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We obtain the system of' wave functions of the continuous spectrum of an electron in the field of a 
small-radius potential (!3RP) in a magnetic field H. The interaction with the center is taken 
rigorously into account in the SRP approximation. We show that bound and quasibound states 
with angular momentum projection m appear at an attraction center in the case of positive 
amplitude f of scattering of an electron with angular momentum I = (m I and with low energy. 
Expressions are obtained for the energies of these states. The cross section di (w) for photodetach- 
ment in a magnetic field is obtained (w is the frequency of the external radiation). The cross section 
executes oscillations due to successive participation of new Landau bands in the absorption as o is 
increased. The structure of these oscillations depends on the sign off . Some opinions are 
expressed concerning the possibility of analyzing these oscillations in experiment. It is shown that 
the character of the oscillations must be taken into account when determining in experiment the 
binding energy of the elsectron in H. An attempt is made at a qualitative analysis of the available 
experimental data in light of the results. 

PACS numbers: 32.80.13 

1. The properties ofD - and A + centers in semiconduc- 
tors have lately been the object of intensive study. ' One of the 
main sources of information on these centers is measurement 
of the photodecay cross section u(w) as a function of the 
frequency w of the external radiation. Great interest attaches 
to measurement of the cross section di (w) in a magnetic field 
H. Such measurements were made on D - centers in CdS, 
Ge, and Si (Refs. 2,3, and 4, respectively). A number of peaks 
were observed on the d i (w)  plclts located at a distance close 
to w, = lelH /me c (e and me are the charge and effective 
mass of the electrons) and due 1.0 successive inclusion in the 
absorption of new Landau bands as w increases. (In Refs. 3 
and 4 was measured the photoc:onductivity, whose frequen- 
cy dependence coincides with the u(w) dependen~e.~) The 
experiments raise the question of calculating di (a).  

The D - (A +) centers are customarily regarded as ana- 
logs of the H- ion. The simplest model of the H- ion is based 
on the small-radius-potential (SRP) approximation. The 
cross section u(w) calculated in the SRP approximation 
agrees very well with e~periment .~ The same calculation, 
when performed for semiconductors, yields perfectly satis- 
factory results for D - centers in ~ i l icon .~  It is natural to 
attempt to calculate di (w) in the SRP approximation. 

We note that this problem is in fact outside the scope of 
the theory of D - (A +) centers It is of interest for all cases 
dealing with photodetachment of a charge bound to a small- 
radius center in the presence of lH such as for deep impurities 
in superconductors, whose optical properties can frequently 
be described by the SRP model, ' for H- ions, and for a num- 
ber of other objects. (Oscillations of di (w) were observed in 
Ref. 8 for negative sulfur ions Zj-.) Semiconductors, on the 
other hand, are of particular interest for similar problems, 
for it is relatively easy to realize in them the strong-field 
conditions h, >kT and a,  5 a, where a, = (Wle lH  ) ' I 2  

and a is the decay length of the wave function of the bound 
state. One can therefore hope to study the effect of H on the 

"intrinsic" (existing at H = 0) bound state, and to observe 
"magnetic" (which appear at H # 0) bound and quasibound 
states. 

To calculate d i (w)  it is necessary to know the wave 
functions of the final states-the states Y,, of the continuous 
spectrum. The simplest approach is to take the "free" func- 
tions JI,, i.e., to disregard the influence of the SRP on the 
final states, as in Refs. 8 and 9. This approach is perfectly 
satisfactory at H = 0 or at H #O but with EllH (E is the 
electric field of the external radiation). At ElH,  however 
(this is implied hereafter) this approach leads to a cross sec- 
tion that deviates when the final-state energy coincides with 
the bottom of some Landau band, owing to the state density 
becoming infinite at the bottom of the band. Thus, the most 
interesting part of the spectrum, the oscillation peaks, can- 
not be described in this approach. To be able to do so we 
must take into account the influence of various perturba- 
tions on the final states. It is natural to start with allowance 
for the effect of the SRP itself, which is in fact the purpose of 
the present article. 

