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The fluorescence spectrum of a two-level atom is calculated in the diffusion Markov approxima- 
tion by taking into account the relaxation-constant change due to the decrease of the effectiveness 
of the phase noise when a strong monochromatic field acts on the atom. The results describe the 
suppression of the diffusion component of the collisional broadening of the fluorescence lines of 
two-level atoms with static dipole moments. The suppression mechanism reduces to a decrease, in 
a strong field, of the upper cutoff radius of the broadening particles. 

PACS numbers: 32.50. + d 

1. INTRODUCTION 

In addition to the well-known mechanism of the change 
of the fluorescence spectrum of a two-level atom in a strong 
field,'.' on account of the difference between the damping 
rates of the natural oscillations of the excited atoms and the 
initial relaxation constants that remain unchanged, theoreti- 
cal and experimental data6*' point to the pos- 
sibility of a mechanism capable of a more drastic rearrange- 
ment of the spectrum. This mechanism operates because the 
atom's relaxation constants themselves are altered by the 
change of the effectiveness of the noise that causes the relax- 
ation and acts on an atom with a vibration spectrum substan- 
tially changed by a strong external field. 

The corresponding calculations were performed in 
Refs. 8 and 9 for two-level-atom spectra broadened by short- 
range collisions that give rise to a jumplike random process 
in the atom. If noise is considered against the background of 
the motion of the atom + field compound system and ap- 
propriate temporal relations are satisfied, this is a Markov 
process for arbitrarily strong external fields (see also Sec. 2). 
In the present paper is considered another, "diffusion" type 
of Markov process in a two-level atom, a process character- 
ized by a continuous change of the state under the action of 
the noise. The evolution operator for such processes is calcu- 
lated using a perturbation-theory series, so that explicit ana- 
lytic expressions can be obtained for the spectral characteris- 
tics. These results describe the suppression, by a strong field, 
of the collisional broadening of the atom, but for only long- 
range and not for short-range interaction potentials, when 
the broadening is due mainly to accumulation of a large 
number of collisions with a small loss of the phase coherence. 
This takes place, for example, for hydrogen atoms in a plas- 
ma." The results of the present article, which pertain to two- 
level atoms, are directly applicable to noncentrosymmetric 
atoms with nonzero difference of the dipole-moment diag- 
onal matrix elements broadened by charged particles. It 
must be noted, to be sure, that in such a system there is a 
nonzero contribution of the jumplike component from close 
collisions, a contribution suppressed ultimately by the 
strong field. The results presented here describe only the 
diffusion component and are therefore valid for not too 
strong fields, when the diffusion component of the broaden- 

ing predominates strongly even when account is taken of the 
partial suppression. 

The relaxation of a two-level atom is described by the 
Hamiltonian ,. ,. 

& , = A $ ( ~ ) G ( ~ ) ,  a=b,, az, o ~ ) ,  (1) 

where $(t ) = g,, $,, j,) is the external noise. As applied to 
optics, ,,, represent the noise of the electromagnetic field, 
which takes into account in the general case also the interac- 
tion with other atoms (the Weisskopf-Fursov-Vlasov mecha- 
nism)," whilez, describes the stochastic action, due to colli- 
sions, on the phase (more accurately, on the frequency) by 
the atomic vibrations. By virtue of the relatively low-fre- 
quency character of &,, the quantum oscillations of the po- 
pulation can lead to a substantial change of the noisel, at the 
resonant frequency and to a corresponding change of the 
relaxation matrix on account of its phase component. In the 
limit, this mechanism can lead to a complete suppression of 
the phase relaxation, i.e., in particular, to a suppression of 
the collisional br~adening.~ 

We calculate in this paper all the relaxation constants 
and the fluorescence spectrum of a two-atom level, with 
allowance for the described mechanism of suppression of the 
phase relaxation, within the framework of the validity of the 
diffusion Markov description of the dynamics of the atom, 
and of the possiblity of neglecting the changes of the atom 
velocity by collisions during the relaxation times. The latter 
means the possibility of considering for each atom a time- 
invariant Doppler frequency and a corresponding detuning 
S = o, - w,,, i.e., the absence of a Doppler contribution to 
the homogeneous line width. 

