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Light scattering by all possible branches of magnons with k = 0 in a multisublattice magnet is 
investigated. A procedure is proposed for analyzing the form of the scattering tensor, with ac- 
count taken of the magnetic symmetry of the crystal. It  is shown that the scattering tensor is 
connected with the magneto-optical constants of the crystal only when the scattering is by definite 
magnon branches. A procedure is developed for quantizing the Hamiltonian expressed in terms of 
irreducible combinations of spin operators; this procedure simplifies the calculation of the u-u 
coefficients in the case of a multisublattice magnet. It is established that the exchange branches of 
the magnon spectrum in antiferromagnets correspond predominantly to oscillations of the weak- 
antiferromagnetism vector. Light scattering by magnons in ErFeO, in various magnetically or- 
dered phases is considered. The intensities are estimated and it is shown that as a rule the intensity 
of scattering by exchange magnon branches is less than by acoustic branches. 

PACS numbers: 75.30.Ds, 75.10.Jm, 75.30.Et, 78.20.L~ 

INTRODUCTION 

The spectrum of the spin waves (SW) in a multisublat- 
tice magnet contains besides acoustic branches also ex- 
change branches that are the a~lalog of optical phonons. 
These branches depend little weakly on the magnetic field 
and their frequencies can be estimated from the magnetic- 
ordering temperature. 

Raman scattering of light (RSL) supplemented with ex- 
periments on antiferromagnetic resonance permits a study 
of all the spin-wave branches of the spectrum and its use to 
judge the magnetic structure of a crystal. 

In the investigation of light scattering in magnets, inter- 
est attaches to knowledge of the form of the single-magnon 
scattering tensor. This analysis can be based on an allowance 
for the magnetic symmetry of the crystal, which determines 
its magnetic space group.' In the case of single-particle scat- 
tering of light by elementary excitations that have activation 
energy, when the momentum k = w/c transferred to the spin 
waves is small (k- 10' cm- ' at o - 1015 sec- ' ak - lou3, 
and a is the lattice constant), the spatial dispersion of these 
spin waves and of the Raman-scattering tensor can be ne- 
glected. It suffices therefore to use the magnetic point group 
for the analysis of the form of the RSL tensor. 

It is known that the phase transition from the paramag- 
netic state to the magnetically ordered one is accompanied, 
as a rule, by magnetic structures whose symmetry is sub- 
group-coupled to the symmetry of the paramagnetic phase 
(PP).* The Hamiltonian of the magnetic subsystem of the 
crystal near the phase-transition point can then be con- 
structed on the basis of the PP symmetry group.3 If the ex- 
change integrals depend little on the temperature and the 
striction distortions can be neglected, this Hamiltonian can 
be used to study the static and dynamic properties of the 
magnet also far from the phase transition. It is this tradition- 
a13v4 procedure that we shall use in the present paper to ana- 
lyze the form of the RSL tensor. 

We denote by A&# the spin-dependent part of the dielec- 
tric polarizability of the crystal. Usually is represented 
as a series in powers of the ion spins.5 It is shown in Ref. 5 
that for crystals with small ratio of the exchange interaction 
to the separation of the ground and lowest excited states of 
the ion it suffices to retain the first two terms of this expan- 
sion. We express in powers of irreducible operators 9 ,  
each a superposition of atomic-spin operators that transform 
in accord with irreducible representations (IR) of the PP 
group: 

+ + 
(the summation is over I, 9 ,  m, a n d z ' ) .  Thzindices land m 
number the coordinate axes, w>ile Y and 9' are the types 
of the irreducible operators. Y ca2 be r-resented in the 
3 u a l  manner in the form of a sum 9 = Yo + L, in which 
Yo are the equilibrium values determined by the magnetic 
ordering a n c L  are small deviations due to the spin oscilla- 
kens. If the 9 are replaced in (1) by their equilibrium values 
Y o ,  we obtain the tensor 

+ 
(summation over I, Y o ,  and m), where in the absence of 
absorption the first term describes the Faraday effect (FE) 
and the second the Cotton-Mouton effect (CME). 