Optical transitions in an SRP field in H # 0 were investi- 
gated also in Ref. 10. The interaction of the electron with the 
SRP was taken into account in the Born approximation. The 
initial states for the transitions from bound states to the con- 
tinuum were taken to be only magnetic. The transitions con- 
sidered were: 1) only for the Landau band that is the highest 
possible for the given frequency, into states located in the 
immediate vicinity of the bottom of this band, and 2) into 
quasibound states. The equations of Ref. 10 for the absorp- 
tion coefficient are valid in narrow frequency regions corre- 
sponding to the indicated final states. It  is impossible to 
track with these equations the dependence of the absorption 
on w in an interval comparable with the period w, of the 
oscillations, nor can the bottom frequency of any Landau 
band be approached from below. 

We obtain below, in a representation with quantum 
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numbers Y = (k, np , m 1 (see Ref. 1 1. p. 525 of Russian origi- 
nal), the system of the functions Y,, of an electron in a field H 
in the form of an incident + diverging wave in the presence 
of an SRP V (r) of arbitrary form. To describe P,, it suffices to 
know the coefficient c , ,  in the relation 

where f (k,) is the scattering amplitude of an electron with 
angular momentum 1 = Iml and wave number k,+O at 
H = 0. It is assumed that 

here r,, is the radius of the potential and Ev is the electron 
energy. In the approximation ( I ) ,  the influence of the SRP on 
Y,, is taken accurately into account. It is shown that in an 
attraction field, under the condition c l m l  > 0, there arise at 
H # O  (HJJz) bound and quasibopnd states with angular-mo- 
mentum projection I ,  = Im 1 (in the Born approximation of 
the interaction with the center'' such states always exist for 
arbitrary m), and their energies were obtained." 

We calculate #(w) in a weak E for transitions from 
arbitrary (both intrinsic and magnetic) bound states with 
m = 0 to higher continuum states with m = + 1. The equa- 
tions derived allow us to track the #(a) dependence over 
the first few oscillations. We have observed that #(w) van- 
ishes (rather than going to infinity as when the functions *,, 
are used) when the final-state energy coincides with the bot- 
tom of some Landau band. The behavior of #(a) in the 
vicinity of the bottom depends on the sign of c,: at c1 < 0 
there is a peak above the bottom of the band, and at c, > 0 
there are two peaks on the two sides of the band. Questions 
connected with measurement of #(w) are discussed. An at- 
tempt is made to compare qualitatively the theory with the 
experimental results obtained in Ref. 4. 

2. We determine the wave functions ly, of the contin- 
uum. They satisfy the equation 

~ , ( r ) = l , . ( r ) + j  G ( q r 1 ; E V )  V(r')Yr(r')d3r'. (2) 

Here V (r) is a potential with radius r,; $,, are the functions in 
the absence of V(r); 

G(r, r'; E )  = I)V, (r)$,,*(r1) (E-E,'+i6)-' r v' (3) 

is the Green function in a magnetic field. Equation (2) was 
solved in Ref. 4 for rOgA in connection with the scattering 
problem. Let us recall the solution procedure. At short dis- 
tances rgA we can write 

G (r, r'; E )  =- (me/2nfi2) 1 r-r' I -'+GI (r, r'; E )  . (4) 
The first term is the Green function of a free electron with 
zero energy, and G ' is that part of the Green function which 
describes the influence of H; it remains finite as r 'Lr .  At 
small r we assume that 

where 0 satisfies the equation 

* J V ( r )  I r - r  I ' ( r  ) r (6) @(r)=q(r)--  
2nh2 

and q, is a function of the free zero-energy electron and has 
the same asymptotic form as *,, at small r. Substituting (4) 
and (5) in (2) and eliminating the term containing Jr - r'J -', 
we obtain with the aid of (6), in the zeroth approximation in 
r/A, an equation that does not contain a dependence on rand 
can yield Mv . Again substituting (5) with the obtained value 
of Mv in (2), we obtain ly, for arbitrary r. We note that in 
Ref. 14 q, was taken in the form q, = exp(ikz)z 1. In this case 
the scattered wave [the second term on the right-hand side of 
(2)] turns out in the lowest approximation in r/A to be inde- 
pendent of the anglecr in thexy plane. By the same token, the 
effect of the center only on the state with m = 0 is taken into 
account. 