2. CALCULATION OF THE RELAXATION MATRIX AND OF 
THE EVOLUTION OPERATOR 

The total Hamiltonian for the considered model is of 
the form 

where &a is the free-atom Hamiltonian. The Hamiltonian 
kI = $(t )&with the classical vector $(t ) of the the external 
fields, which take here the form of sinusoids with frequency 
w,, describes the interaction with the external field. It  is 
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assumed that (t ) in the noise Hamiltonian (1) are stationary 
(in the broad sense) processes. 

To calculate the relaxation with allowance for the 
strong-field effects it is necessary in the general case to con- 
sider the relaxation against the background of the unper- 
turbed motion, which should includ~ the motion corre- 
sponding not only to 2Ya but also to XI. 

The analysis here is based on the fact that in this case a 
Markov description of the relaxation evolution is also possi- 
ble, since it is possible to distinguish in the intensities of 
interest a scale of slow times A>rC, for which, on the one 
hand, the relaxation motion is still of no importance, while 
the number of field-induced quantum oscillations is large 
enough, i.e., OA> I .  As a result, their action is taken into 
account by smoothening the mean values with frequency O 
over the fast oscillations, which are of no interest. Thus, the 
conditions for stationary Markov dynamics are the relations 

Q B ~ ~ ,  t , r o ~ i ,  (2) 
where 0 = (6 ' + S ')"' is the effective frequency of the 
quantum oscillations and takes into account the detuning S, 
whereas the Rabi frequency is 6 = IdE I/fi; ro denotes the 
rate of transverse relaxation in the zero-fieid limit, and 7, is 
the effective correlation time of the noise 5,. The first rela- 
tion in (2) simultaneously determines at 6 = 0 the intensities 
of the external field, for which one can really expect changes 
of the relaxation constants, while the second is the standard 
condition for Markov behavior in the case of a weak or mo- 
derately strong (9-ro) field. The quantity Orc can have 
here any value, and at Orc (1 we have a transition to the 
theory of Refs.2 and 3, in which the relaxation constants are 
invariant. We note that in the Markov theory the small pa- 
rameter rcT, corresponding to (2) is assumed to be zero, 
while effects produced when it is not zero can be considered 
consistently only in a non-Markov theory. 

As regards the properties of the considered random 
processes 6 (t ), it is assumed that the higher kinetic coeffi- 
cients 

J . . .  
t < ~ , <  . .<T, ,<~+A -- 

xexp ( io,z ,+.  . . + i o n ~ , )  =o  ( A )  

are insignificant for all t, w,, . . . ,w, and n > 2. This condi- 
tion makes it possible, when calculating the relaxation ma- 
trix, to take into account only correlations of higher order, 
corresponding to n = 2, and separate in the atom quantum 
random processes of "quasidiffusion" type, which include, 
in particular, processes with Gaussian noise g. The process 
l,, which describes the collision-broadening mechanism, 
satisfies the foregoing conditions, provided only that the 
change of the phase per collision is small. 

The initial expression that determines the evolutional 
operator S ( t , ~ )  that describes the change of the atomic opera- 
tors from the instant t to 7, takes in the notation of Ref. 12 the 
form 

where the gmbol [?,@I denotesthe operationof commuta- 
tion with A, i.e., [A,@] B = [AB] = i h  - BA. Separating 
first in (3) the free precession of the atom having the frequen- 
cy wL of the external field, with account taken of the detun- 
ing, and averaging this operator over the high-frequency os- 
cillations, we represent (3) in the form 

S ( t ,  T )  =exp [W, (T- t )  ] So ( t ,  T )  . (4) 
Here 

So ( t ,  z) =exp [Wr(z-t)I exp [WL(-c--t) I (5) 

is the evolution operator of the atom that is not perturbed by 
the noise; 

WL=- (ioL/2) [B,, a] 
is>he free precession operator; W, has in the standard basis 
{I,&) of the atomic operator the form 

and describes the averaged evolution under the action of the 
external field with allowance for the detuning; w, is the 
sought relaxation matrix, defined by the equation 

in which A is chosen, with allowance for (2), in accord with 
the relations 

T,,  Q-'<AKF-~, (8) 

and the formal limit A--4 is understood in the usual man- 
ner.I3 The kf (r) dependence in (7) takes into account the 
unperturbed motion (5) of the atomic operators 
6(r) = S&(T)* 6 = 6(0) are Pauli matrices in a canonical 
basis, and S,, is the projection of So on the three-dimension- 
al basis 6 .  In the case of the standard problem of one-photon 
resonance in a non-ultrastrong field (Ed / h L  ( 1 ), S in (6) has 
the meaning of detuning, and 9, and if, are the components 
of the complex amplitude (Ed / f i )  exp (ie, ); in other cases, GI 
has the same form but the matrix elements have a different 
meaning. 

