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Equations for the correlation functions of fluctuations in the spectra of relativistic collisionless 
particles are obtained from the combined system of Einstein's equations and the Vlasov equation. 
It is shown that the interaction of high-frequency gravitational waves with collisionless particles 
leads to diffusion of their spectrum in the momentum space. The distortions in the spectrum of the 
microwave background radiation in a cosmological model with high-frequency gravitational 
waves are discussed. Bounds are obtained on the spectral characteristics of background gravita- 
tional waves. 
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The evolution of gravitational waves in an expanding 
cosmological model was considered for the first time by E. 
M. Lifshitz in a pioneering paper.' Many years laterzv5 there 
followed investigations of linear effects of interaction of gra- 
vitational waves with collisionless particles-neutrinos- 
after decoupling from electron-positron pairs and with pho- 
tons of the microwave background after hydrogen recom- 
bination. 

In the present paper we consider, in the collisionless 
matter components in an expanding cosmological model, 
nonlinear effects due to the interaction of ultrarelativistic (or 
massless) particles with tensor excitations of the space-time 
metric. The proposed approach is analogous to the methods 
of the quasilinear relaxation theory for the particle distribu- 
tion function in an electron plasma developed in Refs. 6-8. 
The interaction of electrons with collective plasma excita- 
tions (plasmons) has much in common with the process of 
particle scattering by tensor perturbations of the metric (gra- 
vitons). The behavior of collisionless particles in a cosmolo- 
gical model with a background of high-frequency gravita- 
tional waves must be described by means of the relativistic 
analog of Vlasov's kinetic equation with self-consistent field, 
the system of Einstein's equations playing the part of Pois- 
son's e q ~ a t i o n . ~ . ~ . ~  In the framework of the quasilinear ap- 
proximation, which takes into account only the interaction 
between the collective excitations and the particles, this sys- 
tem of equations reduces to a diffusion equation for the parti- 
cles in the momentum space and to an equation for the rate 
of growth or damping of the energy density of the gravita- 
tional waves. It is found that the diffusion equation for the 
particles in the momentum space is analogous to Kompan- 
eets' equation,'' which was considered in Refs. 11 and 12 in 
connection with the problem of spectral distortions of the 
background radiation resulting from its interaction with hot 
electrons of the cosmological plasma. The analogy arises be- 
cause of the similarity of the mechanisms of energy transfer 
of the particles to the high-frequency region: the quadratic 
Doppler effect (Av/v-v2/c2) in the models of Refs. 11 and 
12 and A v/v- p2/c4 in the considered situation (here, 
p2 - h { h is the analog of the square of the perturbation of 

the gravitational potential, where h { are the tensor pertur- 
bations of the space-time metric). 

In Sec. 1 of the present paper we obtain the basic equa- 
tions for the correlation functions of the perturbations of the 
particle distribution function and the tensor fluctuations of 
the space-time metric. In Sec. 2 we discuss the conditions of 
applicability of the quasilinear approximation, and we ana- 
lyze the Fokker-Planck equation for the particle distribution 
function. Section 3 is devoted to calculation of the diffusion 
coefficient of the particles in the momentum space in the 
approximation of a stochastic diffusion process. On the basis 
of a solution of the self-consistent linear problem of the dy- 
namics of gravitational waves and perturbations of the parti- 
cle distribution function, we consider in Sec. 4 the nonlinear 
distortions of the spectrum of the collisionless subsystem of 
the cosmological substrate under the influence of the energy 
density of the high-frequency gravitational waves. Section 5 
is devoted to a discussion of the astrophysical consequences 
of the considered effect. 

1. QUASILINEAR EQUATIONS FOR THE METRIC AND THE 
PARTICLE DISTRIBUTION FUNCTION 

We shall describe the behavior of collisionless gravitat- 
ing particles in an expanding cosmological model by the 
combined system of Einstein's equations and the Vlasov 
e q u a t i ~ n ~ - ~ :  

where F (x ,  p) is the particle distribution function in the phase 
space; xi (i = 0,1,2,3) are the coordinates;pa (a = 1,2,3) are 
the momenta; gik is the metric tensor; rf are Christoffel 
symbols of the second kind; Rik is the Ricci tensor; Tki is the 
energy-momentum tensor of the relativistic collisionless 
particles9: 

