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The cross section for charge exchange of ions on atoms in slow collisions has been calculated for 
the case where the concept of a classical trajectory is not applicable to the description of their 
relative motion. In the limiting case of fast collisions the formula obtained coincides with the 
Rosen-Zener-Demkov formula. An expression is obtained for the Massey parameter which is 
suitable for description of inelastic reactions at low collision energies. The results of the present 
work are compared with the results of a numerical calculation of the cross section for charge 
exchange of slow protons on hydrogen atoms. 

PACS numbers: 34.70. + e 

1. INTRODUCTION The two-level-approximation models most characteris- 

The main features of the charge exchange of ions on tic and most amenable to solution are the following: 

atoms 1) resonance charge exchange (Firsov4) 

have been studied in the framework of the two-level approxi- 
mation (see for example Refs. 1-3), which is applicable if the 
relative motion of the nuclei is described by the laws of clas- 
sical mechanics and the difference of the electron binding 
energies in atoms B and A is small in comparison with the 
excitation energies of the atoms. 

As a rule the interatomic distance R characteristic of 
the charge-exchange process (1) is large: 

where 

and E ,  and E* are the electron binding energies respectively in 
atoms B and A (here and below f i  = me = e = 1). 

Under condition (2), a natural basis for the electron 
wave functions is the diabatic basis, which in the two-level 
approximation consists of wave functions p2(r,R) and 
p2(r,R). As R -+ cc the functions p, and p, coincide with the 
wave functions of the electrons in the isolated atoms B and A ,  
respectively. For finite R the electron wave function is1-' 

$=C, ( t )  c~ l+C: : ( t )  cp27 

where the probability amplitudes C, and C2 obey the equa- 
tions 

Here A (R (t )) is the exchange interaction at a distance R 
betweenA + andB andAE (R ) = H, ,(R ) - H2,(R )is the dif- 
ference of the diagonal matrix elements of the electron Ha- 
miltonian calculated on the basis of the wave functions p, 
and p2. For the initial condition C , ( - c o ) = l ,  
C,( - co ) = 0 the probability of charge exchange for a given 
trajectory of the relative motion of the atoms R( t )  is 
w =  lC2( + CO)12. 

-m 

2) the Rosen-Zener-Demkov 
sin2 q 

A=A,/ch a t ,  AE=const, W = 
c h Z ( n A E / a )  ' (6) 

3) the Landau-Zener model7.' 
A=const, AE=at, W=2p 

(7) . , 

p=exp ( - z A 2 / 2 a ) .  
The initial and final states in (1) correspond to two elec- 

tronic terms with a characteristic energy difference - 3-5 
eV, which in play the Born-Oppenheimer approximation the 
role of the potential energy of the atoms. Therefore in the 
case of collisions with low energy 

EG3-5 eV (8) 

theassumption that aclassical trajectory R (t )exists becomes 
invalid. 

Study of the process of ion-atom charge exchange in the 
energy range (8) presents significant interest from the theo- 
retical and practical points of view. This study is carried out 
in the present work. 

2. BASIC ASSUMPTIONS 

The Schrodinger equation for the system of the electron 
and the cores of the atoms has the form 

where r are the electron coordinates, R is the vector congect- 
ing the cores, p is the reduced mass of the atoms, and He is 
the Hamiltonian of the electron for fixed R. We shall show 
below that the condition (2) is preserved also for quantum- 
mechanical motion of the atoms, and therefore choose as the 
basis of the electron wave functions the diabatic basis (see the 
Introduction). We shall assume also that in atoms B and A 
the electron is in S states and the ionization potentials of the 
atoms are nearly the same. Under these conditions the basis 
consists of two real wave functions: p,(r,R), p,(r,R). 
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The solution of Eq. (9) can be looked for in the form 

Ip ( r ,  R )  = l p t  ( R )  qt ( r ,  R) +$z ( R )  cpz ( r ,  R )  , (10) 
where the wave functions $,,, (R) describe the relative mo- 
tions of the atoms. Substituting (10) into (9), we obtain the 
equations1 

[E+Vn2!2p-Et ( R )  ] Qt ( R )  ='/2A ( R )  q2 ( R )  , 

[ E + V R ~ ! ~ ~ - E Z ( R )  I $2(R) = i / 2 A ( R ) ~ t  ( R )  , 
(11) 

where El(R ) = Hll(R ) + 1/R, E2(R ) = H,,(R ) + 1/R. 
The equations (1 1) are valid if the conditions (2) are sat- 

isfied and also if 

where K is the momentum of the relative motion of the 
atoms. 

In what follows we shall discuss reactions induced by 
singly charged ions, and therefore 

where E ,,, ( UJ ) are the energies of the isolated atoms B and A 
and a,,, are their polarizabilities. 