The relaxation operator (7) is the derivative, with re- 
spect to time, of the operator of the quantum transition dis- 
tribution probability12 S, in the compound s ~ s t e m , ~ . ~  the 
definite part of the proper evolution of which is described by 
the operator (5). Expression (7) is obtained by expanding in a 
perturbation-theory series the exact representation 

The crucial factor of the described method is the indepen- 
dence of the conditions of applicability of this expansion of 
the quantity O, which determines the frequency of the quan- 
tum oscillations of the operators a(r) = So,(r)& in ef (r) = y (r)C(r), since these oscillations do not increase 
&Pf in the numerical expression. By virtue of (8) these oscil- 
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lations do not exist at all in the described time scale At k A, 
and determine only the form of the relaxation operation W, 
that is formed within the "elementary" time intervals -A. 
The same applies also to the conditions of applicability of the 
Markov approximation, represented by the relation 
r, 4; l ,  since the oscillations do not increase the correla- 
tion time T= : conversely, when the relaxation is substantially 
suppressed, ro in this inequality can be replaced by the cor- 
responding longer relaxation time, and the condition n)r0 
simplifies the analysis, making the operator Wr stationary. 
Under this conditions, in the case of collision broadening, a 
contribution to the W, component connected with the oscil- 
lations is made only by passages over impact distances 
p 2p,, p, = v/O, so that for this component the upper cut- 
off radius is p, as against p, (Ref. 10) for a weak field. The 
jumplike contribution from the r eg ionp~p  ,, corresponding 
to the lower cutoff radius (the Weisskopf radius p,), should 
be treated by the methods of Ref. 9, since perturbation the- 
ory cannot be used for such distances. The relative fractions 
of the jumplike and diffusion components, as can be readily 
shown, are 1 and ln@,/p,), therefore when the intensity is 
increased the only component that is weakened is the diffu- 
sion one, which predominates only at ln@,/p ,)> 1. 

Expanding the commutators in (7) and averaging, we 
obtain 

where K ( 7 1 , ~ ~ )  = K (r2 - rl) is the correlation matrix of the 
noise. When account is taken of the temporal relations (8), 
the limiting Markov expression for Q is simpler: 

a 

Q - J d r ( ~ ~ ( t + r / 2 ) ~ ( r ) ~ ~ ~ r ( t - r / ~ )  ), (10) 
e 

where the angle brackets denote smoothing over t (over 
scales -A in the initial expression). Representing the opera- 
tors uiWj and their like by matrices, we obtain (10) in ma- 
trix form: 

Wra=2 (Q+Q+T) -2 [Tr (Q+Q+) ] 1; (12) 

p. is the imaginary part of the antisymmetric part of the 
matrix Q. 

Calculation of the matrix Q in accord with (10) with 
allowance for the form (5) of the unperturbed evolution oper- 
ator and for the left-hand relation in (8), using the spectral 
expansion of the matrices and WLu , leads after smooth- 
ing overt to 

8 

Q= Z~ln)tal, (13) 
h i  

where ID, ), (0 ,  I denote respectively the right-hand eigen- 
vector column and the left-hand eigenvector row of the ma- 
trix W, with eigenvalues in, = 0, in,,, = + in ,  n 
= (62 as2 + 8, 2)'12; 

a 

A,= ~ ~ < Q , I ~ o I ~ ( ~ ~ I R ~ ( o ~ + ~ )  l o 1 ) ,  (14) 
1-1 

where 13, = 0, iw,,, = + uwL, and 
0. 

R (o) = JK (T) exp ( i o r )  d r .  (15) 
0 

The matrix Q, and in accord with (12) also the relaxation 
submatrix Wru, have thus according to (14) the proper 
ortho-projectors Ink ) (0 ,  I .  