We shall need the functions Yv for m#O. For *,, we 
choose functions in a magnetic field in the representation 
Y = (n,, m, k ] .  Then 

For q, we choose a spherical wave with angular momentum 
I = m and with a projection of m that has at small r the same 
asymptotic form as *,,: 

wherep is the radius vector in the xy plane. Repeating now 
the procedure described above, we obtain an equation in 
which, in the lowest approximation in r/A, all the terms de- 
pend on the coordinates likep l m l  exp(imcr). Mutual cancella- 
tion of this factor yields Mv . The final form of Y,, is 

(8) 
Here & ( p )  are the functions of the transverse motion in a 
magnetic field, 

(x1I2 = + i( - x)'" at x < O), and the coefficient P is de- 
fined in (1). The number Nm is determined in the following 
manner. We write E in the form 

E,=Ao, (N+ 'I,+ E )  , (10) 
where N is an integer and O < E < ~ .  Then 
Nm = N - ( I  m I + m)/2 is the number of the highest Landau 
level having an angular momentum m and energy that does 
not exceed E, . The superscript ( + ) indicates that the func- 
tion (8) consists of an incident wave (I/,,) plus a diverging 
wave. 

3. Equation (8) is valid at &'I2g 1 or (1 - ~) ' / 'g  1. (The 
second or first term in the curly bracket should be respec- 
tively omitted.) If (0 g 1, however (as is assumed below), it 
is precisely in this region that the influence of the SRP comes 
into play. Outside these regions, the diverging wave is 
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a lfl,,, ( and can be neglected. We have discarded in (8) 
terms proportional to IP I at arbitrary E. It is easy to verify 
that the functions Y,, are orthogonal and normalized to 

If the potential has no shallow real or virtual level, the 
estimate ( c lmI  I -ro2iml + is valid; we then have at Im I - 1 

(we note that ;l Sa,). If, however, a level E, such that 
1 ~ ~ 1  = fi2x2/2m, does exist, then (col increases by (r0x)-' 
times, and (c, I with m # O  increases by (r&)-' times (Ref. 
11, $ 133), and the condition IPiml 141 becomes stronger 
than r o d .  If, however, at H == 0 there exists a bound state 
with angular momentum 1 =: Iml and zero energy, then 
f -00 and the theory developed here does not hold for any 
H. 

4. If N, #O, the amplitude of the scattered wave in (8) 
has at 0 > 0 poles at 

E=E(N.,,, I m l ) = e f ( N m .  Inz l ) - i sN(Nm, Iml )  

n=o 

The quantity E ~ ,  (N, , (m 1 )  = I - E'(N,, (m 1) is the dimen- 
sionless (in units of #kc) binding energy of the quasibound 
state with angular momentum below the bottom of the N, th 
band; the presence of E"(N,, I m I )  is due to the possibility of 
decay of this state via transition of an electron into lower 
bands with the same m. If, however, N, = 0 there is also a 
pole at 

where E~ (Im I )  is the binding energy of the bound state with 
angular momentum m. Thus, fbr those m for whichp > 0 
bound states appear under the bottom of the band N, = 0 
and quasibound states appear under the bottoms of the re- 
maining bands. The latter are well defined at not very large 
N, ifBl,, (1, namely E"/E~,  41. Bound states with m = 0 
were obtained in Ref. 15. Bound and quasibound states with 
arbitrary m were investigated in Ref. 10 in the Born approxi- 
mation. We note that in the Born approximation c l m l  > 0 in 
an attracting field, and bound (and quasibound) states with 
arbitrary m are always present;. The value (1) of E, was ob- 
tained in Ref. 16 without the us~e of the Born approximation. 