ForR + UJ wehaveA (R ) ~ e x p (  - yR ) -+ Oandthere- 
lation between $, and $, is "turned off," so that 

qi (R) + eiKIR 
1  + - f l  ( n )  eiglR, 

R  
1 

(14) 

QZ ( R )  - jT h ( n )  eiKzR, n=RIR, 

where K ,,, are defined by the equations 

Kt: (m)  = 2p[E--EtSZ (w)  I .  (15) 
The cross section for charge exchange is expressed in 

terms of the amplitude f,: 
Kz I s = - J d  
Ki 

o , l f z ( n )  1'. (16) 

Substituting into (1 1) the expansions 

where 6' is the angle between n and K,, we obtain equations 
for the functions U, and V, (we shall omit the subscript I):  

dZU - + KtZ ( R )  U=pA ( R )  V ,  
dR2 

-!? + K.'(R) V-pA ( R )  U ,  
dR2 

where 
(17) 

K ~ ~ ~ ( R ) = ~ ~ [ E - E ~ , ~ ( R ) -  1 (1+1) /2pRZ] .  (18) 

For ,u -+ UJ the equations (1 1) reduce to a system of 
algebraic equations, and from the condition of compatibility 
of these equations we obtain an expression for the energies of 
the adiabatic terms 

E,,g=llz(E1+Ez)*' /~ [ (AE)z+Aa]  '". 

Let us define the effective terms 

U,,,(R) =E, ,#(R) +1(1+1)/2pR2. (19) 

For the case El(  w ) > E,( UJ ) the terms U,, are plotted in Fig. 
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1. The dashed line shows the energy level of the system of the 
electron + the cores of the atoms. R, is the turning point of 
the classical motion in the repulsive u term, and R, is the 
turning point in the attractive term. 

From the stationary equations (1 1) we obtain after the 
substitution E + id/& the nonstationary equations. If the 
kinetic energy of the atoms is large in comparison with the 
characteristic difference E, - Eg - 3-5 eV, we shall seek 
the solution of the nonstationary equations in the form 

$ ~ = c , ( t ) e x p [ i S ( R ,  t ) ] ,  C2=Cz( t )exp[ iS(R,  t ) ] .  
Then for S we obtain the Hamilton-Jacobi equation, and for 
the coefficients Cl and C2 we obtain the system (4). Conse- 
quently the equations (1 1) are a quantum-mechanical gener- 
alization of the two-level approximation (4). 

Stuckelberg9 discussed on the basis of the Eqs. (1 1) the 
quantum-mechanical analog of the Landau-Zener model.' 
Resonance charge exchange (5) for quantum-mechanical 
motion of the atoms was investigated by Massey and 
Smith. lo 

In the present work we shall assume that, generally 
speaking, El(R ) # E2(R ) and in this case there is no crossing 
of the diabatic terms E,(R ) and E,(R ). 

The condition that the motion of the atoms (12) be qua- 
siclassical is equivalent at low energies to the assumption 

I V B ~ ,  K,,,(oo) ( ~ a ~ , ~ ) : " B 1 ,  (20) 

where Nis the number of vibrational levels of the ion (AB )+. 
The first of the conditions (20) is as a rule satisfied. The sec- 
ond condition arises on taking into account the acceleration 
of the atoms in the polarization potential (13). According to 
the criterion (20), the equations (1 1) are valid down to colli- 
sion energies (,u2a,,, )-' -0.1 K for light atoms and still 
lower for heavy atoms. 

3. CHARGE-EXCHANGE CROSS SECTION 

Near the turning point R ,  (see Fig. 1) A (R ) varies ex- 
ponentially: 

A ( R ) = A , e x p [ - y ( R - & ) I ,  (21) 

and K ,,, (R ) depend on R according to a power law; therefore 
at R z R ,  we shall replace the quantities K ,,, (R ) by con- 
stants K ,,, (R, ): 

FIG. 1. Diagram of effective adiabatic terms for the case E , ( m )  > E,(m) .  
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where 

For R < R, the value ofA (R ) is exponentially large and 
in the equations (22) we can neglect the terms with q:,, . Con- 
sequently in this region 

d2U!dx2=a exp ( - 1 / 2 x )  V ,  
(23) 

d2V/dx2=a exp (- ' /2x)  U, 
or 

d2X/dx2-a exp (- ' / ,x)  X=O, 

d2Y/dx2+a exp (-'/ ,x) Y=O, 
where 

For x -t - co the function X (x) falls off exponentially, 
which corresponds to the classically inaccessible region of 
motion in the u term, and the function Y (x) oscillates. Since 
in the g term the motion in R also is bounded on the left (see 
Fig. I),  the solution has the form of a standing wave 

Y ( x )  -+ex/' sin [&'he-"14+~cpl-n/4] , (25) 

wherep, - n-N (I )and N (I )is the number of vibrational levels 
of the ion (AB )+ with orbital angular momentum 1. The qua- 
siclassical formula (25) is valid for the condition (20). 

