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It is shown that dynamic diffraction of neutrons is sensitive to very low energy transfer corre- 
sponding to ultrasound frequencies 10-100 MHz. The calculated position of the satellites on the 
reflection curves differs from that calculated from the kinematic formulas. It is shown that at 
sufficiently high frequency the increment to the integral reflection consists of a part that is pro- 
portional to the sound amplitude and a term that oscillates as a function of the amplitude. 

PACS numbers: 61.12.Dw, 43.35.Gk 

It is known that ultrasound oscillations of relatively low 
frequency (wavelength comparable with the sample size) in- 
fluence noticeably the Bragg diffraction of x rays and of ther- 
mal neutrons in perfect crystals (see, e.g., Refs. 1-4). In this 
range, the spatial periodicity of the acoustic displacements 
does not manifest itself and the influence of the ultrasound 
does not depend on its wavelength A,. In the x-ray case a 
dependence on A, appears in the region A, 5 r (T is the ex- 
tinction length). A transverse acoustic wave propagating in 
the scattering plane parallel to the reflecting planes causes 
resonant suppression of the anomalous passage at As = T 

(Ref. 5). The resonance is due to interband scattering that 
mixes the Bloch states on two branches of the dispersion 
surface of the dynamic diffraction. The probability of inter- 
band scattering in neutron diffraction was calculated in Ref. 
6 for the same geometry in a semikinematic approximation. 
In the Bragg geometry, the interband scattering that is possi- 
ble at A, < r leads to an increment, linear in the sound ampli- 
tude, to the integral intensity of a reflected x-ray beam.' A 
theory of x-ray scattering by ultrasound oscillations was de- 
veloped in Ref. 8 for A, gr and in Ref. 9 for the intermediate 
region A, -7. The related problem of scattering by thermal 
lattice vibrations was analyzed in Ref. 10. 

Neutron diffraction by high-frequency oscillations in a 
crystal differ substantially from that of x rays. Since the ther- 
mal-neutron velocity is of the same order as of the sound, 
they pass through a sample - 1 cm thick within a time - 10' 
T,, where Ts is the period of the acoustic oscillations with 
wavelength equal to the extinction length. Thus, the neutron 
propagates in an oscillating crystal, whereas x rays, owing to 
the high speed of light, produce an instantaneous diffraction 
photograph of the crystral. As a result it is necessary to take 
into account in the diffraction of neutrons, in contrast to that 
of x rays, not only the quasimomentum conservation law but 
also the energy exchange between the neutron and the oscil- 
lating crystal. Thus, the satellite angular shift due to the 
change of the neutron energy is of the order of one second of 
angle at ultrasound frequencies - 100 MHz and is fully com- 
mensurate both with the angle width of the diffraction maxi- 
mum and with the shift due to momentum exchange between 

the neutron and the acoustic wave. Consequently, the dy- 
namic neutron diffraction turns out to be sensitive to very 
small energy transfers corresponding to frequencies 10-100 
MHz. The subject of the present paper is a theoretical inves- 
tigation of dynamic diffraction of neutrons by high-frequen- 
cy oscillations at A, -T. 

BASIC EQUATIONS 

The Schrodinger equation, which describes the propa- 
gation of a neutron in a crystal in which an acoustic wave is 
excited, is of the form 

where m and r are the mass and radius-vector of the neu- 
trons; a, is the length of scattering by thej-th nucleus located 
in the I-th unit cell; R,, and ulj are the equilibrium position 
and displacement of the nucleus Y in a traveling acoustic 
wave: 

ulj=W exp (iKsrlj-iost) f c.c., (4) 
W ,  K ,  , and w, are the amplitude, wave vector, and frequen- 
cy of the ultrasound. The phase of the wave (4) is chosen such 
that W* = W .  Transforming to Fourier components with 
respect to the frequency fl and to the wave vector q, we 
obtain in the case of small displacements (1H.W 14 1) 

Y = J Y (4, R) exp (iqr-iBt) d B ,  (5) 
q 

- ie  (HW) F (A) Y (q+H+crK~, Q+awn) =0, 
a-*l,A 

F ( A )  = aj exp (iHRu), (7) 
j 
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where E = 2&/mx, H is the reciprocal-lattice vector, x is 
the volume of the unit cell, andF (H)  is a structure factor. For 
a centrosymmetric crystal without absorption F (  - H) 
= F (H). 