I-&? i k T " = c ~  a p p  F ( x ,  p )d3p ,  
P  

(3) 

x is the gravitational constant; and g~det l lg ,  11. 
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In accordance with the methods of Refs. 6-8, we repre- 
sent the particle distribution function F(x ,p)  and the geo- 
metrical characteristics of space-time (gik , Rik ) as sums of 
regular and fluctuating terms: 

gik=giR+hik, I1ikl=PiA[+Sihl, Ra=RiR+Pik, 
(4) 

where the semicolon denotes the covariant derivative in the 
space with the metric g,; the comma denotes the partial 
derivative; S :k and Pi, are the linear and nonlinear perturba- 
tions of the Christoffel symbols and the Ricci tensor; and the 
bar over a symbol denotes averaging over the random phases 
of the perturbations or over a four-dimensional relativisti- 
cally invariant volume: 

In what follows, we assume that the fluctuating terms in (4) 
and (5) satisfy the condition 

<hi , )= (@ (x, p )  > =O. (7) 

Using the representation (4), (5), we separate in the Christof- 
fel symbols and the Ricci tensor the terms linear (S ;f), P 1;)) 
and quadratic (S if), P j2k)) in the amplitude of the metric per- 
turbations: 

~~~'=s:;"+s:k'~', pik=p:) +pi:) (8) 

Then, substituting (4), (5 ) ,  and (8) in the system of equations 
(1) and (2) and restricting ourselves to terms of order h and 
h ', we obtain quasilinear equations for the particle distribu- 
tion function and the space-time metric: 

where r p  is the perturbed energy-momentum tensor of the 
particles. 

Next, subtracting (lo) and (1 1) from Eqs. (1) and (2), we 
arrive at the following system of linear equations giving a 
self-consistent description of the change in the particle dis- 
tribution function and the fluctuations of the metric: 

1 
p , [ ~ ~ k - ( p ~ l ~ ~ ~ ) + R ~ [  ( G I h - ( G I R ) )  - - Gik (PlmGml-(PlmGm')  

2 
+R~~(G~~-(G,[>))=~{G~~T~'-(G,~T~~)+T~~ (GIR-(Glk)I) .  

(13) 

The properties of the system (1 1)-(13) were investigated in 

Refs. 13-1 5 in the framework of the hydrodynamic approxi- 
mation. In this case, there is no interaction of the gravita- 
tional waves with the matter, and in the linear approxima- 
tion the solution of (13) agrees with the results of Ref. 1. In 
the framework of the kinetic description of the interaction of 
collisionless particles with tensor excitations of the metric a 
fundamental difference from the conclusions of Refs. 1 and 
13-15 arises. As can be seen from (12), the perturbation of 
the particle distribution function is proportional to the gra- 
dient of the background distribution function in the momen- 
tum space, and an influence of the particles on the gravita- 
tional waves is absent only when dF/dpa = 0. In the general 
case, 0 (x, p) a dF/dpu , and Eq. (10) actually reduces to a 
Fokker-Planck equation in the momentum space. Below, we 
shall consider this question in more detail for a model of the 
Universe that is homogeneous and isotropic on the average. 

2. PARAMETERS OF THE QUASILINEAR THEORY. THE 
FOKKER-PLANCK EQUATION FOR THE PARTICLE 
DISTRIBUTION FUNCTION 

It follows from (10) and (1 1) that the response of the 
particle distribution function to the collective excitations of 
the space-time metric is determined by the correlation func- 
tions of the gravitational-wave amplitudes. In these equa- 
tions, the operation of averaging is to be understood as calcu- 
lation of integrals of the type 

1 1 
(f) = --= J a3xT J j(xa, t )  ~2 at. 

L31'-g 

This operation is meaningful only when the characteristic 
scale of the fluctuations is appreciably less than the radius of 
curvature of the Universe. However, in the theory of gravita- 
tional instability' the scale ct of the cosmological horizon 
automatically appears, separating at any time t the regular 
and oscillator regimes. In the case = A /ct(l, the tensor 
perturbations of the metric oscillate in time with the charac- 
teristic frequency m2>c2R and, therefore, satisfy the condi- 
tion of stochasticity. At the same time, if we take into ac- 
count in (10) and (1 1) the averaged squares of the fluctuation 
amplitudes we find only asymptotic solutions for the particle 
distribution function in the phase space. Making the as- 
sumption that F ( X , ~ )  depends only on the modulus of the 
momentum, we consider its transformation in time due to 
the interaction of the particles with the high-frequency gra- 
vitational waves. 

We assume that the interval between events of the four- 