Let us apply to the equations (22) the Fourier transfor- 
mation - OD 

U ( a ,  p) = dx e-'Px U (a,  x )  , V ( a ,  p  j =- I dx e-" V (a,  I ) .  

- m - m 

(26) 
For these integrals to converge as x -+ + w we add t o p  a 
negative imaginary quantity, p + p  - iO. The inverse trans- 
formation has the form 

and similarly for V. From (22) and (26) we obtain 

(qt2-p2)  U ( < a ,  p)  =uxV ( fa ,  p - i /2 ) ,  

(q22-p2) V (a ,  p )  =iaU(la, p- i l2) .  

The equations (22) are invariant to the transformation 
x -+ x + a, a -+ a exp(l/2a). Consequently 

V (a ,  x )  = V(8a exp  ( ' / , a ) ,  x+a) . 
Hence 

U ( a ,  p) =a-"'PU(p) ; V ( a ,  p )  =U-~'P V I P ) .  
where U ( p )  and V(p)  satisfy the equations 

(qt2-p2)  U ( p )  = V ( p - i / 2 ) ,  (42'-p2) v ( ~ ) , = U ( p - i I 2 ) .  
(28) 

Using the property r (x + 1) = x T  (x) of t h e r  function, 
we obtain from the equations (28) 

U t a ,  p)  = a - 2 ' p r [ i ( ~ - ~ 1 ) l  r [ i ( p + q l )  j 
X r [ i ( p - - q z )  +'/,I P [ i (p+  q2) +'/,I f ( p - i / 2 ) ,  (29) 

T'ja, P )  =a-2'PI'[ i (p-q2)]  r [ i  ( p + q 2 ) ]  r [ i  (p -q , )  + 1 / 2 ]  

X r [ i ( ~ + q l ) + ' / , l f ( ~ j ,  

where f ( p )  is a still unknown periodic function: 
f ( p + i) = f (p) which we can therefore represent in the form 

0[1 

f ( P )  = C C. e r p  (2npn) .  
n=-m 

(30) 

The Fourier component V(cr, p) for complex p located 
far away in the lower half plane is determined mainly by the 
asymptotic expression for V (x) as x + - oo . To find V (a, p )  
in this region it is necessary to find the Fourier component of 
the function (25), which reduces to calculation of an integral 
of the form 

OD 

Jdz z b i ~ - a / ~  .iz. 

0 

For z -+ + 0 this integral converges sincep has a large nega- 
tive imaginary part. For convergence as z -t + w the addi- 
tional substitution exp(iz) -+ exp(iz - yz) is required, where 
il -+ + 0. Omitting unimportant factors which do not de- 
pend on p, we obtain 

From comparison of the formulas (29)-(3 1) one can conclude 
that in (30) only the three coefficients C ,  , and Co are non- 
zero, and the term with Co is not noticeable against the back- 
ground of the two other exponentially large terms with 
C * l .  

To find Co we return to the formulas (29). The r func- 
tions have first-order poles on the real axis and in the upper 
half plane of complex p .  At x + + the poles from the 
upper half plane give exponentially decreasing contributions 
to U(x) and V(x), and the poles on the axis are oscillating 
terms-traveling waves: 

The boundary condition (14) for $,(R) contains only the di- 
vergent wave, and consequently C = 0, which is equivalent 
to the condition 

j ( -q2)  =O.  (33) 
Finally 

f(p)  =ch(2np-ilcpL) --ch(2nq2+ irpl). (34) 

The solutions (32) are valid in the region where 
K ,,, (R ) Z K  ,,, (R, ). Outside this region (R > R, )A (R ) is ex- 
ponentially small and the relation between U (R ) and V (R ) is 
turned off. The conditions (12) and (20) permit use in this 
region of the WKB approximation, according to which for 
R > R, we have 

K ( R  ) "1 

R 

( R  = A ( )  exp [ - i  J K ,  ( R 1 ) d R ' ]  
K ( R )  

R" 

From Eqs. (14), (16), and (35) we obtain for the cross section 
for the charge-exchange reaction (1) 
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The coefficients D and A are proportional to the residues of 
the functions V (a,  p)  and U (a,  p )  [see the formulas (29)] re- 
spectively at the poles p = 9, and p = - g,. calculating 
these residues, we obtain 

(37) 
In the theory with classical trajectories5p6 

OD 

TI=@.-@, @u,g= J W [ K u , g ( R ) -  Ku,z(m) I, 
R"..o 

Ku:g = 2p[E-Uu,g(R) I. (38) 