We shall assume that the two-wave case is realized in 
the crystal at W =  0. Confining ourselves to the single- 
phonon approximation, we cut off the infinite system of cou- 
pled equations (6) and obtain the matrix equation for the 
determination of the six most significant components of the, 

wave function and of the corresponding wave vectors q in the 
form 

where 
C, D D 

D 0 C-1 

contains the blocks 

here 

Yao=Y (q+G+aKs, P+ aws) 

and the wave function is 

are the amplitudes of the plane-wave components. To deter- 
mine the wave fields wave fields we must use the condition 
that Y by continuous on the crystal surface. As usual, we 
neglect the continuity condition for the normal derivative of 
Y, since the refractive index of the neutron wave is close to 
unity. 

A few preliminary remarks are in order concerning the 
structure of Eq. (8). In the absence of sound, i.e., at D = 0, 

A 

the matrix B is quasi-diagonal, and each of the matrices C, 
describes two-wave diffraction for the pair of waves 

1 q + aK, ), Iq + H + Ks ). It is known" that the eigenval- 
ues q of the matrices C, , determined from the condition det 
C, = 0, form in reciprocal space a two-sheeted dispersion 
surface. This surface is obtained at a = f 1 from the surface 
with a = 0 by shifting the latter by a certain vector Sq,. 
Neglecting small quantities of the order of (Ks/q)2 and (69, / 
q)2, we obtain 

> ,  

AKo=~sIv cos €I,, e= (e,+ee)/2 cos €I,,, 

where f is a unit vector normal to the scattering plane, v is the 
neutron velocity, e, and e, are unit vectors in the directions 
of the incident and diffracted waves, and 8, is the Bragg 
angle. 

The matrix D mixes the eigenfunctions with different a. 

. ' IY)= 

r - 

situation changes in the presence of degeneracy. Additional 
gaps appears on the dispersion surface in the branch inter- 
section region, the eigenvalues change by an amount - 1H.W I and the eigenfunctions change by an amount - 1. 
Corresponding to the additional gaps are satellites on the 
reflection curves. In other words, one can speak of intraband 
scattering if branches of like type intersect, and of interband 
scattering if states of unlike type are mixed. It must be em- 
phasized that the wave function of the considered nonsta- 
tionary problem constitutes a superposition of waves of dif- 
ferent frequency. The mixing waves with different a ,  
however, preserve their coherence because the acoustic per- 
turbation is coherent. 

The term AK, e in (10) is the result of the Doppler effect 
on the traveling acoustic wave and of the change of the 
lengths of the wave vectors of the inelastically scattered neu- 
trons. For thermal neutrons we have v - v, (us is the speed of 
sound) and AK, - K,, whereas for x-ray diffraction AK, is 
negligibly small. Depending on the mutual orientation of Ks 
and e, the momentum contribution K; and the energy con- 
tribution AK, e to S q ,  can either cancel each other are can 
add up. This leads to a change of 16% I and of the angle 
between the satellites when the direction of the traveling ul- 
trasound wave is reversed. For a standing wave, the same 
circumstance gives rise to the appearance of four rather than 
two satellites in the x-ray case. Total mutual cancellation of 
the two contributions to (Sq, 1 ,  which is possible at Kille, 
takes place if the sound velocity is equal to the projection of 
the neutron velocity on the acoustic-wave propagation di- 
rection. In this case there is no interaction with the sound at 
all, since the phase of the oscillation and the magnitude of 
the displacement remain unchanged on the neutron path. On 
the other hand, dq, #O when the ultrasound propagates per- 
pendicular to the scattering plane (K; = 0),  so that in this 
geometry, in contrast to the x-ray case, the interaction with 
the acoustic wave does not vanish. 