dimensional space-time is conformal to the interval of Min- 
kowski space: 

ds2=a2 ( q )  (dq2-dx2-dy2-dzZ) . 

Then for the perturbations h ( x p , ~ )  and @ (xu, f , 77) we can 
use the Fourier representation 

haB (xu, q) = J h ;,)eikx d3k, (15) 

Substituting (15) and (16) in (12) and introducing a spherical 
coordinate system in the space of wave vectors, we transform 
(12) to the integral equation 
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where q2 = yap pap@, and yap is the metric of three-dimen- 
sional space; 8 and x are the polar and azimuthal angles of 
the spherical coordinate system. 

Then, using (17), we reduce Eq. (10) to the form 

where 

x eikq'  cos 9 I 
is the diffusion tensor, and Stp(,, is the Fourier transform of 
the perturbations of the Christoffel symbols. 

It is obvious that the diffusion tensor DUE must be iso- 
tropic in the momentum space of the particles. Indeed, the 
appearance of anisotropy in Dm" would signify the existence 
of preferred directions in the momentum space, which is in- 
compatible with the assumed symmetry of the particle distri- 
bution function T(q2, q)  and the metric gik ( q). 

By virtue of the isotropy of T(q2, q )  the derivative I3F/ 
13pa can be represented in the form 

dP/dpa=sadP/dq, 

with the unit vectors, = yap p@/q. Then from (18) 

where the contraction of the diffusion tensor is calculated by 
solving the system of linear equations (12) and (13). 

Thus, the interaction of the collisionless gravitating 
particles with the high-frequency gravitational waves is ac- 
companied by a transformation of the distribution function 
in the phase space. We recall that we have obtained this re- 
sult in the quasilinear approximation for the combined sys- 
tem of Einstein's equations and the Vlasov equation, this 
approximation taking into account the self-consistent vari- 
ation o fF (  q, q2) and the energy density of the gravitational 
waves in the expanding cosmological model. In the follow- 
ing section, we shall discuss this effect in the framework of 
random diffusion processes.16 

3. APPROXIMATION OF RANDOM DIFFUSION PROCESSES 
FOR THE INTERACTION OF THE COLLISIONLESS 
PARTICLES WITH THE HIGH-FREQUENCY GRAVITATIONAL 
WAVES 

Following the methods of Ref. 16, we consider the mo- 
tion of the collisionless particles in the space with metric 
gik = gik + hik by means of the geodesic equations 

where the perturbations h ,  of the metric are a random 
Gaussian field defined on the background& (7). Taking into 
account the representation (8), we write (21) in the form 

Introducing the particle distribution function F (pa ,  q), we 
go over from (22) to the equation for the probability density 
of the distribution of the random fieldspa (Ref. 16): 

where 

It can already be seen from (23) that the function !Po is in 
fact the diffusion tensor of the particles in the momentum 
space and identical to the tensor D " ~ .  Thus, in the frame- 
work of this approximation we arrive at a Fokker-Planck 
equation forF(  pa,  q)  identical with ( 18). However, there is a 
fundamental difference between the quasilinear description 
of the interaction of the particles with the collective excita- 
tions of the space-time metric and the approximation of ran- 
dom diffusion processes. The point is that in the framework 
of the former the correlation characteristics of the random 
field h ,  are determined from the self-consistent system of 
equations for the gravitational waves and the perturbations 
of the particle distribution function. In the latter, these char- 
acteristics are specified as initial conditions. Therefore, 
when one is considering the interaction of collisionless parti- 
cles with gravitational waves the quasilinear equation is 
more informative than the approximation of random diffu- 
sion processes. 

4. LINEAR AND QUASILINEAR TRANSFORMATION OF THE 
PARTICLE DISTRIBUTION FUNCTION 

To calculate the diffusion coefficient of the particles in 
the momentum space, we shall need to solve the system of 
linear equations for the perturbations of the space-time met- 
ric and the particle distribution function @ (x ,  pa ). In this 
stage, we arrive at the well-known problem of the growth of 
perturbations in an expanding cosmological model in the 
framework of the kinetic d e ~ c r i ~ t i o n . ~  According to Ref. 4, 
the amplitudes of the tensor perturbations in the high-fre- 
quency approximation kq, 1 have the representation 

1 
v o ( k ,  (q)  = - ( ~ ~ e - ~ ~ q + c k . e ~ ~ " )  , 

