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Stanley's theory ofthe flexoelectric effect (FE) in an ordered solution of solid rods is generalized to 
the case of a thermotropic liquid crystal with allowance made for both short-range repelling 
forces and attracting forces between the molecules. General equations are obtained for the flexo- 
coefficients and it is shown that the main contribution is made by the isotropic attraction between 
the molecules, modulated by their anisotropic form. After a number of simplifications, approxi- 
mate expressions for the flexocoefficients are obtained and depend explicitly on the characteristic 
parameters of the molecules. The ratio of the dipole and quadrupole FE is discussed and it is 
shown that the dipole FE is significant only for molecules with large transverse dipoles and 
determines the difference between the flexocoefficients. 

PACS numbers: 61.30.Cz, 77.60. + v 

1. The flexoelectric effect (FE) in liquid crystals consti- 
tutes the appearance of spontaneous polarization as a result 
of orientational deformation of the medium. In the nematic 
phase there exist two independent flexocoefficients, e, and 
el l ,  which determine the values of the two contributions to 
the induced polarization lg2: 

P=e,,n (Vn) +e, (nV) n, (1) 
where n is the director. A microscopic mechanism of the FE 
effects was first proposed by Meyer,' who pointed out that 
under conditions of orientational deformation of a liquid 
crystal the banana-shaped or conical molecules (see the fig- 
ure) should be so oriented that their constant dipoles are 
ordered and macroscopic polarization sets in. Petrov, Derz- 
han~ki i ,~  and Helfrich4 obtained expressions for the flexo- 
coefficients on the basis of the Meyer model, but used quali- 
tative semiphenomenological arguments, for which it is 
difficult to trace a connection with the existing molecular- 
statistics theories of liquid-crystal order. This question will 
be discussed in greater detail below. 

A consistent statistical theory of the FE in the nematic 
phase was developed by Straley5 for the case of a weak solu- 
tion of rods. He therefore took into account only short-range 
collisions of the molecules. At the same time, Straley actual- 
ly developed for the calculation of the flexocoefficients a 
general method that can be used in a number of particular 
cases. " 

Prost and Marcerou6 proposed recently a new micro- 
scopic interpretation of the FE, which requires neither 
asymmetry of the molecule shape nor a constant dipole mo- 
ment. Polarization is produced in a deformed liquid crystal 
as a result of the appearance of a gradient of the average 
density of the quadrupole moment of the molecules. This 
quadrupole mechanism is in principle more general and is 
significant not for liquid crystals only, but the question of the 
ratio of the dipole and quadrupole FE in real liquid crystals 
nevertheless still remains open. A sufficiently detailed dis- 
cussion of this question can be found in Refs. 2 and 9. We 
note also that according to estimates by Marcerou and 
Prost" the Straley theory leads to flexocoefficient values 

smaller by two orders than the experimental ones. On the 
basis of this fact it is concluded in Ref. 9 that the theories of 
Petrov, Derzhanskii, Helfrich3s4 and of Straley5 consider dif- 
ferent macroscopic mechanisms of the dipole FE, the contri- 
bution of the Straley mechanism being negligibly small. 

We shall show in this paper that this conclusion is not 
justified, inasmuch as in thermotropic liquid crystals it does 
not suffice to take into account only the steric interaction of 
the molecules (as was done in Ref. 5 for the case of a lyotropic 
liquid crystal). Actually, as shown by Gelbart,9 the strongest 
orientational interaction in the nematic phase is isotropic 
attraction of the molecules, modulated by their anisotropic 
shape. It is important here that such an interaction also 
makes a predominant contribution to the flexocoefficient, as 
will be shown below. 

In Sec. 2 of this paper general expressions are obtained 
for the flexocoefficients in nematic liquid crystals with ac- 
count taken of both the short-range repulsion and of the 
attraction of the molecules. We use the general method de- 
veloped by Straley.' In Sec. 3 we attempt to estimate the 
contributions made to the flexocoefficients by various types 
of interaction, and discuss the influence of the characteristic 
molecule parameters on the values of e, and ell . We consider 
the ratio of the dipole and quadrupole contributions to the 

FIG. 1. Models of asymmetric molecules in the form of a truncated cone 
(a) and a bent rod (b), corresponding to longitudinal and transverse steric 
dipoles. 
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flexocoefficients. Also discussed is the connection between 
the molecular theory developed in the present paper and the 
semiphenomenological theory of Petrov, Derzhanskii, and 
H e l f r i ~ h . ~ . ~  