We emphasize that the results obtained at la ,,, 1 (1 are 
valid for arbitrary potentials and arbitrary m. At m = 0 and 
m = f 1 these results coincide formally with the results of 
Ref. 12 obtained in the Born approximation IP I,I 14 1 for a 
rectangular square well. 

It follows from (8) that PNN, m,k (r)+O as E-0. The 
reason is that in the state (N, , m, k ) the motion is effective- 
ly one-dimensional, and in the two-dimensional case a parti- 
cle with energy close to zero is completely reflected from the 
well. Therefore, as will be shown below, the absorption cross 
section is zero when the final-state energy coincides with the 

bottom of any Landau band. 
5. We proceed now to calculate the photodetachment 

cross section in a weak electric field. We shall assume that 
the initial (bound) state !Pi has m = 0. The function Pi can 
be easily determined from the expressions given in Ref. 17, 
Chap. 7. The final functions must be taken to be of the form 
of incident + converging waves !PL-I. They are obtained 
from P L+ ) in accordance with the rule 

Transitions are possible into the states m = + 1 (hereafter 
we assume m = f 1 throughout). For the cross section for 
the transition into a state with definite m (circular polariza- 
tion) we obtain 

Nm 

o :~ ( (o  =E L:?, ,,,,(o) = 0 ~ 5 - ~  ('1. I.) ( I i+N-8)-I  
no-0 \ 

Nm 

x ( I , + N - ~ + ~ ) - ' I  K& ( 8 )  I'Z ( n , + l )  (Nm+e--no) -"; (13) 

Here 5 (x,y) is the generalized Riemann zeta function (it 
stems from the renormalization of !Pi ); the parameter Ii 
= 1/2 - Ei/+b, is the dimensionless binding energy; Ei 
= Ei (H) is the bound-state energy; N is the integer part of 

(w/w,) - Ii. The separate term in the sum over n, is the 
cross section en,,, (w) for the transition to a band with given 
n, . The factor IK 1 describes the influence of the SRP on !Pv . 
At p, = 0 this influence is absent: 

= K N m l ( e )  = l .  

The Ei (H) dependence was investigated in Ref. 17, 
Chap. 7. For the intrinsic bound state in a weak field we have 
IEi(H)I~IEi(0)(>#k, .  In this case 

Y,= (x/2n)'"e-"'/r,  x=h-' (2me 1 Ei 1 ) ' l a .  

Then Ii) 1,f (+,Ii) = 2I; ' I 2 ,  and the arithmetic mean or e-, (the cross section for linear polarization) coincides at 
Dl = 0 with that obtained in Ref. 9, where deep centers in the 
Lucovsky model7 were considered in the approximation 
!Pv = $, . For a magnetic initial state we have Ii 4 1. Then 

The cross section em (w) for I, ( 1 yields at E( 1, after replac- 
ing the coefficient c,  by its value in obtained in the Born 
approximation, the absorption coefficient obtained in Ref. 
10. Accordingly, at 

we obtain the absorption coefficient obtained in Ref. 10 for 
the transition into quasibound states. 

6. Let us investigate in general outline the em (w) de- 
pendence. In the background region, i.e., outside the regions 
E( 1 and 1 - ~ ( 1 ,  the factor K hm (E)= 1 and the em (w) de- 
pendence does not differ from the one obtained in Ref. 9, 
namely, #(w) decreases smoothly with increasing w. We 
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shall not discuss this region. The role of K km(&) is significant 
when E, is close to the bottom of some Landau band and lies 
above (E( 1) it or below (1 - EX 1). We shall refer to the 
strong changes of em (E) near the bottom of the band N, as 
"oscillation," to which we assign a number N, (Om, 1, , etc.) 
Let us consider the oscillation numbered N, . At E = 0 the 
cross section ern (w) = 0. Near and above the bottom of the 
band N, we have 

This cross section has the form of a peak whose maximum is 
located at E, (N, ) = (N, + 1)'pI2 above the bottom of the 
band N, ("upper" peak). The relative value of the maximum 
is -B r ' and does not depend on N, . The peak is asymme- 
tric with <;, c &'I2 on the left and ern cc E-"' on the right; 
its half-width is -P :. 

