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A study has been made of the propagation of superthermal phonons (w>To) in crystals in which 
the spontaneous decay of those modes for which it is allowed by the conservation laws occurs 
more rapidly than elastic scattering by defects. Under such conditions the excitation energy is 
concentrated in the nondecaying modes. A kinetic equation has been derived to describe the 
propagation of nondecaying phonons. Besides elastic scattering, it involves effective decay which 
accompanies elastic scattering with conversion of the nondecaying mode into a decaying mode. In 
the long wavelength region of the spectrum this equation leads to a linear dependence of the 
propagation time t of the phonon disequilibrium on the distance r, the velocity r/t  being lower 
than that of sound. Recent experiments on the propagation of phonons in GaAs are analyzed 
critically and it is shown that the experimental results can be explained naturally by the theory 
developed in the present work. 

PACS numbers: 43.35.Gk 

INTRODUCTION 

It is now certain that the propagation of nonequilibrium 
phonons created on cooling and recombination of an elec- 
tron-hole plasma in a semiconductor, and also on injection 
from "hot" metallic sources, is accompanied by the decay of 
phonon~.'-~ Such phonon propagation was first discussed in 
Refs. 4 to 6, where an isotropic model was used with a single, 
naturally decaying, phonon branch. In real crystals there 
are, also, nondecaying modes, usually belonging to the low- 
est TA (transverse-acoustic) branch of the spectrum. This is 
not of special significance in those crystals for which fast 
conversion of nondecaying to decaying modes occurs on 
elastic scattering by defects, and the occupation numbers of 
these modes are evened out. However, in very pure crystals a 
situation is possible when decay takes place more frequently 
than elastic scattering; in this case phonons will accumulate 
in nondecaying modes and the m0de1~-~ is inapplicable. It is 
just such a case that will be considered in the present work; it 
has been stimulated by experiments in which the propaga- 
tion and lifetime of high-frequency nondecaying TA modes 
in GaAs and other similar crystals have been ~tudied.~.'- '~ 

It has been found2*' that the propagation. time of the 
phonon disequilibrium from source to detector, t, depends 
linearly on the distance r between them, t  a r, while the cor- 
responding "velocity" r/t is about one third of the velocity of 
the slowest transverse sound. The following interpretation 
was given for this. On stopping the photoexcitation of the 
plasma the carriers emit longwave LO phonons which decay 
into shortwave LA and TA phonons. Only the nondecaying 
TA phonons which occupy the frequency region near 1.7 
THz (which corresponds to a wavelength of about 8 A) sur- 
vive. The group velocity of such shortwave TA phonons is 
0.8X lo5 cm-s-', which determines the signal peak arrival 
time. It is assumed that 1.7-THz phonons are not scattered 
over a length r z 2  mm. 

However, as will be shown in Sec. 5, the 1.7-THz TA- 
phonon free path due only to scattering by isotopes is not 

more than 3 pm, so that an interpretation based on ballistic 
propagation of these phonons over a distance of the order of 
millimeters must be considered doubtful. 

In the present work the propagation of nondecaying TA 
phonons is studied with account taken of their elastic scat- 
tering.'' A TA phonon can convert into a LA phonon on 
elastic scattering, and the latter on decaying leads to the 
appearance of lower frequency TA phonons. The result is 
effective decay of TA phonons that accompanies their propa- 
gation. It will be shown that such a propagation regime ena- 
bles the linear relation r  a t  and other experimental results to 
be explained. 

1. THE KINETIC EQUATION IN CLOSED FORM FOR 
NONDECAYING MODES 

The propagation of nonequilibrium phonons is de- 
scribed by the kinetic equation 

for the distribution function n(qlr,t ). Here q indicates the 
phonon mode, i.e., the wave vector q and the branch number 
a; v is the group velocity, Sand Ja re  collision terms respon- 
sible for anharmonic three-phonon processes (decay and fu- 
sion) and for elastic scattering by point defects. It is assumed 
below that the occupation numbers of the nonequilibrium 
phonons of interest are small, n(1, and their frequency is 
above the temperature describing the equilibrium phonons, 
w) To. Under these conditions the scattering of nonequilibri- 
um by equilibrium phonons can be neglected, and only spon- 
taneous decay need be considered for nonequilibrium phon- 
ons, ignoring fusion of phonons and induced In 
what follows, the occupation numbers of decaying modes are 
denoted by n,(q) and of nondecaying modes by n,(q); the 
choice of the indices 1 and t is related to the fact that in the 
isotropic model the decaying modes belong to the longitudi- 
nal branch and the nondecaying to the transverse branch. 
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The collision term S for n g 1 is linearized in n; for a can be limited to the nondecaying region. We then obtain the 
decaying mode it takes the form local equation 