It is sufficient to extend the summation over I in (37) 
only to angular-momentum values 1 < I,, where 1, is given by 
the equations2v3 

rp10=0.28. (39) 

It is necessary to keep in mind that Eq. (38) is valid only 
for 1 ~ 1 , .  In the case I < I,, the phasep, is known only in order 
of magnitude: p, -nN (I ). As a consequence of this circum- 
stance Eq. (37) contains an uncertainty, which disappears, 
however, after averaging (37) over the rapid oscillations of 
sinz p,. The final expression for the charge-exchange cross 
section has the form 

(5 = ------ ," 2 (2I+I) W ( I ) ,  
K l  ( - 1  t = o  

The uncertainty in the phase p, does not permit calcu- 
lation of the cross section for elastic scattering 
A + + B + A  + + B by the method described. 

4. DISCUSSION OF RESULTS 

The expression for W(I ) can be understood as the prob- 
ability of charge exchange if we assign to angular momen- 
tum I formally the impact parameter p = I / K , (  w ). In the 
limiting case of high-energy collisions when the nuclei move 
along straight trajectories we have 

1 
~ 1 - q ~  = - [Ki  (Ru) - K2 (Ru) I AE ( m )  /2yvR, (42) 27 

where v, = (v2 - 1 2/,u2R :)'I2. From Eqs. (41) and (42) we 
obtain the Rosen-Zener-Demkov formula (6) in which aver- 
aging over the phase 17 has been carried out. Thus, Eq. (41) is 
the quantum-mechanical analog of (6). An important con- 
clusion follows from this. The Massey parameter for classi- 
cal trajectories 

a~nl*~'w) I/IUR :ion has the form m quanlul~, .--- 

The agreement in the high-energy limit of Eqs. (41) and 
( 6 )  permits us to state that Eqs. (40) and (41) are valid if the 
condition (20) is satisfied and also v g 1 atomic units. 

For the probability of resonance charge exchange we 
obtain from (41) 

However, even for light atoms at zero kinetic energy 

and therefore with high accuracy W z  1/2, i.e., the theory of 
resonance charge exchange with classical trajectories of the 
nuclei is valid in essentially the entire range of energies (20). 

The most substantial deviations from the classical the- 
ory occur in nonresonance charge exchange. We shall con- 
sider two possible cases. 

1) The exothermic charge-exchange reaction 
[El( w ) > E2( w )I. The kinetic energy of collision of the atoms 
is 

1 
E kin = - KgZ ( m )  =E-El ( m ) .  

2 1.1 
If E kin g 1/2a, R ; - lo3 K, then the quantities q,  and q, 
do not depend on Ekin . According to Eq. (40) in this case 
a= (Ekin)-'. The dependence is preserved down to 
Ekin - (,u2a I)-' 5 0.1 K. At lower energies Eqs. (40) and (41) 
are not valid, but from the theory of scattering of slow parti- 
cles it follows that the cross section varies with energy ac- 
cording to the Bethe law o cc (E ,in )-'I2. 

If the energy transfer is large: 

where 

then the main contribution to the cross section is from small 
angular momenta. Replacing the summation by integration 
over 1 in Eq. (40), we obtain 

where the quantities q, and q, are calculated for I = 0. 
2) The endothermic charge-exchange reaction 

[E1(oo)<E2(co)l. Here 

For E g a2/2R we obtain from (40) and (41) a = const. As 
in the first case for E ( ( ,u2a2)-I we have a a &'I2. For a large 
energy transfer (44), the charge-exchange cross section is de- 
termined by Eq. (45), in which for q2 < q, it is necessary to 
make the substitution q, + q2. 

The literature contains a cal~ulat ion '~ of the cross sec- 
tion for resonance charge exchangep + H(1S) -+ H(1S) lp at 
low collision energies based on numerical solution of the 
three-body problem by the technique described in Refs. 11- 
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FIG. 2. Cross section for the resonant charge-exchange reaction 
p + H -+ H + p  as a function of the relative momentum K ( m  ). The solid 
line shows the result of Ref. 15, and the dashed line is the result of the 
present work. 

15. Comparison of the results of Ref. 15 with the cross-sec- 
tion value calculated with (40) and (41) is carried out in Fig. 
2, from which we can obtain an idea of the accuracy of our 
calculation. 

To avoid eirors, we emphasize that Eqs. (40) and (41) are 
applicable only to ion-atom collisions and not to charge ex- 
change of molecular ions. It is well known that in the latter 
case ion-molecule reactions turn out to be important, for 
example, 

In conclusion the author expresses his deep indebted- 
ness to L. I. Ponomarev for formulating the problem and to 

the participants in the seminars of Yu. N. Demkov and 0. B. 
Firsov for helpful discussions. 
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