. Diagrams 3 and 4 are the next-order correc- 
tions of the same type and are small, since they are the next 
terms of the expansion in the same small parameter as dia- 
grams l and 2. Diagram 5 of Fig. 2(a) corresponds to the 
interaction of the fluctuations through the barrier. Its con- 
tribution turns out to be quite important in the proposed 
theory. 

3. SYMMETRIC JOSEPHSON JUNCTION 

We consider a Josephson tunnel junction of identical 
superconductors having a critical temperature T,, at a tem- 

perature somewhat higher than the superconducting-transi- 
tion temperature ( T  - Tc (T,). 

For the first diagram, taking into account summation 
over the spin indices, we have 

Assuming the matrix elements T,, to depend little on the 
energy near the Fermi level, we change in the usual manner4 
from summation over the electron states to integratio< with 
respect to energy: 

where R,  is the normal resistance of the junction. 
Using this transformation we obtain after simple calcu- 

lations of the integrals 

In the case considered we are interested only in the ARtll 148 ( 3 )  -=- T c  
terms that are most singular with respect to proximity to the II. n3 ( E ~ T P  ( EC) 
transition point. It can be seen from (4) that near T,, where 
E = (T-  T,)/T,(l, it suffices to retain only the term with 
R, = 0 in the entire sum over R,. Carrying out the remain- 
ing integration and continuing analytically the expression 
obtained for K,(w,) into the upper frequency half-plane, iw, 
-+eV, we obtain 

where 

and d is the dimensionality of space. 
In the considered case of a two-dimensional film (when 

the film thickness is smaller than the dimension of the Coo- 

The contribution made to the tunnel current by the first 
two diagrams is thus negative at low voltages, so that the 
differential resistance of the junction is increased. The value 
of this positive increment increases quite weakly, logarith- 
mically, as the superconducting transition is approached. 
On the other hand ARpl  becomes dependent on the voltage 
only at ev 2 Tc. It is just this weak voltage and temperature 
dependence of the correction to the junction resistance, ob- 
tained in first order in the fluctuations, which causes the 
contribution from the next-order diagram to assume the 
principal role in the temperature dependence of the differen- 
tial resistance at low voltages on the junction. 

Diagram 5 of Fig. 2(a) takes into account the interaction 
of the fluctuations through the barrier. Corresponding to it 
is the analytic expression 

per pair) we have with logarithmic accuracy: 
1 CPq 

4T T, K , ( ~ ~ ) = - - - ; - T ~ ~ ~ L ( ( I ~ , Q ~ ~ )  ne R, ' i 
(10) ( L ( q , O ) ) = - -  

n ( E F T )  ln . 0 8 ,  

XT ~ ( q , ,  n . , ) ~  l i 2 ( q l ,  &.+.. Q ~ , - & . ; . )  
Thus, at low voltages on the junction the contribution RII e,, 

of the first diagram to the single-particle current is given by X AZ(q2, en, Q k ~ - & ~ ) I ( e n ~  Q A 2 ) z ( & n + v ,  Q*L). (13) 

where 
ZI ( V )  =-- , eV<T,, ( 1 1 )  

0 

I ( & . .  a) = J _ .  
where f (x) is the Riemann zeta function. ( E - - i ~ , ) ? ( t - i  ( Q k + c n )  ) 

(14) 
- - 

Obviously, in the case of a symmetric junction the con- 
tribution of the second diagram is similar, and we obtain for Carrying out the integration in the block of the Green's func- 
the correction to the differential resistance of the junction, in tions (14) and substituting the explicit expression for the ver- 
first order in the fluctuations in the system, tices A,  we obtain from (5) 
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Since we are considering temperatures close to T,, it suffices to retain in the sums over R, ,  and R, ,  in 
thisexpression only the term with a,, = a,, = 0, for which both propagators at small momenta have a singu- 
larity; calculating the remaining sum over E,, we obtain 

1 d2qt d2q2 d2 
K50n (o,) = ~ ( q i , o ) - s  L (qz ,O) ,  aq,+aqxi- - 

2'n3Te2Rn (2n)" ( 2 ~ )  aaq, daq2 

1 1 0, 1 
-(P ( j + a q . ' + d ( 2 + 2 n T + a q 2 )  - l ( l+aq , ) ] } ,  . (16) 

Continuing now analytically this expression in the usu- 
al manner, expanding it in terms of the parameter eV/T( 1, 
and separating its imaginary part, we have ultimately 

where the function p(a, E) is defined as 

The behavior of this function is investigated in detail in 
Appendix B, and the following asymptotic expressions are 
obtained in the limiting cases 

neV T-T, 
4 ~ 9  7) 