The behavior of the cross section near and below the 
bottom of the band N, depends on the sign of PI. We note 
that it is assumed that an initial bound state exists, we are 
dealing with an attracting potential. Nonetheless, the ampli- 
tude f, and with it P, can have, in principle, either sign. Let 
Dl < 0. We then have at 1 - E X  1 

The cross section in the narrow region 
0 < 1 - E <,9,'(Nm + 1)' decreases as e+l from values cor- 
responding to the background to be zero. At Dl > 0, 

The plot of (16) is a peak whose maximum lies e1(Nm ) below 
the bottom of band N, ("lower" peak). Its position coincides 
with the energy E](N,, /mi) of the quasibound state under 
the bottom of the N, band. The relative value of the maxi- 
mum is -pl-ZbNm-2. Near the maximum we have 

The width -P: of the peak is determined by the lifetime of 
the quasi-stationary state. 

Thus, depending on the sign ofp,, two spectrum types 
are possible. The schematic form of of,-, is shown in Fig. 1 
for 10, I = 0.1. In those regions where the cross sections for 
Dl > 0 and Dl < 0 are different, the curve for PI < 0 is shown 
dashed. It is assumed that Ii 4 1 (intrinsic bound state undis- 
torted by a magnetic field). In this case, at not too large N, 
the dependences of the third and fourth factors in the right- 
hand side of (13) on w can be neglected. 

For the 0, oscillation we have E '  = 0 and #+w at 
E = 1 - 8 :-a transition to a bound state below the bottom 
of the lower band, with angular momentum m. This lower 
peak takes in our approximation the form of a delta-func- 
tion. To obtain a finite peak it is necessary to take into ac- 
count the influence of some external perturbations (phon- 

FIG. 1. Dependence of 6-, on (w - w,,,)/o, (o,,, = w,Zi is the thresh- 
old frequency) forb, = 0.1. The dashed lines show aff_ , atb! 10 in those 
regions where the cross sections for p, > 0 and 8, < 0 are d~fferent. The 
vertical straight line to the left of the origin is the delta-function lower 
peak OR,. 

ons, impurities). This problem is outside the scope of the 
present paper. We note that external perturbations not only 
make the delta-function peak (unbounded line to the left of 
zero in Fig. 1) finite, but lead also to smearing of the oscilla- 
tion picture. In particular, the cross section on the bottom of 
the Landau band no longer vanishes, and at Pl > 0 the upper 
and lower peaks merge into a single one. 

7. We discuss now the possibility of using the developed 
theory for an analysis of experimental results. We focus our 
attention on experiments with D - centers. By virtue of a 
number of factors that complicate the experimental situa- 
tion, the effects considered by us could hardly play an impor- 
tant role in Ref. 8. Of course, for some detailed analysis we 
must take into account the influence of the external pertur- 
bations on the spectrum and, primarily on the delta-function 
peak. We can therefore make here only some general re- 
marks. It follows from the foregoing that the distance Aw 
between neighboring peaks does not equal w, and can be 
either smaller (atfl, > 0) or larger than w, . Furthermore Aw 
must depend in a definite manner on the number of the oscil- 
lation and on the value of H. The character of these depen- 
dences can yield information on the magnitude and sign ofP1 
and on the (possible) dependence of a, on HI,  as well as on 
the influence of external perturbations. 

Next, much attention is paid of late to the binding ener- 
gy Ei(H) for SRP, and in particular for D - centers. This 
question is discussed in a large number of papers, including 
Refs. 2-4, 17, and 18. In principle, a direct method of mea- 
suring Ei(H) is to determine the threshold frequency 
w,,, = w, I, for the #(a) dependence. This, however, is not 
as simple a problem as might seem at first glance. Attempts 
were made in Refs. 2-4 to determine the position of a,,, on 
the spectra. It was assumed in Ref. 2 that w,,, lies below the 
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first maximum, while in Refs. 3 and 4 the two were assumed 
to coincide. From the results above it follows that a,,, may 
be located (and is most likely to be located, see below) also 
above the first maximum. Therefore the determination of 
w,,, calls for a special experimental investigation (possibly, 
measurement of the absorption at EIIH). We note that to 
analyze the oscillations it is desirable to perform the mea- 
surements with circular polarization. Linear polarization, as 
in Refs. 2-4, greatly complicates the problem because of su- 
perposition of the peaks with IW = + 1. 