S ( q )  = - n ~ ( q ) / z ( q ) + B ( q ) ,  (2) nllz-B {n , )  =A {n , )  , (11) 

where T is the spontaneous decay time and the incoming which can be regarded as a linear integral equation in n, . Its 
term is of the form formal solution can be written in the form 

I 

Pi s  here the probability of a phonon q arising on spontane- 
ous decay of a phonon q'; it differs from zero only for 
o,. > w, . The integral covers all decaying modes, i.e. 

where V,, is that part of the Brillouin zone where phonons 
of the branch a are decaying. If the mode q is nondecaying, 
the outgoing term - n/r is missing in Eq. (2); the incoming 
term B is of the same form as Eq. (3). 

For elastic scattering by defects 

where T* is the elastic scattering relaxation time and the 
incoming term is 

The Green function ;of the operator in the left-hand part of 
Eq. (1 1) which enters in here has the following physical inter- 
pretation. Suppose a decaying phonon q' had been created; 
decaying and passing through various intermediate states, it 
finally enters the range of nondecaying modes. The time 
which the phonon spends in the process of decaying in the 
elementary volume of phase space of decaying modes dq near 
q is ;(qflq)dq. Evidently ;(qllq) differs from zero only for 
w, < w,, . 

We turn to the equation for a nondecaying mode. Sub- 
stituting the distribution of Eq. (12) into B, we find 

B ( q )  = Jdqf*(q') P (q1 -9 )  = ~ ( q ) ,  (13) 
t 

where 

P(q t+q )=  pq1w(qr -q t ) ' l  (q t -9) .  (14) 
I 

The integration here is over all modes, both decaying and 
nondecaying; the probability W contains the factor 
S (w,. - 0, ). 

We now assume that decay is the most rapid process for 
decaying modes, that is, 

T < T * ,  t ,  rIv, (7) 

where t and r are the characteristic scales of temporal and 
spacial nonuniformity. Under these conditions phonons ac- 
cumulate in nondecaying modes and, as will be seen, 

n,wnl.  (8) 

We will also assume that there are no fewer nondecaying 
than decaying modes, i.e., that in the important frequency 
region 

It is easy to see that i>(qr-q) differs from zero only for 
w, < w,. . The incoming term written in the form of Eq. (1 3) 
describes the appearance of nondecaying phonons of lower 
frequencies due to the effective decay mentioned in the In- 
troductionAThe path of this decay is seen in the structure of 
the kernel P: on elastic scattering, a nondecaying phonon q' 
transforms into a decaying phonon q,, which on decay final- 
ly leads to the appearance of a nondecaying phonon q of 
lower frequency. The factor 17 is the relative probability that 
upon decay of q ,  just the phonon q should appear. 

Just as for a decaying mode, the integration in the term 
A for nondecaying mode q can also be limited to the nonde- 
caying region and we take 

pt  ( a )  B P ~  (a )  (9 )  It is convenient to divide the outgoing term in two, putting 
wherep, andp, are the densities of states of nondecaying and 
decaying modes: i / z ' ( q )  =1/7(q) +l/ 'G(q) .  

Here 
pt(o)= j d q ~ ( o . - a ) ,  P I  ( o ) = j  dq8(o , -w) .  (10) 

1 
t I -= J d q l w ( q - q J )  

The integral determiningp, has a meaning similar to Eq. (4) 
Y 

with the only difference that integration is over the region is the time for elastic scattering of a nondecaying ~ h o n o n  q 

v, , that part of the ~ ~ i l l ~ ~ i ~  zone where the modes of relative to its conversion into a decaying phonon. This time 

branch a are nondecaying. can obviously be considered as the lifetime for effective scat- 

We now go on to simplify the kinetic equation. On the tering. 

basis of relati& (7) the lefi-hand part of Eq. i l )  and the out- 
going term n/r* can be neglected by comparison with the 

1 --=J 
T ( 4 )  

dq1W(q-.q') 
outgoing term n/r. Using Eqs. (8) and (9) the integration in A 
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is the elastic-scattering time of a nondecaying phonon q rela- 
tive to its transformation into a nondecaying phonon. 