Allowance for the terms linear in the deviations from 
the equilibrium values of the operators L yields that part of 
the tensor A&!) which determines the single-magnon RSL 

(summation over I, m, 2 , ,  and L). 
The components of the single-magnon RSL are the ma- 

trix elements 
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where n, are the magnon occupation numbers and the sub- 
script Y labels the branches of the SW spectrum. The deter- 
mination of the form of the RSL tensor reduces thus to an 
investigation of the forms of the tensors a,/ and aVlm in (3). It 
must be recognized here that aii, has the same structure as 
the FE constants in (2), i.e., the presence of the time-reversal 
operation in the PP group should lead in the absence of ab- 
sorption to the relations a,/ = - aji,. 

The first and second terms of (3) are thus respectively 
antisymmetric and symmetric in the indices ij, and the ten- 
sor of the RSL by magnons is not purely antisymmetric (see 
also Ref. 6 on this subject). The components of the tensors 
a,, and aVlm in (3) differ from zero if the direct products 

r (E) xr* (E) xr  (LIV), 

r (E) xr* (E) xr (LY)  XP (go,) 

contain a unitary representation. Here r (E) is the PP-group 
IR with respect to which the electric field-strength vector E 
is transformed, and r (YOm) are the IR with respect to 
which the equilibrium magnetic configurations are trans- 
formed; r (L r) are the IR of the irreducible operators of the 
spin flops of the branch Y .  

To analyze further the form of the RSL tensor we must 
recognize that in the oscillations of the magnon mode Y there 
can participate the irreducible spin flop operators L which 
transform in accord with a single corepresentation of the 
magnetic group of the crystal, but generally speaking in ac- 
cord with different IR of the PP g r o ~ p . ~ . ~  It can be shown 
here that the direct product of the PP-group IR in accord 
with which the irreducible spin-flop operators correspond- 
ing to one magnon mode are transformed, always contain IR 
of an equilibrium magnetic configuration. This condition, 
with account taken of relations (4) and (5), solves the problem 
of finding the form of the tensor of RSL by magnons in var- 
ious magnetically ordered phases. 

From (4) and (5) one can determine the structures of the 
FE and CME tensors in (2) when r (L r) is replaced by IR of 
the equilibrium configurationsr (Yo, ).8 Thus, for example, 
it follows from (4) that if a transition into a magnetically 
ordered phase occurred in accord with an IR with k f 0 (this 
case includes, e.g., doubling of the crystal-chemical cell or 
the onset of certain inhomogeneous structures), the direct 
product cited will not contain a unitary representation, so 
that there are no linear magneto-optical effects without a 
magnetic field. 

It follows from (4) and (5) that the components of the 
RSL tensors (3) are connected with the FE and CME con- 
stants that enter in (2) for only those modes in which a part is 
played by the irreducible operators that transform in accord 
with IR$at coincide with the IR of the equilibrium configu- 
rations 3,. 

The magneto-optical constants that determine the FE 
and CME in multisublattice magnets contain a large number 
of contributions from different magnetic configurations. Us- 
ing the cited condition for the connection between the RSL 

tensor components and the FE and CME constants, as well 
as the fact that these contributions enter in the RSL tensor 
with different multipliers determined by the coefficients of 
the u-v transformation of the spin-system Hamiltonian, we 
can distinguish between these contributions by comparing 
the results of the measurements of the absolute values of the 
scattering intensities with the magneto-optic measurements. 

We demonstrate in this paper, with orthoferrites as the 
example, that a consistent application of symmetry consid- 
erations allows us not only to propose a simple procedure for 
calculating the spectrum of the homogeneous magnetization 
oscillations," but also to calculate the u-v transformation 
matrix that describes the transition to normal magnon 
modes. Naturally, this rigorous approach, which makes no 
use of a subgroup coupling of the ground state of a magnetic 
crystal with the PP, must be based on the use of the magnet- 
ic-symmetry group at the crystal when calculating both the 
frequencies of the SW (Ref. 7) and their polarizations (of the 
u-v transformation matrix). After this paper was already 
written, such an approach was proposed in Ref. 9, where the 
SW spectrum was calculated with wave vectors along sym- 
metry directions of the Brillouin zone for Mn,NiN. 

On the basis of our proposed relations (4) and (5) we 
obtained the structure of the RLS tensor in four-sublattice 
AF with symmetry group D i;, covering a large class of mag- 
nets such as orthoferrites. 

We investigated the behavior of the light-scattering in- 
tensity for all branches of the SW spectrum in the region of 
spin-flip phase transitions. 