We calculated the values sf Ao for the spectra obtained 
in Ref. 4. (The measurements in Ref. 3 were made in the 
Voigt configuration and the condition ElH was not satis- 
fied; two peaks, probably of different origin,18 were observed 
in Ref. 2.) Almost none of the Aw agree with w, and in the 
overwhelming majority of cases Aw <a , .  If this is so, then 
p, > 0, as is to be expected on the basis of the analogy with 
the H- center (there is no intrinsic bound state with angular 
momentum I = 1). The relative deviation of Aw from w, 
reaches 0.1, i.e., patently in excess of the limit of the mea- 
surement error. This means that in Ref. 4 as well as in Refs. 2 
and 4, there are lower peaks and w,,, should be located above 
the first maximum. 

We discuss now qualitatively the relation between the 
intensities of the photoconduct.ivity peaks obtained in Ref. 4. 
We recognize first that in Ref. 4 the radiation was not polar- 
ized (although the condition ElH was satisfied). The photo- 
conductivity is therefore proportional to the sum of the cross 
sections form = + 1. The crass section e- , (a) is shown in 
Fig. 1. Since N ,  = N-  , + 1, the cross section <+ (w) is ob- 
tained by shifting the curve in the figure to the right by unity. 
Then the peak with the lowest frequency will be peak 0- ,, 
thenextonethesumeofthepeaks 1-, +01,next2-, + 1,, 
etc. Since the summed peaks have the same number 
N,,, - (Iml + m)/2=N, it is c~onvenient to use the latter to 
number the peaks in the case of unpolarized or linearly po- 
larized radiation: N  = 0, l ,  2, .. . 

In Ref. 4 are given sets of photoconductivity curves for 
As and Li impurities in Si. For both As and Li there are five 
peaks in a field H = 2T, with the peak N  = 1 the highest. 
With increasing H (H = 4T and 6T), the paks N = 0 and 
N  = 1 become equalized (all other peaks are already outside 
the frequency range). 

We have assumed that B, > 0 and that the delta-func- 
tion peaks have in fact a certain finite height comparable 
with that of the peak 1 - , in Fig. 1. Then, if the prescription 
given above is used to obtain the cross section for linear po- 
larization, then the highest peak turns out to be N = l ,  as is 
the case in the experiment in a field H = 2T. 

It must now be recalled that the curve in Fig. 1 corre- 

sponds to the case Ii ) 1, when the third and fourth factors on 
the right side of (8) can be regarded asconstant (and equal for 
6- , and of+, ). In Ref. 4 the inequality Ii > 1 does not take 
place (Ii 5 1 at H = 6T). It must therefore be recognized that 
these factors are different for af;' , and of+, , and decrease 
noticeably with increasing w at a rate that is faster the larger 
H. It is found then that the ratio of the heights of the peaks 
N = 1 and N  = 0 should decrease with increasing H from 
values larger than unity, as is indeed observed in Ref. 4. 

The authors thank R. I. Rabinovich and S. P. Andreev 
for a discussion of the work. The authors are indebted to the 
referee for pointing out Ref. 8 to them. 

"After this paper went to press, two papersI2," were published with meth- 
ods of determining the spectrum of weakly bound states of a small-radius 
well at H #Ofor abritraryp . Themethod of Ref. 12, however, calls for 
knowledge of the wave functions for H = 0 at r 5 r,. Specific results were 
obtained for a rectangular potential well. To calculate the spectrum by 
the method of Ref. 13 it suffices to know the scattering length and the 
effective radius at H = 0. In particular, Eq. (12) of the present paper was 
obtained in Ref. 13. 
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