The kinetic equation for nondecaying modes can now 
be written as: 

where 

J ( 9 )  =-n(q)  I&) +B (91, (21) 

J(q)=-n(q)lT(q)+B(q). (22) 

This equation is closed for the distribution function n(q) in 
the nondecaying modes (the index i is omitted for simplicity); 
h 

S describes an effective decay and the elastic scattering 
between nondecaying modes. 

2. LONGWAVE PHONONS; SELF-SIMILAR GREEN FUNCTION 

The propagation of nondecaying phonons far from the 
source of their excitation is determined by the Green func- 
tion of Eq. (20), i.e., by the solution of this equation for a 
point and instantaneous source. We shall look for the Green 
function, assuming the source to be monochromatic with 
frequency Z and the propagating phonons to be longwave. 
Under these conditions the Green function can be represent- 
ed in self-similar form and the assumption that the source is 
monochromatic is unimportant. 

The source, which must be written into the right hand 
part of Eq. (20), has the form 

E6 (t) 6 (r) 6 (,a,-7s) /hGpt (a), (23) 
where i? is the energy released by the source. The solution 
corresponding to it is denoted by G, (r,t ). Since Eq. (20) does 
not contain phonon fusion processes, it is clear that 

G,(r, t) =0, a,> a. (24) 

The existence of a self-similar solution for G is related to 
the fact that for longwave phonons all quantities have a pow- 
er-law dependence on the phonon frequency w and the na- 
ture of this dependence is not connected with anisotropy. It 
is therefore convenient to indicate the frequency explicitly 
and to use instead of q of the set of variables (a, e, w), where 
e = q/q. We have for the quantities which describe the decay 

z.(e, ha) =h-'z,(e, a ) ,  (25) 

P..,.(e1, hal-+e, ha)  =hzPP,.,.(e', ,o'+e, a). (26) 

If the elastic scattering obeys the Rayleigh law, then 

I-; (e, ha) =h-'zb (e, a ) ,  (27) 

Wa,+a(er, har-fe, ha)  =hW..+.(er, al-+e, a ) .  (28) 

The regions V,, and V,, are conical with origin at q = 0; the 
solid angles 0 ,  and 0, correspond to them. The integra- 
tion of Eq. (4) over decaying modes can thus be written in the 
new variables in the following way: 

where d o  is an element of solid angle in the direction e and 

while s, (e) and vu(e) are the phase and group velocities. The 
integral over nondecaying modes is similar, but the solid 
angle must be replaced by 0,. 

By using Eqs. (25) to (28) it can be confirmed that 

iol l0(err h.orle, ho)  =h-8f,.l,(e', o'le, a ) ,  (31) 

the factor11 -'arises as the product11 - 5  (from thedecay rate) 
and 11 - 3  (from the phase volume). It can now be seen that 

qo,+a(e,, ka,+e, ha)  =h-% ,,+, (e,, a l -+e,  a ) .  (32) 

We thus finally obtain 

-zo (e, ha)  =h-&;.(e, ,a ) ,  (34) 

i.e. the power-law dependence of the quantities determining 
the effective decay is the same as of the quantities describing 
elastic scattering. This is natural because elastic scattering is 
the bottleneck of the effective decay process (with conver- 
sion of a nondecaying into a decaying mode). 

It is convenient, for representing the self-similar solu- 
tion of Eq. (20) in natural dimensionless variables, to sepa- 
rate the dependence on the frequency and on the polariza- 
tion factors, i.e. on a and e. We define the mean times: 

1 

(35) 
where the brackets denote averaging of the nondecaying 
modes over a and e, i.e. 

<(...))=- I Jdq (. . .I 6 (a-a,) . 
pt(0) 

We can now write 
1 cia (e) 1 -=- -- do (el , I- 

-- 
; .(e,~) ;(a) ~ . ( e , a )  ;(a) 

where the dimensionless factors ii and ii are independent of 
frequency. We also represent 

wherep is the total density of states and v is the mean velocity 
determining this density of states. The probability of elastic 
scattering can be written in the form: 

A 

It is convenient to represent the kernel of the effective decay 
as: 

1 - 
Po'+. (e', al-+e, a )  = h.,+.(e'+ela/a'). 

z (a') p (a') a' 
(40) . . 