1. CALCULATION OF THE AMPLITUDES OF NORMAL 
MAGNON MODES IN AN ORTHOFERRITE 

From the symmetry considerations used in Ref. 4 to 
analyze the frequencies of homogeneous magnon modes it 
follows that the dispersion equation breaks up into individ- 
ual blocks corresponding to oscillations of like symmetry. 
Besides the natural-oscillation frequencies, a fundamental 
role is played in the study of the high-frequency properties of 
magnets, and particularly of RSL, by the amplitudes of the 
normal oscillations of the magnetization, which are deter- 
mined by the u-v transformation coefficients. Let us show 
that symmetry considerations simplify also the procedure of 
calculating the u-v coefficient matrix that describes a transi- 
tion from irreducible spin-flop operators to normal magnon 
modes. We shall illustrate these general considerations using 
as a particular example the calculations of the u-v coeffi- 
cients at k = 0 in the four-sublattice antiferromagnet Er- 
FeO,. 

The crystal magnetic-subsystem Hamiltonian that de- 
scribes the ground states and the uniform oscillations of the 
magnetizations can be written, following Ref. 4, in the form 

H=J~,2+J~uG~+JzzG,2+DizAxGu+D~uACz 
+D~,GuCz+?iP,Z+?zuCy2+?3zG~+DzzFXCy+D2YF~G, 

+ D ~ u G ~ + J ~ C , Z + J i u F , 2 + J ~ ~ A ~ Z + D s z C ~ F u  
+ D ~ u C ~ ~ + D ~ u A z + J ~ G , 2 + J ~ u A y Z + l ~ z F z 2  

+D, ,G=A,+D~,GP,+D,xAYFz+eiGd+ezGG+e3G.  (6) 

To describe the spin-flip transition in ErFeO,, we in- 
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We shall consider only the temperature region in which 
there is no ordering of the magnetic subsystem of the rare- 
earth ions. We take its influence into account in the usual 
manner," assuming that the constants of the Hamiltonian 
(6) are renormalized by the Fe-R interaction and are thus 
temperature-dependent. Since a G-type ordering is realized 
in orthoferrites, i.e., G is the largest antiferromagnetism vec- 
tor, only terms containing G are retained in the fourth-order 
anisotropy. 

cluded in (6) terms proportional to the four power of the 
magnetization; J ,  D, and e are respectively the exchange, 
Dzyaloshinskii, and anisotropy constants. Also connected 
with the anisotropy energy are the differences between J,, 
and J,, , J3, and J3y , etc. The irreducible operators F, G, C, 
and A in (6), as well as their classification in accord with the 
IR of the PP group D i;, are given according to Ref. 10 by 

It iiknown that at temperatures TI and T2 two second- 
order phase transitions take place in ErFeO, (see Ref. 11 for 
details). At T< TI a magnetically ordered phase is realized in 
which the equilibrium values Fox, Go, and Coy correspond- 
ing to the IR r2 differ from zero. We shall call this phase r2 
and classify in similar manner the phases considered later. In 
the interval TI < T <  T, is realized a phase r2, in which the 
vector G rotates in the xz plane and the nonvanishing quanti- 
ties are the equilibrium values of the irreducible operators 
that transform in accord with the r2 and r4 IR. The phase 
realized above T2 is r4 with equilibrium values Go, ,Aoy ,Fez. 

We consider now the procedure of second quantization 
of the Hamiltonian (6). We express the operators L in terms 
of the operators S1(") expressed in a local coordinate frame 
with z' axis directed along the equilibrium value of the spin 
S t ) .  The operators S'") in the crystal coordinate frame are 
connected with the operators in the local frame by the rela- 
tion 

(w,- (5) !(a) 
Si -pi, sj 9 (8) 

and the index a numbers the positions of the Fe3+ ions. 
The matrices 8'") for the ion positions that are inter- 

changed by symmetry operations are not independent. Thus, 
if the equilibrium value fo SbS' is obtained from S t )  with the 
aid of the magnetic-group symmetry operation g, we have 

p(B),gp(a), (9) 

where is the g transformation matrix (we assume that the 
unit vectors of the local frame transform as axial t-odd vec- 
tors). Because of this we can find the connection between tqe 
operators L expressed in the crystal coordinate frame and L' 
defined by relations (7), in which the operators S(") must be 
replaced by S'fa). For example, in the phase r4 we have 

t;)= @, f:\ F z  1 = f:3, \FZ' 
(10) 

where the matrixj'" defined for the ion Fe3+ in the position 
1 with the aid of (8) is of the form 