T o o  
YOH 
y 1 0  

~ I H  

y - 1 0  

y-IH 

In the absence of degeneracy of the eigenvalue at different a, SYMMETRIC LAUE REFLECTION 
small perturbation of D changes the eigenvalues by an Let a neutron with a wave vector Q be incident on a 
amount - (Haw I Z  and the eigenfunctions by - 1H.W I. The plane-parallel plate of thickness T and let the angle 6 to the 
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reflecting planes be close to the Bragg angle 8,. The neutron 
has inside the crystal a wave vector q = Q - ng, where n is 
the inward normal to the surface and 5 is determined from 
the condition det Ca = 0 at L2 = fi2Q '/2m. Neglecting the 
small quantities - (K, /Q )', we obtain the eigenvalues la+ 
and the eigenfunctions Pa* corresponding to the two 
branches of the dispersion surface: 

2nF (0) 
&+=-Q sin 0.A0 + 

Q cos 0.x 
os (eo+eH)Ks -a ---- [ lJ cos 8. 2 cos 8 .  (I1) 

ya-= 1 cos 1 
sin (ya/2) ' 

where 

is the splitting of the two-wave dispersion surface for a defi- 
nite angular deviation from the exact Bragg condition; 

AKo=2n/.t=4nF (H) /Q cos 0,x 

is the minimum value of the splitting AK; 

1 
ctg y, = ( 2 ~  sin 

The boundary condition on the entrance surface of the plate 
is 

Y,o=6ao, Ym=O. 

Let us consider a number of concrete cases. 
1. We denote by I, , the intensity of the reflected beam 

in the absence of an acoustic perturbation. Averaging of this 
quantity over the exctinction beats yields" 

where d B o  = d / r  is the angle width of the diffraction maxi- 
mum and d is the distance between the planes. 

2. A transverse ultrasound wave is excited in the crystal 
and propagates perpendicular to the scattering plane, 

FIG. 1. Dispersion surface modified by interaction with an acoustic wave. 
The branch 1 + corresponds to 8, +, etc. 

(each scattering plane oscillates as a unit, with a frequency 
0,). Intersection of the dispersion branches (see the figure) 
corresponds to the equations 

Eo+=Ei-, Eo-=E-I+. (13) 

Using (22), we can rewrite the conditions (13) in the form 

AK=AK,. (14) 
It follows from (14) that the intersection of the dispersion 
surfaces takes place at w, >AKov cos 8,, the intersection 
points being symmetric about the Lorentz point L. For small 
IH-WI near the degeneracy points (13) we obtain the per- 
turbed eigenvalues of the matrix B in the form , 

(Eo++El-) / 2 r  I HWI AKo/2 sin 0, 

E3,4= ( ~ 0 - + ~ - 1 + )  /%F I HW I AK0/2 sin 6, (15) 

where 

ctg 6= (AK,-AK) 11 HW I AK,. 
Exact resonance corresponds to S = r/2. The acoustic per- 
turbation lifts the degeneracy at the points of intersection 
and leads to formation of the gap IH-WlAK,. Taking the 
boundary conditions into account we obtain the wave func- 
tion of the neutron in the crystal: 

Y 6  V=exp (iQr-iQt) sln- cos - exp (-iE,z) 
1 . 2  2 

sin (y/2) I +i sin 6 exp (iKsr-iost) 
-cos (y/2) exp (iHr) 
cos (y/2) 7 6  I ] +sin sin exp (-ig2r) X I  sin (y/2) exp (iHr) 

sin (y/2) 
.[sin" 2 I -cos (y/2)exp (iHr) I -i cos 6 exp (iKsr-io,t) 

cos (y/2) 1 6  I ] +cos sin exp (-i@) 
x 1 sin (y/2) exp (iHr) 

cos (y/2) 6 
x [ sin % I sin (y/2) exp (iHr) 

-i cos - exp(-iKsr+iost) 
1 2  

sin (yI2) 1 6  I ]  +cos cos exp (-it&) 
-cos (yi2) exp (iHr) 