It is easy to confirm that the factors b and h in Eqs. (39) and 
(40) are dimensionless and the scale transformations of Eqs. 
(27), (28) and (33), (34) are fulfilled automatically. 

We shall determine the self-similar variables 
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and find a solution in the form 

G,(e, o lr, t) =A,oafa(el E, rl). (42) 

The factorA is written so that the function f can be chosen to 
be dimensionless. 

Substituting Eq. (42) into the left hand part of Eq. (20), 
we have 

Substituting Eq. (42) into J, we obtain 

Ao" do' 
~ ~ ( e , o ~ r , t ) = - [ - ~ ( e ) t ~ ( e ~ t , q ) + ~  J --c.-(ef) 

~ j o ) .  O' Q a P t  4n 

h 

Transformation of the incoming term in S is somewhat more 
complicated. Taking Eq. (24) into account, we have 

Substituting here Eqs. (38), (40) and (42) we find 

x x - ~  fiUp4 (el + e 1 x) ~ ' ~ f  (e' 1 gl, rl'), (46) 

where 
X=o/of, = / ( a ) ,  qf=t/Z(of) 

Noticing that 

and integrating over x instead of w', we obtain 
Aoa 

8,(e,oIr,  t)=-[-zo(e)fO(eIE, rl) Z  ̂(0) 

x( - sfo, (ell q~-~)L~,*(e ' -+e~x)] ,  
Z 

(48) 
where j2 = wfi. Collecting together the separate terms of 
the kinetic equation (20) and noting that t and ? depend in 
the same way on w, it can be seen that the frequency drops 
out everywhere except for the integration limit X. However, 
if w (O, we can consider j2 = 0; under these conditions a self- 
similar solution actually exists. 

The parameter a is found from the condition of conser- 
vation of the total energy of nondecaying phonons 

where the energy density of the nondecaying phonons is 

while the function f (without indices) is the mean: 

On integrating over r and w as was done by Kazakovtsev and 
Levinson,' it can be confirmed that E (t ) is independent of t  
only if a = 8, and the upper limit in Eq. (50) can be replaced 
by infinity; this leads to the requirement t>?(w). The param- 
eter a can also be found in a different way5 by considering 
the total energy flux through a sphere of radius r: 

0 t 

and requiring this flux to be independent of r; here d S is an 
element of the surface of the sphere. The expression for the 
flux can be transformed into 

m m 

Q (r) = $ J dt 5 dopt (o) oAoauf (5, q) (53) 
0 0 

where 

f (E ,  q)=(uc(e)f4elk q)). (54) 

On integrating first over t and then over w, it can be con- 
firmed that Q (r) is independent ofronly i fa  = 8 and r>u?(Z). 

The factor A is determined by the energy of the source 
E. If the function f, is normalized according to the condition 

0 0 

we obtain 

~ - 4 n A  u3 [%I [ ; (m) ,'] 

the quantities in square brackets are in fact independent ofw. 
In the region 

there is thus a self-similar solution for the Green function 

with scaling variables of Eq. (41) and normalization accord- 
ing to Eqs. (55) and (56). This solution does not depend on the 
source frequency O, but only on its total energy. If the source 
is spread over the spectrum in some frequency interval 
AZ-O, the solution of Eq. (58) and its region of applicability 
Eq. (57) do not change. In other words, after some effective 
decays the system forgets everything about the source except 
its total energy. 

We now show that the self-similar distribution of - 
(58) corresponds to a broadening, linear in time, of ..le 
phonon disequilibrium. In the range of Eq. (57) the upper 
limit in Eq. (50) can be put as 5 = UJ ; on changing to integra- 
tion over 7 ,  we find 

E (r, t)  mt-'@ (rlvt), (59) 

where 
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0. 

Q (.) = ("'l, tl) . (60) 
0 

It  can be seen from this that with the passage of time the 
distribution of the energy density is transformed in similar 
fashion, and the characteristic spatial scale increases linear- 
ly with time. The energy flux density behaves in just the same 
way. 