F = SI + S2 + S3 + Sa, 
G = S1- S2 + S3 -. S4, 
c = SI + s2 - s3 - s4, (7) 
A = sl - s2 - s3 + s,. 

rl 
rz 
r3 
r4 

- sin rp cos cos cp sin x cos cp 

sin x cos x 
here 

sin x cos cp=Go, ( 4 s )  -', sin x sin cp =Ao, (4s) -', A,GBCz 
FxCyGz 
C , F ~ A =  
GxAuFz whereSis the ion spin. We note that in the phaser, the angle 

p is small and x is close to ~ / 2 .  In the derivation of (10) it 
must be taken into account that some of the operations g 
transform left-hand systems into right-hand. 

The operators L' are determined by the spin operators 
in the local coordinate frame and are therefore directly con- 
nected with the Holstein-Primakoff spin-flops a,+ and a,. 
We introduce linear combinations of the operators a, 
(a = 1,2,3,4), having the same structure as the irreducible 
operators (7): 

It can be easily seen that the operators a,, a t  
(L = F,G,C,A ) satisfy the usual commutation relations 

[a,, a,,] =[a,+, a,.+] =0, [a,, a,.+] =6L, L v .  (13) 

Thus, using the Holstein-Primakoff representation, we 
obtain with the aid of (7) and (12) 

L'+= ( 8 s )  '"a,, L'-= ( 8 s )  '"aL+, Lr*=L:*iL;, (14) 

Paf=4S- (aF+ap+ao+aG+ac+ac+aA+aA), 

C,I=- (aF+ac+aG+aA+3.c.), G,'=- ( aF+aG+ac+aA+ H.c.) , 

Using (10)-(15) we can rewrite the Hamiltonian (6) in terms 
of the operators a, and a t .  

The ground state of the system, as usual, is determined 
from the condition that the coefficients of the terms linear in 
the Bose operators a, and a, + vanish. It is easily found that 
following the transformation of (6) with the aid of (lo), fol- 
lowed by (14) and (IS), that part of the Hamiltonian which is 
quadratic in these Bose operators contains no products of 
the form aFaG, aFaA , acaG, and acaA . The absence of these 
terms is not accidental, but is due to carrying out the second 
quantization (6) in terms of irreducible operators. 

As a result, the matrix for the u-v coefficients intro- 
duced in the usual manner 

breaks up, say in the r4 phase, into two independent blocks 
connected respectively with the operators a,ac and aGaA. 
Here g ,+ and g,, are the creation and annihilation operators 
of the magnons of the branch v at k = 0. 

Thus, the use of irreducible operators makes it possible 
to retain the advantages of the symmetry approach not only 
in the calculation of the magnon frequencie~,~ but also in the 
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TABLE I. 

calculation of the u-v coefficients for arbitrary multisublat- 
tice magnets. 

We introduce the quantities 

tL"=uL,+vw, dLV=u~"-v~v, (17) 

which we shall need later on and which satisfy the usual 
normalization conditions 

The expressions for t and d in the r4 phase are gathered 
in the table. [We have introduced here the notation Eag 
= 2(Jmi - J3j) .  The " + " and " - " signs refer respectively 

to the exchange and acoustic modes. The expressions for the 
frequencies of these modes in the phases r,, r,, and r, are 
given in Ref. 4. Tht connection between our notation for the 
frequencies, e.g., v,,, and that of Ref. 4 (E,,), is described by 
the relation v,, = El, (4Mo)-'1. In the calculation of the u-v 
coefficients, just as in the calculations of the frequencies in 
Ref. 4, we used the approximations 

( l a i ( B D B  (Ia i - - la j ( ,  a=l, 2, 3, 4 ;  i j=x,  y ,  z. (18) 

The values of E in the table are determined by the ex- 
change constants, E- pHE. The frequencies of the acoustic 
modes of the spectrum are known to be of the order of 
v-- p(HEHA)'lZ, while the frequencies of the exchange 
modes are v+ - pHE, where HE is the exchange field and 
HA the anisotropy field. Therefore the maximum value of 
the coefficient tor  d for the acoustic branch is of the order of 
(HE/HA)'I4, i.e., exchange enhancement takes place, where- 
as for the exchange branch the value is (HE/HE, )'I4- 1 and 
there is no exchange enhancement. Substituting the solu- 
tions for the u-v coefficients in (14) and then changing over 
to (10) we can see that the oscillations corresponding to small 
deviations of the antiferromagnetism vector G are always 
exchange-enhanced for the acoustic branches. 