9 

where the coefficients C t  characterize the polarization of 
the gravitational waves and satisfy the conditions1 

kaCa"kBcaR=O, caa=0. 
Note that the appearance in (24) of superadiabatic damping 
of the amplitude of the tensor perturbations is due to the 
appearance of the fluctuations of the distribution function of 
the collisionless gravitating particles. Using (24), we find 
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@ (pa, q)  from Eq. (17). For this, we choose in the space of 
wave vectors a spherical coordinate system, in which the z 
axis is directed along the vector k, and we take into account 
the representation (5). As a result, we obtain 

Q)k (q, q,  0, X) =e-'k9 

Thus, (24) and (25) settle the linear problem of the growth of 
perturbations and enable us to turn to the calculation of the 
diffusion coefficient of the collisionless particles in the mo- 
mentum space. It is worthy of note that the behavior of 
@ ( q, q) is determined by the nature of the unperturbed ener- 
gy distribution of the particles. If @/aq = 0, the perturba- 
tions of the particle distribution function do not depend on 
h ,  and are determined solely by the initial conditions. We 
assume in what follows that for q = v$F/b'q + 0 it is possi- 
ble to find from (20) and (24) an asymptotic ( q>.rr,) expres- 
sion for D"'( q, q, 6, x). Because this is cumbersome, we re- 
strict ourselves to a discussion of the final expression for 
D ( q, q)  obtained from (19) after integration over the angular 
variables: 

16 
OD 

D(q, q )  = ,(2n)'q25 ek'ekk2 dk .  
3r O 

Thus, the kinetic equation for the distribution function of 
the collisionless particles after the change of variables 

reduces to Kompaneets' equation," which describes the dif- 
fusion of the quanta of the background radiation in the fre- 
quency space: 

If for y = 0 the particle distribution function satisfies the 
eauilibrium Planck or Fermi distribution 

the solution of Eq. (28) can be represented in the form12 

1 - dq' 
F ( q ,  y )  = (4ny)'l 7 F ( 9 ' .  Y = ~ ) ~ x P  

As follows from (29), the interaction of the quanta of the 
background radiation with high-frequency gravitational 
waves in a hot cosmological model shifts the spectrum of the 
radiation to the region B> kT, conserving the particle num- 
ber. Such a transformation of the spectrum is analogous to 
the  distortion^'^-'^ that arise as a result of the interaction of 
the background radiation with hot plasma electrons at red 
shiftsz 5 lo4-10'. The reasons for the similarity are obvious. 
In the case of Compton scattering by electrons, the distor- 
tions of the radiation spectrum arise as a result of the qua- 
dratic Doppler effect: AY/Y - k T  /me2. In the considered sit- 
uation, the analog of the parameter kT/mc2 is p2/c4. Thus, 

scattering of the quanta by the fluctuations of the gravita- 
tional field leads to the extraction of energy from the high- 
frequency gravitational waves. Below, we shall consider 
some cosmological consequences of this effect. 

5. BOUNDS ON THE SPECTRAL CHARACTERISTICS OF 
BACKGROUND GRAVITATIONAL WAVES IN THE UNIVERSE 

As the collisionless subsystem of the cosmological sub- 
strate, we consider the microwave electromagnetic back- 
ground after the epoch of hydrogen recombination. In the 
following estimates, we shall disregard the restri~tions".'~ 
on the amplitude of the gravitational waves on the scale 
A -ct,, (t,,, -the age of the Universe at z = lo3) based on 
the data on the small-scale anisotropy of the microwave radi- 
ation, thereby permitting the possibility of secondary heat- 
ing of the cosmological plasma. In addition, we shall assume 
that the contemporary matter densityp, does not exceed 1- 
3% of the critical matter density p,, = 4.7 . lop3' g/cm3, 
taking the Hubble constant to be H, = 50 
km . sec-' . Mpc-'. It is obvious that the leveI ofthe distor- 
tions of the microwave spectrum, which is determined in 
accordance with (29) by the parameter y, depends on the 
choice of the initial spectrum g,(k) of the gravitational 
waves. Omitting a discussion of the mechanisms of genera- 
tion of tensor perturbations of the metric in the expanding 
Universe, we consider below two possible limiting cases of 
the behavior of go(k ): a power-law spectrum cut off at short 
wavelengths, 

and a delta-function spectrum 

where k, is the dimensionless wave vector of a perturbation 
whose scale is equal to the horizon at the time of recombina- 