It is important to emphasize that the self-similar solu- 
tion and the ensuing linear nature of the broadening of the 
disequilibrium occur independently of the relation between 
the relaxation times for elastic scattering and for effective 
decay ?and ?; it is only important that they should have the 
same frequency dependence. If decay and scattering depend 
differently on frequency, as has been ~uggested,~" a self- 
similar solution exists only in those cases for which scatter- 
ing can be neglected (quasiballistics) or when scattering oc- 
curs appreciably more frequently than decay 
(quasidiffusion). 

The question of whether the system of equations for the 
self-similar functions f, contains small parameters is very 
important. It can be seen that all the quantities in this system 
are due only to the angular and polarization dependences of 
the spectrum and of scattering probabilities. If we assume 
that small parameters do not arise from such quantities, the 
functions f,, ( f, ) and @ also do not contain small param- 
eters. Under these conditions it can be confirmed that for a 
linear broadening of the phonon disequilibrium the corre- 
sponding velocity r / t  is of the order of the velocity of sound 
v. Actually, however, in many cases the number of nonde- 
caying modes in the low frequency region appreciably ex- 
ceeds the number of decaying modes: p, >p, (see Sec. 3). In 
this case ?(?, i.e., elastic scattering of a nondecaying 
phonon with conversion into a decaying phonon takes place 
considerably more rarely than without conversion. In other 
words, effective decay takes place more rarely than elastic 
scattering. In this case, one can pass from Eq. (20) to the 
diffusion equation for the function 

It is important to emphasize, however, that the transition to 
the diffusion equation does not destroy the linear transfor- 
mation of the spatial scale, and only a reduction in the speed 
of the rate r / t  of broadening of the phonon disequilibrium 
results. We shall consider this situation in the isotropic mod- 
el in order not to burden the discussion with unimportant 
complications. 

3. DIFFUSION OF NONDECAYING PHONONS IN THE 
ISOTROPIC MODEL 

In the isotropic model all longitudinal LA modes are 
decaying and all transverse TA modes are nondecaying. We 
also assume the probability of scattering not to depend on 
the direction of the phonon momenta, but only on the polari- 
zations. Under these conditions 

while it follows from the principle of detailed balancing that 

TT,+TA(O)~TT:+=~(O)=PLA (o)IPTA(o) (64) 

For all frequencies w for which the TA branch exists, the 
ratio (64) is small; in the long wavelength region it is 
sL /2rL -0.1, and it is even smaller in the short wavelength 
region. 

Since scattering within the TA branch takes place more 
frequently than scattering with TA-+LA conversion, i.e., 
more frequently than effective decay, we can study the quasi- 
diffusion equation5 instead of Eq. (20) for the isotropic part 
of the distribution n, (a) = n(w). It has the following form: 

[alat-D (w) VZ] n ( o  1 r, t) =s {n(o)) ,  (65) 
where the diffusion coefficient is 

D (6)) ='/S vTA2 (0 )  TTA:TA(o) 3 

and the term responsible for decay is 

Here vfl (a) is the group velocity of^a TA phonon and the 
kernel P is  obtained from the kernel P of Eq. (1 3) by averag- 
ing over e and e'. 

In the long wavelength region Eq. (65) belongs to the 
type of equations studied el~ewhere.~ For a point source it 
has the self-similar solution 

G(olr, t)=Aosf(E, q) ,  (68) 

where 

~=~IT ;A+LA (a ) ,  E=dL (a ) ,  

s~sTA(sTA~/~sLA~)". 

The solution (68) is valid for w(Z, t)r*rA+LA (Z), and 
r>l (Z). Asymptotic expansions are known for the function 
J5 For 6 , ~  

f (E, q) -c,e-""' q D(b), .f=E2/4q, 

where D- , is the parabolic cylinder function. For ((77 

f ( E ,  rl) =cz~\-' (rlW, 

f (z, q) =c3qrl-%e-l (q )I). 
(71) 

In Eqs. (70) and (71) c,, c2, and c ,  are numbers of the order 
unity, dependent on the focm of the function h ( x )  which is 
obtained from the function h occurring in Eq. (40) by averag- 
ing over e and e'. The factor A is expressed through the 
source energy E; the normalization (55) yields 

B=4nAs3 [prA (o)  loZ] [ T A + ~ ~  (o)  oh] 3. (72) 

The quantities in square brackets do not, in fact, depend on 
frequency. 