In the case of the exchange branches, the u-v coeffi- 
cients with maximum value of the order of unity enter in the 
formulas that describe the oscillations of the weak antiferro- 
magnetism vectors A and C, whereas the equations for the 

oscillations of the F and G types contain u-v coefficients 
smaller by a factor D /J. The hierarchy of the u-v coefficients 
for the exchange modes reflects the possibility of a transition 
from the four-sublattice model of the orthoferrite to a two- 
sublattice model. In this transition, the exchange branches 
do not contribute to the oscillations of the vectors F and G. 
Thus, the exchange branches of the spectrum in multisublat- 
tice AFM correspond predominantly to oscillations of the 
weak-antiferromagnetism vectors. 

We consider now the spin-flip region-the r,, phase. In 
this phase, the following equilibrium configurations differ 
simultaneously from zero: 

F p F , ,  sin 0, C,-C,, sin 0, 

Gp4S sin 0, 

Gm=4S cos 0, A.-A,, cos 0, 
Fz-Fo, cos 0, 

where Fox, Coy and Fez, A,,, are the equilibrium values in the 
respective phases r, and r, and are defined in Ref. 4. The 
angle between the vector G and the x axis of the crystal is 
given by the relation" 

T,-T ' l a  
sin 0= (----) 

Tt-T,  

The expression for the SW frequencies in the r,, phase are 
given in the Appendix. 

The behavior of the branches of the spectrum in the 
spin-flip region are shown schematically in the figure. At 
T = TI and T = T, the equations for v,, , vIII, and v,, go 
over into those for the frequencies in Ref. 4, with allowance 
for the renormalization of all the quantities of this reference 
on account of the interaction with the rare-earth sublattice. 
From the formulas given in the Appendix for the frequencies 
it can be seen that v, vanishes at T = TI and T = T,. The 
reason is that the frequencies were calculated without 
allowance, e.g., for the magnetoelastic interaction that leads 
to the appearance of a gap in the spectrum of the softening 
magnon mode. Such a calculation for the two-sublattice 
model of the orthoferrite was carried out in Ref. 12. We have 
calculated the u-v coefficients in the T,, phase, but in view of 
their length we present the results only for the soft mode: 
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TI '-2 T 

FIG. 1. 

DZxDL1 EL '14 VI 
t,=O, d, = - - 

EzEL ( K 4 )  
(sin 0 cos 0) '", dA=ta - , 

EL 
D22 cose '12 Kk '14 

tA=ic,  (c) 'I' (=) , dc=- (E, )  (sin 0 cos 0)". 

(sin 0 cos e)'", d,=t,-1; 

the quantities Eh (a = 1,2,3,4) and K4 are defined in the Ap- 
pendix. The coefficients t,, t,, and d ,  have singularities at 
the phase-transition points T, and T,. These singularities, as 
will be shown below, lead to an abrupt increase of the intensi- 
ty of the Raman scattering of light in the vicinity of the phase 
transitions. ' 

2. MAGNETO-OPTICAL EFFECTS AND BEHAVIOR OF THE 
SCATTERING INTENSITIES 

Since the quantities Gox, A,,, and Foz differ from zero, 
the FE is described according to (2) and (4) by the component 

A&::) =hIGox+hzAou+h3Foz, (22) 

where the quantitiesil,, A,, andA3 describe the contribution 
made to the FE by the antiferromagnetism, weak antiferro- 
magnetism, and magnetization vectors, respectively. The 
nonvanishing quantities in the r, phase are Fox, Coy, Go,. 
Therefore the FE is described by the dielectric-constant 
component 

A&::) =hi'GoZ+ha'Cou+hfFoz. (23) 

There is no Faraday effect in the magnetically ordered phase 
l-1. 

Here and elsewhere we shall not write out the invariants 
connected with the rare-earth sublattice. 