The logarithmic divergence of this expression at low vol- 
tages is of the same origin as the divergence, known in the 
theory of superconducting fluctuations, of the anomalous 
Maki-Thompson contribution6.' to the conductivity of a su- 
perconducting film above T,. This singularity is eliminated 
by taking into account any pair-breaking mechanism or the 
three-dimensional character of the electron m o t i ~ n . ~  Equa- 
tions (19)  are therefore meaningful at voltages e V Z  A ,  where 
A is the characteristic energy of the pair-breaking mecha- 
nism (A =  ST^ in the presence of paramagnetic impuri- 
ties, A = eH/mc when a magnetic field is turned on). Thus, 
the fluctuation addition to the resistance of a symmetric Jo- 
sephson junction, due to the interaction of the fluctuations 
through the junction, is of the form 

I 
4. ASYMMETRIC JOSEPHSON JUNCTION 

We consider now fluctuations in an asymmetric Joseph- 
son junction of two superconducting films with critical tem- 
peratures T,., and T,  (Tc, < Tc2 1; jwe are interested in tem- 
peratures T >  T,, (T  - Tc2 ( T,, b 

The contribution made to the'tunnel current by the fluc- 
tuation change of the state density is described as before by 
the first two diagrams of Fig. 2(a). The second diagram, 
which corresponds to the fluctuation of the state density in 
the second half-space, makes the same contribution to the 
current (1 1) as before. The contribution of the first diagram, 
however, can now differ from (1 I), since T,, can differ con- 
siderably from Tand expression (1 I )  for the current does not 
hold in this case. 

If the critical temperatures of the films are so close that 
T - T,, (T, ,  , the first-diagram contribution to the tunnel 
current is determined by the same expression (1 1), but with 
Tc replaced by Tcl (or TC+Tc, for the second diagram). In 
this case the fluctuation increment to the resistance of the 
asymmetric junction from the first-order diagrams takes at 
low voltages the form 

If, however, T,, and T,, differ significantly, it no longer 
suffices to retain only the term with k = 0 in expression (8), 
when calculating the first diagram, and it is necessary to 
carry out complete summation over all the frequencies in the 
fluctuation propagator. In the case T,, 4 Tc2 the correspond- 
ing calculations, in analogy with Ref. 8, can be carried out 
analytically. It turns out as a result that the corresponding 
correction to the junction resistance is practically constant 
in the temperature region near Tc2, and the total contribu- 
tion to the resistance, connected with the state-density fluc- 
tuations, is determined by the expression 

When account is taken of the interaction of the fluctu- 
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ations, diagram 5 of Fig. 2(a) remains the principal one as 
before. It is calculated in analogy with the case of a symmet- 
ric junction, up to the derivation of (16). The differences 
between the superconducting-transition temperatures, the 
Fermi energies, and the times T of the right and left half- 
spaces lead to a more complicated expression for the incre- 
ment to the tunnel current: 

where the function x is defined by the integral 

and the parameters a, E ,  and y correspond to the arguments 
of the function ,y in (23). Depending on the ratio of T,, and 
Tc2, the quantity y = ln(T/T,, ) can be either small or large, 
but always y ) ~  = ( T  - Tc2)/Tc,. The behavior ofx is inves- 
tigated in Appendix B at different relations between its argu- 
ments. The asymptotic relations obtained there yield an ex- 
plicit expression for the increment made to the resistance of 
an asymmetric junction by the interaction of the fluctu- 
ations: 

AR,:' 
-= 

n2 

Rn ~ ' ( E P ~ T I )  ( E P ~ T ~ )  

In the case T,, = Tc, these equations go over, natural- 
ly, into (20) (there is simply no intermediate voltage region in 
this case). If the critical temperatures differ greatly, it can be 
seen from (25) that the temperature dependence of ARpn 
near V = 0 is weaker than in the case of a symmetric junc- 
tion. 

efy E 

5. JUNCTION OF A NORMAL METAL AND A 
SUPERCONDUCTOR 

x 

We consider the case of a tunnel junction of two films, 
one a superconductor and the other a normal metal. At 
T >  Tc the interelectron interaction in the superconducting 
part of the junction leads to the formation of superconduct- 
ing fluctuations. Such an interaction takes place also in the 
normal part of the junction, where the electron-electron in- 
teraction constant g, is positive. When considering the effec- 
tive electron-electron interaction, just as in the case of a su- 
perconductor, it is possible to separate and sum a ladder 
sequence of diagrams in the Cooper interaction ~ h a n n e l . ~  
The obtained vertex part of the interelectron interaction cor- 
responds to the fluctuation propagator in the case of a super- 
conductor, where the effective interelectron interaction con- 
stant is g, < 0, and takes formally the same form (4). Now, 
however, the critical temperature T, -ao exp[l/pg, ] is re- 

p- in-, U ~ E ,  y, 
&'yZ a 

1 E 
1 E G u G ~ ,  
a'y a 
2n E'f 

placed by some large (of the order of the Fermi energy) tem- 
perature To-&, exp [ l/pg, 1, so that 

E,  yGaKl.  