The energy density propagating from a point source is 

where 
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.. 
g k ) =  Jm2f (zq, q). (74) 

0 

It follows from normalizing f according to Eq. (55) that 

The asymptotic functions g can be found by using Eqs. (70) 
and (71); they are: 

g(0)=co, gf(0)=O, g(a)=c,/z5 ( z B l ) ,  (76) 
where c, and c,  are numbers of the order unity. 

It follows from Eq. (73) that the transition to the diffu- 
sion equation does not alter the nature of the relation 
between the temporal and spatial scales; it remains linear. 
The reason is that diffusion is accompanied by decay with 
the mean phonon frequency decreasing and the diffusion co- 
efficient increasing. Since the functions f and g do not con- 
tain small parameters, the propagation velocity in the diffu- 
sion regime is of the order ofs, which is appreciably less than 
the velocity of sound. The time evolution  of^ at a fixed posi- 
tion in space is shown in Fig. 1; the distribution of E at a fixed 
instant is shown in Fig. 2. 

The results obtained allow a clear physical interpreta- 
tion in terms of phonon  generation^^.^ produced by effective 
decay. The generation with frequency w lives for a time 
T*,,,, (w) and during this time propagates over a diffusion 
length I (w) by diffusion. Since I (w) increases rapidly with de- 
creasing w, the total distance r traversed by TA phonons 
from the source by the given instant t is of the order of the 
length I(w) for the last generation, i.e., the one that which 
exists at the moment t. This means that phonons with fre- 
quency determined by the relation 

.1(o) -r (77) 

reach a detector at a distance r. On the other hand, since the 
lifetime T*,,, (a) also increases rapidly with decreasing 
w ,  the frequency of the generation existing at the moment t is 
determined by the condition 

TTI+LA (a )  -t. (78) 

Eliminating from Eqs. (77) and (78) the frequency of phonons 
arriving at the detector, we find the arrival time t -r /s .  The 
actual frequency of detected phonons is much less than the 
source frequency: 

FIG. 1. Detector signal for quasidiffusive propagation of a perturbation 
from a point source. 

FIG. 2. Spatial distribution of energy density at a fixed time. 

4. SCATTERING TIMES IN GaAs 

Scattering by isotopes 

An exact formula for the probability of scattering by 
isotopes in a crystal with one atom per unit cell is given in 
Ref. 12. It is easy to generalize this expression for the case of 
scattering in a crystal with several atoms per cell and to ob- 
tain the following expression for the scattering rate: 

-- 
71 6MaZ . 

= - ao30zp., (o)  xF ( Iea,.,qea,=,q* I ' ) . .  
0 

a 

(80) 
Here q and q' are the initial and final phonon momenta, a 
and a' are the initial and final branches, a is the number of 
atom in the cell, and the polarization vectors are averaged 
according to 

where Ma is the mass of the atoms and M, the mass of a unit 
cell of volume a:; a bar indicates averaging over the isotopes, 
w = o, = a,.,. , and the brackets mean averaging for q' 
over an isoenergetic surface ad,. = a. In a cubic'crystal 

Equation (80) with Eq. (82) inserted is equivalent to an earlier 
formI3 if the difference in the way of normalizing the polar- 
ization vectors is taken into account. 

For the acoustic branch in the longwave region le'l z 1, 
so that an isotropic scattering time is obtained for a cubic 
crystal; it is convenient to express the time in the following 
way: 

where w, is the Debye frequency and 

here so is the mean velocity of sound for the branch 0, deter- 
mined from the density of states for this branch. The factor 
in front of S is of the order of unity. 

Decay 

In the isotropic model the TA phonons are nondecay- 
ing, while LA phonons decay via two channels: 

This statement is valid both in the long wavelength and short 
wavelength regions of the spectrum. In the isotropic model 
the decay of TA phonons is forbidden by the dispersion (if 
there is no dispersion, collinear decays are possible). Anisot- 
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ropy larger than the dispersion removes this prohibition. 
The magnitude of the anisotropy does not depend strongly 
on frequency, so that the prohibition is relaxed more easily in 
the long wavelength region where the dispersion is small. 
This has been illustrated by numerical cal~ulation'~ for an 
fcc lattice with central forces between nearest neighbors. In 
this model there are only decaying modes for the lowest TA 
branch at q 5 0.5 q,; they lie in cones with axes along 
(100) in an aperture angle approximately 60", so that the 
fraction of decaying TA modes in the long wavelength region 
is - 10%. This is most likely also the picture for GaAs. Cal- 
culations of the two-phonon density of states13 and the fact 
that the anisotropy of the velocity of sound in GaAs is close 
to that which follows from the model indicated above attest 
to this. 