Expression (14) for A, can be simplified with allowance 
for 

Kif=Kii6ij, 

i.e., with allowance for the linear independence of the phase 
and radiation noise, and also of the cosine and sine compo- 
nents of the latter. Taking into account the form 
(0,1 = (1,0,0), (w,,, I = (0, 1/2'12, q i/2'I2), Eq. (14) will 
contain the combinations ~ ~ ( w )  = [K,,(w) + ~,,(w)]/2 and 
K,,(o)=K,,(o), and it suffices to assume that 
K,  ( f o, f 0 ) = KL ( f a,). Substituting lok ) = (w, I +, 
and also 

(Q31 = (6152, -6 , /Q,  6 , / Q ) ,  

we obtain ultimately 

e2 ( a + s )  2 ( a - s ) 2  ai = - a,, (52) + R, ( o L )  + - 
2Q2 452 4Q2 R; ( - a d ,  

On the basis of the form (1 3) of the matrix Q and of Eqs. 
(1 1) and (12) we obtain the relaxation matrix in the form 

where 

w,,=-y IQ,><Q, I - ( r - i A )  1 Q , > ( Q ,  I - ( r f i h )  I Q2)(Q2 1, 
w=4 Re (hi-A,),  y=4 Re (kt+ L ) ,  (18) 

are the rates of the decay of the excitation, and coincide in 
the limit 16 I+co with the constants that describe respective- 
ly the noise-radiation pumping, the rate of the longitudinal 
damping, the rate of the transverse damping, and the Lamb 
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shift of the atom in the absence of a strong field. At IS 1 # oc 
there is no such coincidence even in the absence of suppres- 
sion of the phase relaxation. 

3. FLUORESCENCE SPECTRUM AND CONNECTION OF 
RELAXATION CONSTANTS IN A STRONG AND A WEAK 
FIELD 

We present for simplicity expressions only for forward 
scattering. The fluorescence spectrum is determined by the 
Fourier transform of the normally ordered correlation fuc- 
tion of the dipole moment of the atom, which has, when 
account is taken of the representation (lo), the form 

where (01 denotes the left-hand eigenvector of the rna:rix 
Wr and corresponds to A, = 0; a * '(s) = exp( W,s) 
x e~p(W,s)lw~,~),andtheproduct~.'-~(t)[. . . ]isunder- 
stood as the product of atomic operators. For the calcula- 
tions we need the eigenvalues A, and the eigenvectors (A, I, 
[A, ) of the matrix Wr : 

As a result we obtain 

K(T) =const exp ( - i m L ~ )  [ (thz/2Qz) (w2/y2) 
+ (f12/2Q2) (1-w2/y2) exp (-YT) 

+[(a+ 6)'/4Q2] (1-w/y) exp [-r~+i(Q$.n) T] 

+ [ (Q-6)2/4Q2] (I+w/y) exp [-I'z-i(Q+h)~]. (20) 

The first term describes the coherent response at the 
frequency w, , the second describes the unshifted spontane- 
ous-scattering line with width y, while the third and fourth 
describe the shifted spontaneous scattering lines with fre- 
quencies o, f (R + A ) with identical width r .  The coeffi- 
cients preceding the exponentials characterize the total in- 
tensity of each component. The main difference between this 
structure and the corresponding structure of Refs. 1-3 is 
that the parameters y, r ,  and A described by (1 8) differ from 
the decay rates and the Lamb shift expressed in terms of yo, 
w,, ro, A, without allowance for their change. Taking into 
account (1 8) and (1 6) and using the fact that as S-t f co and 
at k,,  ( f R ) = 2 ,, (0) we have y+yO, r-+r,, w+wo sign 6, 
A-tA, sign S, we obtain for these parameters the expres- 
sions 

y = y o [ 6 2 ( 1 + x ) + ~ 2 ( ~ - x )  ~ / 2 ~ ~ + r ~  ( ~ Y ~ / Q ~ ) X ,  

r=r0 [QZx+6' (2-x)] /2QZ+yo (th2/4QZ) (3-X) , (21) 

(In the last formula we have discarded the contribution of 
the low-frequency noise, which does not permit A to be ex- 
pressed directly in terms ofA,.) Herex andp are parameters 
that describe the change of the relaxation constants on ac- 

count of suppression of the phase noise: 

It is not difficult to check on the agreement of the results 
obtained a t x  = 1 andp = 0 with the corresponding results2 
as 0-co in particular, the agreement between W, (17) and 
the effective relaxation matrix obtained by averaging the un- 
perturbed one over the oscillations). 