Using (5), we can obtain expressions for the CME con- 
stants. In the r4 phase these constants are of the form 

The form of the CME constants for the phases r, and T, are 
easily obtained from (5), but we shall not present them here. 

We note the off-diagonal (anisotropic) dielectric-con- 
stant components connected with the CME are absent in all 
the phases r , ,  r 2 ,  and r3.' In the rZ4 phase in the spin-flip 
region, however, an off-diagonal symmetric component ap- 
pears, 

A&::' = S i ~ X ~ , + 6 2 G ~ i + 6 3 G , C , ,  (25) 

and its value varies with temperature like A&, -sin 0 cos 8. 
Application of a magnetic field whose components are trans- 
formed in accordance with IR that do not coincide with the 
IR of the equilibrium magnetic configurations leads to the 
appearance of mixed phases and consequently of anisotropic 
symmetric components of the dielectric constant. In particu- 
lar, as can be seen from (5), an invariant is possible, contain- 
ing the antiferromagnetism vector and the field H. Because 
of this effect, antiferromagnetic domains were observed13 in 
dysprosium orthoferrite in the T, phase following applica- 
tion of a field Hllz (r (Hz) = I-',). The CME constants of the 
orthoferrites are given in the same reference with account 
taken of equilibrium configuration of type F and G only. 

We consider now the form of the tensors of RSL by 
magnons in the magnetically ordered phase r4. In this phase 
a part is played in the oscillations of the exchange mode v; 
and of the acoustic mode v, by irreducible spin-flop opera- 
tors that transform in accord with IR of r, and r4. Similar- 
ly, for the modes v, and v,f the pertinent IR are of T, and 
I'3.3 Therefore, as follows from (4) and (5), the RSL tensor in 
the r4 phase is of the form 

In the r, phase at the frequencies v& and v$ the situa- 
tion realized is similar to that just considered, and the RSL 
tensors are of the form 

As noted earlier, the components of the RSL tensors are 
connected with the FE and CME constants only for those 
frequencies whose spin-flop-operator irreducible represen- 
tations coincide with the irreducible representations of the 
equilibrium configurations. Therefore the components aq 
(v,,) in the r4 phase and aq (v,,) in the r, phase do not 
contain the constants of the magneto-optical effects of these 
phases. 

On the other hand, the diagonal components of the ten- 
sors aq (v,,) and aU (v,,) are connected with the constants of 
the quadratic magneto-optical effects. Obviously, the tensor 
for scattering by the SW modes corresponding to the opera- 
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tors L, which transform in accordance with the IR of the 
equilibrium configurations, will always have diagonal com- 
ponents. Let us examine in greater detail the structure of the 
components of the RSL tensors. By way of example, we de- 
termine the component a f of the tensor aij (v& ), which con- 
tains magneto-optical constants in the r4 phase. In expres- 
sion (3), this component corresponds to 

(summation over I ,  L, 2,p, and m). According to (4) and (5), 
the antisymmetric part of (28), which is determined by the 
first term, contains the irreducible operators L l  that trans- 
form in accord with r4 (G,, A,, Fz). The symmetrical part of 
(28) (the second term) contains the operators L,, which 
transform in accord with r, (A,, G,, C,). The necessary next 
step is a transformation from the operators L,  and L, to the 
SW creation and annihilation operators in accord with Eqs. 
(10)-(16). Next, taking the matrix element of (28) [see the 
explanation of Eq. (3)], we obtain for a$ 

We have left out here the terms A,, FozGox -'- lop4 and 
introduced the notation a, = a, , a, = a,,,, , a, = ax,,, , 
etc. 

The terms proportional to a do not describe the mag- 
neto-optical effects in the r4 phase. It can be easily seen that 
the symmetric terms connected with a, always enter in the 
off-diagonal components of the RSL tensors in orthoferrite 
phases T4 and r , .  To compare the intensities of the scatter- 
ing by the exchange and acoustic modes v&, determined by 
the square of the modulus of the corresponding component 
a$, definite assumptions must be made concerning the val- 
ues of the constants A, and a,. Since we are taking into ac- 
count the contribution made to A E ! ~ )  by the spin-orbit scat- 
tering mechanisms, the constants a are of second order of 
smallness in the spin-orbit interaction, while R are of first 
order of smallness. Therefore (A I ) 101. Investigation14 of the 
contribution of the antiferromagnetic and ferromagnetic 
vectors to the FE has established that A ,  of the yttrium orth- 
oferite is smaller than A, by one or two orders of magnitude. 
We shall assume that A, -A, -1,. lo-' Using the values list- 
ed in the table fort and d, as well as the fact that the estimate 
AoyGox-l-FozG,-l- lo-' holds for the r4 phase,'' we 
obtain for the components a$ and a, from (29) the expres- 
sions 