The probability of decay of long wavelength phonons 
can be conveniently written in the following form: 

where y is an adiabatic parameter of the order of w, /M$' 
and is independent of the frequency. Accurate values of y 
can be calculated by using measured third order elastic mod- 
uli. As far as we know, such a calculation has not been made 
for GaAs, but it has been made for Ge, admittedly in the 
isotropic model.'' Since the phonon spectra of GaAs and of 
Ge are very close, we used for GaAs the values of y obtained 
for Ge: 

5. DISCUSSION OF EXPERIMENTS 

It was estimated 2,7,8 that short wavelength TA phonons 
of frequency about 1.7 THz and wavelength 8 b; propagate in 
GaAs over a distance of the order of a few mm without being 
scattered by isotopes. Since the usual estimates of the mean 
free path according to a formula like (83) give an appreciably 
smaller value, it has been suggested16 that these phonons, 
which lie close to the zone edge, are weakly scattered by 
isotopes or that the oscillation amplitude of the single iso- 
tope, Ga, is zero for modes at the zone edge. However, if such 
a selection rule exists, it is unlikely that it applies to all four 
directions of q in which "ballistic propagation of shortwave 
TA phonons" is observed, including the [211] direction of 
not very high symmetry. Furthermore, if such a selection 
rule exists it is valid either for the light or for the heavy atom. 
Yet the isotope in GaAs is the light atom, while in InP and 
Gap, where the "ballistic propagation effect" is also ob- 
served, the isotopes indium and gallium are the heavy atoms. 
The calculations of oscillation amplitude carried out by 
GurevichI3 also confirm this. The relative oscillation ampli- 
tude of gallium at the zone edge in the [I101 direction is not 
at all small: 

1 e (Ga) I 1 e (As) 1'-0.47. 

We shall calculate the actual scattering time of 1.7 THz 
phonons, using Eq. (80). The parameters for GaAs are as 
follows: a: = 45 b;, a, = 7.13 THz = 4.48 X 1013 s-', 
sLA = 5.2 x 10' cm-s-', sTA = 3.1 x 10' cm.s-I, 
6 = 4 . 6 ~  lo-'. The dispersion is small for LA phonons in 

the frequency region of 1.7 THz, so that when calculating 
r*TA+LA, we can consider 

According to Gurevich,13 we have leca,TA I2z0.6 for 
q11[110]. Using this value and Eq. (87), we obtain 
r*,,, = 0.3 ps, which for a group velocity 
vTA = 0.8 X 105cm-s-' corresponds to a mean free path of 
0.3 mm. In calculating r*,,, , the dispersion of TA phon- 
ons must be taken into account. On evaluating the density of 
states (for two branches) according to the isotropic model, 
we have 

where qTA is the wave vector and VTA is the group velocity. 
AssumingI3 

we find T * ~ ~ , ~ ~  = 3 ns, which gives a mean free path of 3 
pm. A similar value is obtained if the weighted density of 
states13 is used. 

These calculations indicate that ballistic propagation of 
1.7-THz TA phonons over a distance of several mm is impos- 
sible. We therefore consider that the linear relation between 
the distance to the detector and the arrival time of the signal 
is to be explained not by ballistic propagation but by a pecu- 
liarity of the scattering leading to the existence of the self- 
similar solution (42) and the linear propagation law for the 
phonon disequilibrium which follows from it, Eq. (52). The 
small value of r/t compared with the velocity of sound is 
explained by elastic scattering occurring more frequently 
than effective decay; self-similar propagation then corre- 
sponds to the quasidiffusive regime which, according to Eq. 
(69) leads to a reduction in the propagation velocity s. In 
GaAs s = 0.58 X 10' cm-s-' which is extremely close to the 
propagation velocity of the signal peak measured,' 
v,,, = 0.78X 10' cm-s-'. 