tion; b i and ci are amplitudes; k,,, is the cutoff parameter 
at short wavelengths; and O ( x )  is the Heaviside function. 

Bearing in mind that at the recombination time qrec 
there is a suppression of the short-wavelength part of the 
spectrum of the background gravitational waves by (1 + k / 
k,,,)' times, we find from (30) and (3 1) the value of the pa- 
rameter y at q = qrec : 

for the power-law spectra, and 

for the delta-function spectra. 
Following Refs. 13-15, 17, and 18, we introduce the 

energy density of the gravitational waves at the epoch of 
hydrogen recombination, 
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and we consider the behavior of 

for different specifications of the initial spectrum. We obtain 

for the power-law spectra and 

for the delta-function spectra. 
Substituting (32) in (35), we find the connection between 

W, and the parameter y in the considered model. For the 
power-law spectra, 

5 2 
W , ( y ) = y  .-- m=-l, 32 I n x  ' 

For the delta-function spectra 
5 ko w:" ( y )  = 16 y  (;i;;;) O (ko-k,..) (k,-ko). (39) 

In these expressions, x = k,,, /krec . 
For the following estimates, we use the (:)component of 

Eqs. (10) in the metric 

g i k ( q )  = a 2 ( q ) d i a g ( l ,  -.1, -2 ,  - I ) ,  

namely, 

where E, is the energy density of the electromagnetic radi- 
ation. As follows from (40), the expansion rate of the Uni- 
verse is described by the well-known law a( 7) a 7 irrespec- 
tive of the relationship between Wg and E ,  . Then, assuming 
that for an estimate of W, we can take E, -E,, we find from 
(37) and (38) the connection (shown in Fig. 1) between the 
parameter y and the scale k,,, of the cutoff of the spectrum. 
In Fig. 1, the broken curve shows the experimental bounds 
on the level of the spectral distortions of the background 
radiation in the Wien range taken from Ref. 19. As can be 
seen from Fig. 1, the parameter y in the case of a "flat" spec- 
trum of the initial metric perturbations (m = - 3) and 
E~ -E, decreases logarithmically with increasing k,,, and 
agrees with the curve of the bounds only fork,,, = 10'4k,c. 

FIG. 1 .  Bounds on the parameter y of the distortion of the spectrum as a 
function of the cutoff scale x = k,,,/k,,, for different powers m: I )  
m = - 3,2) m = - 2,3) m = - 1,4) m = 0; the broken line corresponds 
toy = 0.05. 

For delta-function spectra of the background gravitational 
waves under the assumption E, -E, the dependence y(k,,, ) 
differs little from the variant with m = 0. We note that the 
assumption E,  - E ~  in the model with flat spectrum of the 
initial perturbations automatically leads to an amplitude of 
the gravitational waves of scale A at the time they go below 
the horizon of order h, -6. For R = lop2, the value of h, 
is close to the amplitude of adiabatic perturbations needed 
for the formation of the large-scale structural units of the 
matter in the Universe at such low densities of the nonrelati- 
vistic matter. 

It should be emphasized that besides the bounds consid- 
ered above on the spectral characteristics of the background 
gravitational waves we can obtain nontrivial information 
about the parameters of the initial state of the Universe de- 
scribed in the framework of the models of Refs. 20 and 21 by 
the Einstein-de Sitter solution 

The analysis of the graviton production processes in an 
inflationary cosmological model made in Ref. 20 shows that 
the contemporary energy density of gravitons is determined 
by the following parameters of the maximal-symmetry solu- 
tion: 

Es/Er= ( 2 / 3 n )  p2 In X, (41) 
where p = H o I g  , and Ho is the reciprocal radius of curva- 
ture, which characterizes the rate of exponential expansion 
of the Universe, and I ,  is the Planck length. The spectrum of 
gravitational waves obtained in the same paper corresponds 
to the variant we discussed earlier with m = - 3. Taking 
E, ZE, in the range of wave vectors rre, < k < k,,, and as- 
suming x z  10'3-1014 (see Fig. I), we obtain bounds on the 
duration t ,  of the de Sitter stage: 

H0ct,>3-4. 

In obtaining this estimate, we assumed that the spectrum of 
gravitational waves is cut off at k < k,, . Otherwise the angu- 
lar fluctuations in the temperature of the background radi- 
ation that develop in the approximation linear in the wave 
amplitude would undoubtedly exceed the observed limit. 

We thank Ya. B. Zel'dovich and I. D. Novikov for dis- 
cussing the work. 
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