(26) 
Since To 2 E ~ ,  we have In(To/T)> 1 for the temperatures con- 
sidered by us. 

The current increment due to the fluctuations of the 
state density in the superconducting part of the junction re- 
mains the same as before, and is determined by (1 1). Fluctu- 
ations of this type in the normal part of the junction will be 
described as before by diagram 2, but the wavy line in it must 
now be taken to mean the vertex part (26). The contribution 
of this diagram to the tunnel current at temperatures T - Tc 
(T, and at voltages e V 5  Tc is positive and is practically 
independent of these variables. The total change ARplof the 
junction resistance, due to the fluctuations of the state den- 
sity, is given by 

and can either be positive or negative. 
An interesting phenomenon results in the case of an n-s 

junction from the interaction through the barrier, described 
as before by diagram 5. Formally the calculation coincides 
fully with the one in the preceding section for the case 
In(T/Tc, )> 1, but now y = ln(T/Tc, ) > 0 must be replaced by 
ln(T /To) < 0, and according to (25) the interaction ofthe fluc- 
tuations through the barrier leads in this case to a decrease of 
the junction resistance, i.e., the corresponding correction re- 
verses sign compared with the usual Josephson junction. 
Thus, repulsion of the electrons in the normal part of the 
junction leads to the appearance of a minimum in the depen- 
dence of the differential resistance on the voltage at V = 0 
(Fig. 3b); the dependence of ARp " on the voltage and on the 
temperature is determined by the formulas 

6. DISCUSSION OF RESULTS 

The results show that superconducting fluctuations in a 
tunnel junction lead to the appearance of two contributions, 
of different character, to the current flowing through it. The 
first is due to fluctuations of the state density in each of the 
superconductors, and the second corresponds to interaction 
of the fluctuations through the barrier. Both effects decrease 
the total current flowing through the Josephson junction, 
and when account is taken of the fluctuation effects the junc- 
tion CVCacquires even at T > Tc features typical of the CVC 
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FIG. 3. Voltage dependence of the differential resistance R ,  of the junc- 
tion near the superconducting-transition temperature. 

of a Josephson junction between two superconductors at 
T <  T". 

Let us discuss the dependence of the differential resis- 
tance of the junction on the voltage at temperatures close to 
T,, using a symmetric Josephson as an example (Fig. 3a). 
The fluctuations of the single-particle states near T, lead, 
according to (9), to a decrease of the current flowing through 
the junction. Ate V- T, the corresponding correction to the 
resistance is positive and is determined by expression (12). Its 
temperature dependence has a weak (logarithmic) singular- 
ity with respect to the proximity to T,. With increasing vol- 
tage ( T  - T, &eVS T,) ARpl begins to decrease, reverses 
sign, and after reaching a minimum in the region eV- T, it 
tends to zero with further increase of voltage. Thus, the fluc- 
tuations in the density of the single-particle states introduce 
into the junction differential resistance a correction with a 
variation scale e V - Tc . 

The effect of the interaction of the fluctuations through 
a barrier leads to singularities in the CVC of the junction at 
much lower voltages, on the order of eV5  T - T,. At low 
voltages eV5  T - T,, the dependence of the differential re- 
sistance on the voltage, Rd(V), is logarithmic [see (20)l. The 
correction at the maximum for V = 0 is determined by the 
pair-breaking mechanisms in the superconductors that 
make up the junction, and depends also substantially on the 
proximity to T,. One of the pair-breaking mechanisms may 
be a magnetic field (or paramagnetic impurities), whose in- 
crease causes the maximum of the junction resistance to de- 
crease rapidly (typical fields that suppress the effects are giv- 
en by eH/mc- T - T,). The dependence of the correction 
on the proximity to Tc is according to (20) quite strong, - (T, 
/ T  - Tc3. In the presence pair-breaking mechanisms, how- 

ever, this dependence becomes weaker, for in this case the 
true temperature T, of the superconducting transition de- 
creases, and the quantity T, in (20) is replaced by T, + S (S is 
the critical-temperature shift due to the pair-breaking mech- 
anisms). 