The primary TA phonons with Z = 1.7 THz can be con- 
sidered as the source, so that the self-similar solution [Eq. 
(68)] is valid for w(1.7 THz, t,0.3 s, and r ~ 0 . 2  mm. On the 
other hand, it follows from Eq. (79) that phonons with 
w ~ 0 . 9  THz arrive at the detector for r = 2 mm. The condi- 
tions for applicability of the self-similar solution are not bad- 
ly fulfilled for describing the signal at the detector. The dis- 
persion of TA phonons in the 0.9 THz region is slight, 
justifying the use of the long wavelength description. We 
now find the scattering time in the important region of 0.9 
THz. In this frequency region Eq. (83) can be used for isotope 
scattering, where 

This gives 

According to Eq. (86) the decay time of 0.9 THz LA phonons 
rLA ~ 2 0  ns. It is seen that decaying phonons decay much 
more rapidly than they are scattered and that assumption (7) 
is satisfied in the important frequency region. 
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A weak dependence of signal arrival velocity on propa- 
gation direction is observed in the experiments; for example, 
the velocity in the three principal directions [100], [I 101 and 
[l 1 11 variess for GaAs from 1 X 105 to 0.8 X lo5 cm-s- '. It 
seems that this scatter lies within the limits ofthe experimen- 
tal accuracy, but in principle a dependence on direction can 
exist. We point to the following fact in this connection. In the 
quasidiffusion approximation the energy flow from a point 
source in a cubic crystal possesses spherical symmetry, inde- 
pendently of whether the isotropic model is used or not; the 
reason is that in a cubic crystal the diffusion tensor reduces 
to a scalar. Therefore, in the quasidiffusion approximation 
the signal velocity in GaAs should be the same in all direc- 
tions. However, the accuracy of this approximation is in fact 
not very high; it is determined by the parameter 

STATT.A+TA/Z- (TTA+TAITTI+LA) "m0.3. 

Violation of the quasidiffusion approximation can lead to 
some anisotropy. 

The so-called "velocity bunching" was also studied ex- 
perimentally, when phonons were excited by scanning a la- 
ser spot with velocity u over a length L ', with the detector 
located on the continuation of the line at a distanced from its 
end. In this case the phonon energy density at the place 
where the detector is positioned, i.e., its signal, is according 
to Eq. (79) 

1 L-ut' 
E ( t )  = - 

16n 
(89) 

t8=min {t, L'lu), p= (1-R) (hv-E,) /hv. 

Here W is the laser power, p the fraction of the quantum 
energy hv  transformed into LO phonons on relaxation of 
electron-hole pairs, E, is the width of the forbidden band, R 
the reflection coefficient, L = L ' + d is the distance from the 
initial scanning point to the detector, and t = 0 corresponds 
to the start of the scanning. 

For numerical calculations of ~ ( t  ) the function g was 
approximated by the expression 

g(z) =A(l+az"--' ,  (90) 

satisfying the asymptote (76) and the normalization (55). The 
parameter a can be found from the mea~ured*,~ maximum 

FIG. 3. Calculated detector signal (L = 2.59 mm, d = 0.42 mm) for differ- 
ent scanning speeds: a) u = 3.8; b) u = 0.47; c) u = 0.29; d) u = 0.1 (in 
units of lo5 cm-s-I). One division on the abscissa axis is 5 ps; the arrows 
indicate the measured7 signal-peak arrival time. The signals are normal- 
ized to the same amplitude at the maximum. 

FIG. 4. Dependence of the peak signal amplitude on the scanning speed 
(L = 2.59 mm, d = 0.42 mm). The points are experimental,' the curve is 
calculated; for normalization the theoretical curve is made to coincide 
with the experimental points at u = s. 

spatial distribution of the signal &(r,t ) from a point source. 
Using the signal in GaAs for t = 2.05 ps, we find a = 0.98. 
The results of a numerical calculation of ~ ( t  ) are shown in 
Fig. 3. It can be seen that as the scanning speed u decreases, 
the steep leading and mildly sloping rear edges change over 
to mild leading and steep rear edges, and for u zs the signal 
is symmetrical. It is just this behavior that was observed 
experimentally .' 

The numerically calculated dependence of the peak sig- 
nal amplitude, max ~ ( t  ), on the scanning velocity u is shown 
in Fig. 4 and agrees with measured value quite well. The 
experimental points for u 2 s fall on a straight line with slope 
- 1 ,  corresponding to a relation max ~ ( t  ) a u - I .  This rela- 

tion follows from Eq. (89) at u>s. 
The authors are grateful to L. Shchur for the numerical 

calculations. 

"A short account of the present work has been published." 
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