6 D0S(y/2) +i sin - exp (-iK8r+iost) 
x [ 1 sin (y/2) erp (iHr) 1 2  

sin (y/2) 
x 1 -cos (y/2) exp (i8r) (16) 

the z axis is directed along n. The upper row of the two- 
dimensional vector Y corresponds to waves whose direc- 
tions are close to the incident wave, and the lower row corre- 
sponds to the reflected beam. After averaging over the 
spatial dimensions of the neutron detector 1%2.rr/Ks and (or) 
over time intervals longer than 2?r/w, we obtain the intensi- 
ty I,, of the elastically reflected wave and of the waves with 
increased (I, + ) and decreased (IR - ) frequencies: 
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We can separate in the total intensity I, =IR, 
+ I , ,  + I, - of the reflected beam the terms with differ- 

ent dependences on the plate thickness: 

zRazl+12f 1 8 .  (I8) 

Here I, does not depend on T, with 

where 

The quantity AI, reaches values - 1 at angles satisfying the 
conditions (14), and decreases rapidly with the angle mis- 
match. Thus, expression (19) describes the onset, on the re- 
flection curve, of satellites with angle width 

At JAK, - A koJ % 1H.W J2AKo the satellites have a small an- 
gle width S8(ABO. We confine ourselves hereafter to this 
situation. The case of broad satellites, which corresponds to 
tangency of the branches of the dispersion surface, calls for a 
separate analysis and is not considered here. The second 
term in the right-hand side of (18) oscillates slowly with 
change of thickness: 

IF-'1, sin2 6 cos2 y cos [ ( E l - - E 2 )  TI, (20) 
and the third term oscillates with a small period on the order 
of the extinction length T: 

Z3=-i14 sin2 y {sin2 6 cos (AK,T) 

+2 sin4 ( 6 / 2 )  cos [ (AKm+ti-Ez) TI 
+2 cos4 (6 l2)  cos [(A&-Ei+E2) T )  . 

Assuming the crystal to be thick (WT), we average I, 
over the rapid extinction beats and determine the ultra- 
sound-induced increment AR to the integral reflection: 

i (21) 
A ,  AZi d8=2IHWI [ I -  (AKOIAK,) 21'"R 

where i? is the averaged integral reflection in the absence of 
oscillations: 

The quantity AR, is linear in the amplitude of the acoustic 
wave. At os <AKov cos 8, there is no intersection of 
branches and AR, vanishes. It can be easily seen that in this 
case the increment to the integral reflection is quadratic in 
the sound amplitude. 

Recognizing that S8(A 80, we obtain the oscillating in- 
crement to the integral reflection: 

where Jo(x) is a Bessel function of zero order. If 

IHW IAKoT9 1, then AR2zAR, and the amplitude depen- 
dence has a zero slope at W = 0. At 1H.W lAKoB 1 we have 

It can be seen from (23) that the increment to the integral 
reflection contains a term that oscillates over the crystal 
thickness, with a period 2.rr/JH.WJAKO%~. The long-wave 
oscillations are due to the onset of a gap in the region of the 
self-intersection of the dispersion surface, and are the analog 
of extinction beats for the case of a controllable scattering 
amplitude. Their observation can be used in principle for 
absolute measurement of the amplitude of high-frequency 
ultrasound. It must be emphasized that in the geometry con- 
sidered the ultrasound does not influence the x-ray diffrac- 
tion. l2  

3. A transverse ultrasound wave is excited in the crystal 
and propagates along the vector n, 

HK,=O, nKs=Ks, HWZO. 

Simple calculation shows that a pair of symmetrically locat- 
ed satellites is produced at the angles A8 given by the condi- 
tion 

[ (A8)  + (Ago )  7 I ( a s - vKs  cos O R )  /uQ sin 20,1, (24) 
where the frequency must exceed a certain threshold value 

When the propagation direction of the acoustic wave is re- 
versed, we obtain in place of (24) 

[ (A6)" (ABo) "= (a8+vKS cOS O R )  /uQ sin 28, (25) 
with a condition on the frequency 

When a standing ultrasound wave is excited in the crystal, an 
increase ofAS leads first to satellites given by the condition 
(25), followed by an additional pair that satisfies (24). In the 
x-ray case, at analogous geometry, only two satellites appear 
at Ks > AKo (Ref. 7). It must be pointed out that (24) and (25) 
contain the quantity A8,. This leads to a deviation from the 
simple kinematic expression for the satellite angle at fre- 
quencies close to the threshold. The calculation of the incre- 
ment to the integral reflection is similar to the one performed 
in example 2. 