Let us compare the quantities a: and a,, which determine 
the intensities of RSL by exchange and acoustic magnons. 
According to Ref. 16, for erbium orthoferrite 
(v,, - El, -')'" - lop1. Taking (E,, E4,, -')'I4- 1, weob- 
tain 

a,+ (al-) -'-10k,h3-'-1. 

If we assume now that R,>A,, A,, i.e., take into account only 
the ferromagnetic contribution to the FE, we get 

a'+ (a4- )  -'-lo-'. 
The intensity of scattering by the exchange mode is thus 

appreciably less than for the acoustic mode. It must be not- 
ed, however, that this assumption may not hold in noncollin- 
ear magnetic structures, in which the equilibrium directions 
of the spin may not coincide with the orbital-momentum 
quantization axis determined by the crystal field. 

For RSL by acoustic magnons in antiferromagnets one 
can identify scattering-tensor components that are ex- 
change-enhanced. It is necessary for this purpose to find the 
IR according to which small deviations from the antiferro- 
magnetism vector from the equilibrium position are trans- 
formed, inasmuch as for these IR the u-v components are a 
maximum. Knowing these IR, we can determine with the aid 
of (4) and (5) the corresponding components of the tensors aiil 
and aV,. For example, in the T4 phase small deviations of 
the antiferrornagnetism vector G, and G, are transformed in 
accordance with r, and r , ,  and consequently the symmetri- 
cal parts of the components a,, a; and a,, a, as well as 
the antisymmetric parts of the components a, will be ex- 
change-enhanced. 

The exchange-enhancement effects increase as the spin- 
flip points are approached, owing to the decrease of the fre- 
quency of the soft magnon mode. The symmetry of the new 
phase is determined by the orientation of the antiferromag- 
netism vector, and the vanishing of the frequency is due to 
the vanishing of the anisotropy that maintains the vector G 
in the previous position. Therefore the softened acoustic 
mode will be the one in whose oscillations participate irredu- 
cible operators that transform in accord with the IR of the 
new phase. For example, when the T2 point is approached, 
the mode Y, is softened in the r4 phase. Similarly, in the 
magnetically ordered r, phase, the mode v, is softened 
when the point Tl is approached and, according to (27), the 
antisymmetric parts of the components b 6 and the sym- 
metric parts of the components b , increase in proportion 
to (E,,/v,,-)"~, whereas the antisymmetric part of b 6 
and the symmetric part of b 6 decrease in proportion to 

-1 112 ( v  - E x  ) . Since the Ginzburg-Levanyuk numbers of 
orthoferrites is small, Gi- (Ref. 1 I), the critical fluctu- 
ations become essential only in a very narrow region near the 
temperatures Tl and T2 of the transitions, and we do not 
consider them. 

The tensor of scattering by a non-softening acoustic 
mode will contain the magneto-optical constants of the 
phase r,. The off-diagonal part of the component b ,, 
which includes the constants A ,! from (23), is exchange- 
weakened, just as the component a, which contains Ri in 
the r, phase. However, the line corresponding to scattering 
by the mode v, in the r, phase was not observed in experi- 
ments on Raman scattering (RS) by magnons in ErFe03.16 
Since the coefficients preceding the mangneto-optical con- 
stants A, and R ,! in the RS tensors are of the same order of 
magnitude, it can be concluded from the fact that no scatter- 
ing by the mode v, is observed in the r, phase but does take 
place in the T4 phase, that R ,!&,. The FE effect in the r2 
phase of ErFeO, should therefore be smaller than in the r4 
phase. 
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In the spin-flip region in the T,, phase the oscillations 
of all the modes are transformed in accord with the represen- 
tations ofr,,,,. All the components in the scattering tensors 
differ therefore from zero. Using (20) and (2 l), let us examine 
the behavior of the intensity of scattering by the soft mode in 
the temperature region T, < T <  T,. The antisymmetric part 
of the xy and yx components in this temperature region be- 
haves as (T2 - T ) ' I 4 / ( ~  - TI)'l4. These components have 
thus singularities at T = TI and vanish at the point T = T2 in 
accord with the experimental data of Ref. 16. The antisym- 
metric part of the yz and zy components is proportional to 
(T- T1)'I4/(T2 - T)'~,, i.e., has a singularity at T = T,. In 
addition, a singularity in the spin-flip points will be pos- 
sessed by the symmetric part of the yz and zy components: 