For two-level atoms with dl, - d2, #O, broadened by 
collisions with classically charged particles for fields satisfy- 
ing the relation 0,s R 5 a,, where no and R, correspond 
respectively to the upper and lower cutoff radii p, and p,, 
we obtain from (22) using formula Rp = v/p 

In the limit of weak fields R Sno we havex,-- 1 andx = 0 at 
R -0,. Comparison of this result with Eq. (5.13) of Ref. 10 
for the linewidth in the linear theory of hydrogen lines shows 
that the considered mechanism of nonlinear suppression of 
the broadening reduces simply to a decrease of the upper 
cutoff radiusp, = v/S (which appears in place ofp, at large 
6 ) as a result of replacing 6 by the total frequency of the 
quantum oscillations. When R increases to values of the or- 
der of R, zr; ' the fraction of the diffusion broadening 
drops to zero, and the suppression, with further increase of 
the field, of the jumplike component of the broadening by 
close collisions is described outside the framework of pertur- 
bation t h e ~ r y . ~  

Expressions (22) show that the effective intensity of the 
phase noise is determined not directly by the intensity of the 
external field, i.e., not by the Rabi frequency 9, but by the 
frequency R of the quantum oscillations. It can decrease not 
only on account of the increase of the field intensity, but also 
on account of the large detuning. The latter possibility, how- 
ever, is quite limited because according to (2 l )  as S--+ co we 
have r - t r  O, which does not depend onx andp, just as all the 
remaining parameters. The reason is that as S -+  a, the relax- 
ation parameters, as follows from (18) and (16), are in- 
fluenced only by the spectral density K ,, (0) of the phase noise 
at zero frequency, which leads to a difference between ro 
and yd2:  the quantum oscillations with frequency 0 ,  on the 
other hand, are inessential because their amplitude vanishes. 
Therefore the suppression effects are most strongly pro- 
nounced at small detunings S 5 6. 

4. SOME PHYSICAL CONSEQUENCES 

The frequency spectrum corresponding to the correla- 
tion function (20) at zero detuning S = 0 in a weak field has 
an unshifted peak width y, =To and side band widths 
r, = (To + y0)/2. In a field strong enough to have x = 0, 
however, we have 

y2=yo/2, r2= (3/1) yo. 

This means total suppression of the phase relaxation at zero 
detuning: it is possible because at S = 0 the quantity K ,, (0) 
does not enter in the expression fo r r ,  i.e., at exact resonance 
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the quasistatic phase breakdown does not lead to damping, 
and only phase changes having the Rabi frequency 9. = 0 
are significant. If To> y d 2 ,  the lines become drastically nar- 
rower in order of magnitude. These conclusions and the 
structure of the dependence of the relaxation constants on 0 
are analogous in general outline to the case of the jumplike 
relaxation? for which, however, since perturbation theory 
does not hold, it is impossible to obtain general analytic solu- 
tions in the general case. 

At p = 0 and 6 = 0 we have in the considered approxi- 
mation w = 0, i.e., the intensity of the coherent component is 
zero and it is strongly suppressed: its residual intensity at 
large 0 / r o  is not taken into account here, and the saturation 
is complete. At p #O we have w = (ro - yJ2)p: a nonzero 
intensity - w 2 / 2 f  appears even at exact resonance. This 
leads simultaneously to a difference by an amount - w/2y  in 
the intensities of the sideband components. The physical 
meaning of this effect consists in a quantum character of the 
interaction of the atom with the low-frequency noise at the 
frequency 0.   he difference between K (0 )and K ( - 0 )in 
the expression for ,u is connected with the sustatial value of 
the quantum energy relative to-the spectral noise energy MI 
at this frequency: for classical g3 we always havep = 0. The 
difference between K (0   and^ ,, ( - 0 )is due to the fact that 
the absorption and quantum loss are not on a par. The natu- 
ral estimate p -MI /kT  leads to the estimate w / y  - ( r o /  
yo)(fin / k T )  for the asymmetry of the intensity of the side- 
band components and w 2 / f  for the intensity of the coherent 

component. For sufficiently strong fields (0- 101° sec-'), 
even at room temperatures, one can expect already discern- 
ible manifestations of this effect. 
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