4. A longitudinal ultrasound wave propagates along a 
vector H. Two cases are realized here. 

a. At v sin 8, > vs and at an arbitrary frequency of the 
sound, branches with identical second index can intersect: 

Four syummetrically placed satellites are produced at angles 
determined from the equation 

A K ,  = * ------ 
Q sin O B  ' (26) 
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b. At v sin 8, <us and at sufficiently high frequency 
o s > ~ K o v  cos On [ 1 -  ( U  sin Onlus) 'I-% 

four satellites appear and are connected with the branch in- 
tersections 

For the angles A0 we have in place of (26) the equation 

v AK,  ' / a  
( A O ) ~ + ( A O ~ ) ~ I ~ ~ ~ +  [(-- i he)'+ ( A O . ) ~ ]  

U S  Q 
AKa 

=- 
Q sin On ' 

Thus, in this case, in contrast to the cases considered above, 
excitation of a traveling acoustic wave in the crystal pro- 
duces four satellites. Reversal of the sound-propagation di- 
rection or a transition to a standing wave does not alter the 
diffraction picture. We note that the condition v sin 8, = us 
that distinguishes betweeen cases a and b corresponds to dis- 
placement of the branches of the dispersion surface along 
their asymptotes and to the absence of satellites. 

CONCLUSION 

The investigation of dynamic diffraction of neutrons by 
high-frequency acoustic oscillations reduces in essence to an 
analysis of the cases of self-intersection of a modified disper- 
sion surface. The result of the self-intersections is the onset 
of additional gaps of the dispersion surface and of satellites 
on the reflection curves. The presence of gaps leads to long- 
wave oscillations of the integral reflection as a function of 
the crystal thickness; the period of these oscillations is deter- 
mined by the amplitude of the ultrasound. 

An important role in ur problem is played by not only 
momentum exchange but also energy exchange between the 
neutron and the acoustic wave. The energy transfer mani- 
fests itself in a change of the angle position and in an increase 
of the number of satellites compared with the x-ray case, and 
even to the appearance of satellites in a geometry in which 
there are no x-ray satellites at all. 

Although the neutron energy change is by itself quite 
small ( -  10' eV), it turns out to be sufficient for a substantial 
change of the diffraction pattern in a narrow angle range 
( -  1 ") of dynamic scattering. 

The problem of diffraction by an acoustic wave is close- 
ly related to the problem of thermal diffuse scattering under 
conditions of dynamic diffraction. In particular, the diver- 
gence of the intensity of this scattering near a reciprocal- 
lattice site, which is well known in kinematic theory, is eli- 

minated when account is taken of the frequency threshold 
for the formation of satellites on phonons with wave vector 
Ks 1 H or on account of vanishing of the matrix element of 
the interaction at small Ks in the case Ks IIH. This result was 
obtained earlier within the framework of a semi-kinematic 
t h e ~ r y ' ~ . ' ~ * ' ~  that takes into account the dynamic rescatter- 
ing by atomic planes, and neglects scattering by the thermal 
phonon. Another obvious consequence of the dynamic anal- 
ysis is the presence of diffuse scattering near a zero recipro- 
cal-lattice site, if the crystal is close to the reflection position. 
This scattering is the result of reflection of the inelastically 
scattered radiation from the atomic planes of the crystal. 
Peculiar to neutron diffraction is a dependence of the effec- 
tiveness of thermal diffuse scattering on the neutron and 
sound velocity ratio. 

We note finally that the results are directly applicable to 
the case of diffraction of modulated structures (static dis- 
placement wave, w, = 0). 

The authors thank V. L. Indenbom for helpful hints. 
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