a::' (vI) -const/ (T2-T) "'+const/ (T-TI)"'.  

The diagonal component of the scattering tensors will have 
no singularities whatever. 

On the basis of (19) it is easy to obtain the temperature 
dependence, in the T,, phase, of the tensor components of 
the nonsoftening acoustic mode and of the exchange 
branches. This dependence should cause the scattering ten- 
sors in ther,, phase at the points TI and T, to be equal to the 
scattering tensors of the phases r, and T,, respectively. We 
note that the RSL tensor of the softening magnon mode in 
the phases r, and T, never contains contributions of the 
magneto-optical constants of the given magnetically ordered 
phase. 

Since the distance AY between two exchange branches is 
small in orthoferrites, Av-Y+H,  HE - I ,  in scattering by ex- 
change branches the lines corresponding to different 
branches can merge into one if the spectrometer has insuffi- 
cient frequency resolution. In this case the scattering tensor 
for the merged lines will be a superposition of the tensors of 
two exchange branches. This circumstance can be useful in 
an experimental search for exchange branches. 

The analysis presented shows that the intensity of light 
scattering by exchange magnons should as a rule be less than 
the intensity of the scattering by the acoustic ones. This is 
possibly why no exchange branches of the spectrum were 
observed in Ref. 17, in an investigation of light scattering by 
the four-sublattice NaNiF,, which orthoferrite structure 
and a magnetically ordered phase r , ,  notwithstanding the 
undertaken special searches. 

To conclude, it must be noted that light scattering by 
magnons in orthoferrites was recently investigated experi- 
mentally and theoretically in Ref. 18. The form of the RSL 
tensor was considered in there using the copresentations of 
the magnetic group.' The actual calculation, however, was 
based on an expansion of the dielectric constant in powers of 
F and G up to quadratic terms inclusive. As a result, the 
structure of the RSL tensor obtained in Ref. 18 coincides 
with our earlier  expression^.'^ On the other hand, the ex- 
change branches of the SW spectrum and light scattering by 
them were not considered in Ref. 18. 

The authors are deeply grateful to I. M. Vitebskii and 
D. A. Yablonskii for numerous fruitful discussions, as well 
as to A. S. Borovik-Romanov, V. V. Eremenko, R. V. Pi- 

sarev, Yu. A. Popkov, and N. F. Kharchenko for a helpful 
discussion of the work. 

APPENDIX 

Frequencies of SW at k = 0 in magnetically ordered 
phase r2, in dimensionless units. 

The acoustic branches: 

v12=E,K4 sin2 0 cos2 0, 

v,I'=E~' { [ E ~ ~ ~ + D ~ ~ , ; : - D ~ :  ( ~ 4 ' ) - '  

1 - ( 4 s ) ' ( e 1  cos' 0 + - e2 sin2 6) ] cos2 0). 
2 

The exchange branches: 

For the equations the following designations are used: 

"Allowance for the magnetoelastic interaction will leave the coefficients 
t,, r,, and d ,  finite at the phase-transition points, but since the magne- 
toelastic interaction is weak in the vicinities of TI and T2, these coeffi- 
cients have a sharp maximum. 

')To simplify the expressions, we use in Eqs. (22)-(24) the notation 
A, = oxy,+, R2 = axr.y, A3 = o xY,, and R =a,,  R g1 =aiiyy,  etc. 

3'It can be easily seen that in both cases the direct products of the IR of the 
operators that participate in one mode contain IR of an equilibrium 
magnetic configuration. 

4'Similar relations between the vectors of the weak and antiferromagne- 
tism, magnetization, and antiferromagnetism are apparently valid for a 
large class of orthoferrites. 
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