Since the considered fluctuation interaction corre- 
sponds to taking the system fluctuations into account in sec- 
ond-order perturbation theory, ARpn is of order of small- 
ness (E,T)-~ compared with R,, and predominates over 
ARpl at low voltages (eV5 T - Tc) only at temperatures 
T - Tc 5 T , (E~T) - ' / ~ .  In the immediate vicinity of the tran- 
sition temperatures the interactions of the fluctuations in 
higher orders of perturbation theory become significant, and 
at temperatures T - T, S TC(&,~)-'I2 their contribution be- 
comes comparable with ARprl. The temperature region 
T - T, 5 T,(E,T)-'/~ is thus critical, and our analysis is not 
valid in it. 

When the voltage is raised, ARp 'I decreases, reverses 
sign, and reaches its minimum at eV=0.63(T - T,). 
Further increase of the voltage leads to a faster (power-law) 
decrease of the correction ARpN [see (20)], which becomes 
negative in the temperature region T - T, 5 e V< T, . In this 
voltage range, however, the correction ARpl is still positive. 
Therefore when both considered effects are taken into ac- 
count Rd(V) assumes a peculiar shape with a maximum a 
zero, a plateau, and two minima of different origin (see Fig. 
3a). 

We note that on going farther from the superconduct- 
ing-transition temperature (but remaining in the region 
T - T, gT,) the position of the first minimum shifts to the 
right along the voltage axis, whereas the position of the sec- 
ond minimum is almost unchanged. 

Recent experiments by Jerome's group'0 on tunneling 
in the organic superconductor (TMSTSF),PF, have shown 
that the differential resistance of such a junction is a maxi- 
mum at V = 0 and exhibits a characteristic minimum at 
V = 0. The position of this minimum in the superconducting 
phase determines the size of the gap in the spectrum. Its 
existence at T >  T,, on the other hand, is understandable, 
since it results from an interaction of superconducting fluc- 
tuations that take place in compounds with decreased di- 
mensionality of the electron spectrum, such as the com- 
pound (TMTSF),PF, (Ref. 1 1). 

We consider now the singularities of the CVC of the n-s 
junction (Fig. 3c). In this case the correction due to the inter- 
action of the fluctuations through the barrier has, because of 
the electron repulsion in the normal part of the junction, a 
sign opposite that of a junction of two superconductors. This 
causes a minimum of Rd(V) at V= 0 and a maximum at 
eV- T - T, (see Fig. 3b). 

Thus, even from only the form of the R,(V) it is possible 
to assess the sign of the effective interelectron-interaction 
constant in the investigated sample; this is a particularly at- 
tractive property in cases when the coupling constant is 
small and its sign cannot be judged by other measurements. 

We note that the singularities of Rd(V) considered by us 
are connected with the interelectron interaction in the Coo- 
per channel. In addition corrections necessitated by the 
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Coulomb interaction of the electrons must be made to the 
differential resistance at voltages e V 2  T. 

In conclusion, the authors are deeply grateful to A. A. 
Abrikosov for suggesting the topic, and L. G. Aslamazov 
and B. L. Al'tshuler for valuable discussions. 

APPENDIX A 

We calculate the imaginary part of the diagram of Fig. 1 
in general form. To this end we use the Lehmann expansion 
of Green's functionsI3: 

where 

Substituting in this form the Green's functions of the left and 
right half-spaces in the expression (3) for K (w,), we have 

K(w.)=it ~ I T . ~ I '  e r y  [fi(Rl+piNn.-En.) I 

Shifting the argument of the hyperbolic tangent by a period 
iw,/2T, followed by the analytic continuation iw, 
+Ap = eV, we obtain ultimately 

which agrees with the known expression for the tunnel cur- 
rent.I4 

APPENDIX B 

We investigate the function 

where J ( a ,  E,  y) is determined by the real part of the integral 

m 
d x  In (x/y - ia ly )  =Re! - 

X + F  s - y - i a  
0 

dz Inz . = R e ~ ~ s °  z + e + i a  z - l  (B.2) 
Y 

FIG. 4. Integration contour for the calculation of the integral in (B.2). The 
pole z = - Z - 1E is not contained in the integration contour; z = 1 is a 
removable singular point. 

here 

a=a/y,  e=ely, &GY. 

To calculate the integral in (B.2) we use the Cauchy 
theorem for the contour shown in Fig. 4. The integrals along 
the small arc and the remote segment BC are small, and for 
the integral of interest to us we have 

In z dz 
J ( a , & , y ) =  Re- 

-ia 
1 n2 + ln2 (? + iE)  ln z dz 

2 ( l + i + i 6 )  \ - ( z + i + i ~ ) ( z - I )  

(B.3) 
In the case &(a(y the denominator of the integrand in 

the first integral of (B.3) can be expanded in powers ofz and 
z + iZ, after which, integrating and separating the real part, 
we obtain 

In the intermediate ca se~ (a (y  the integral builds up on the 
upper limit, and we obtain 

For a)&, y, separating the first term of the expansion in 
recipr~cal powers of a ,  we have 
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