2. In the molecular-field approximation with allowance 
for the short-range repulsion of the molecules, the free ener- 
gy of a liquid crystal can be written in the form9~" 

where f,(i) is the single-particle distribution function; V (i, j) is 
the energy of the interaction of molecules i and j; r,. is a 
vector joining the mass centers of molecules i and j; 0 (x) is a 
step function: 0 (x) = 0 at x < 0 and 0 (x) = + 1 at x<O. The 
function 6, is the minimum possible distance between the 
mass centers of molecules i and j at a given relative orienta- 
tion. The integration with respect to rij in (2) is thus restrict- 
ed to values r, < lii, i.e., it is recognized that the molecules 
cannot penetrate into one another. It is convenient to define 
the orientation of an arbitrary elongated molecule i by the 
unit vectors of a, and b, of the long and short axes, with 
a, .bi = 0. Then d (i) = S(ai .bi )dai db, . 

The first term in (2) is the internal energy of the system. 
We note that the interaction energy V(i, j) itself need not 
necessarily depend on the orientation of the molecules i and 
j, since it is modulated by the step function 0 (rU - 6,. ), which 
depends on the molecule orientation via the function 
lU = tU (a,, a,, bi, b,, u,), where u,. = r,. lr,. I -'. The second 
term in (2) is the so-called packing entropy,"912 which is de- 
termined only by the steric interaction of the molecules. 
Straley5 takes into account only the last two terms in expres- 
sion (2) for the free energy. If, however, we introduce the 
effective interaction energy 

the first two terms in (2) can be combined into one, so that the 
mathematical form of (2) will coincide with the mathemat- 
ical form of the free energy which was considered by Straley 
[see Eq. (1) of Ref. 51: 

~ = ~ / ~ p %  J ji ( i )  Uefj ( i ,  j ) f l  ( j )  dri,d(i) d ( j )  
(4) 

+kT J j t  ( i ) l n f l  ( i ) d ( i ) .  

In a deformed nematic liquid crystal the single-particle 
distribution function f,(j) depends on the coordinate r,, but 
at relatively small deformations this dependence is deter- 
mined only by the spatial inhomogeneity of the director n(r). 
In this case we can write5 

f 1  ( j )  = f o ( j )  [ I + g ( i )  I ,  
where f,(j) is the single-particle distribution function of the 
undeformed liquid crystal, i.e., fob) = fo(ajnj (r, )), and the 
function g(j) is assumed small. Expanding the first term in (4) 
in powers of Vf, and retaining the first terms (since we are 
considering the linear FE), and then minimizing the free en- 
ergy (4) with respect to f,, we can obtain the following 
expression for the function g(i)5: 

It can be seen from (5) that the difference between the 
distribution functions of the deformed and undeformed liq- 
uid crystals g(i) is proportional to the gradient of the distri- 
bution function fo(j), i.e., to the derivatives of the director 
n(r)- 

The polarization induced in a deformed liquid crystal 
by ordering of the molecular dipoles is determined by the 
expression 

P=pd,<bi>+pdll(ai>, (7) 

where d I I  and dl are the longitudinal and transverse compo- 
nents of the dipole moment of the molecules, and the angle 
brackets denote averaging over the ensemble. In the case 
considered by us we have 

since the function fo(i) is even in bi and a i .  The FE is thus 
determined by that part of the total interaction energy U,,(i, 
j) which is odd in u,. , a, and uV, b, . Such a dependence of the 
interaction energy U,,(i, j) on the direction of the axes bi and 
ai can appear, for example, if account is taken of the polar 
asymmetry of the molecule (see the figure). 

Recognizing that 

V f o  ( i )  = V  f o  ( (sin, (ri)) ' )  =fo'V (aini)  ', 
we can rewrite expressions (S), (6), and (8) in the form 

Pa=eag~a V ~ n a n ~ ,  (9) 
where a, 0, y, S = x, y, z and 

e.,T,=p2$ 5 (d*bda+4ai=) f o  ( i )  fo' ( i )  Jo ( i .  i )  ajTajd (i) d ( l )  > (  10) 

e a ~ ~ s  is a uniaxial tensor of fourth rank, symmetric in the 
two indices y and 6. Such a tensor can be written in the form 
of a sum of six invariants: 

e,eTa=e16,p6aT+ ez (6aT6cra+6aa6aT) +e36,onTna 

+e; (6,anme+6arnpnA +e5 (6eananT+6eTnana) f een,nen,na. (1 1) 

Substituting (1 1) in (9) and comparing with (1) we get 

eL=2 (ez+er) ,  e,,=2 (ez+e,) .  (12) 

Recognizing that e ,  + e, = ex ,  and e ,  + e5 = e,, , we ob- 
tain now the final general equations for the flexocoefficients: 

e,=2pz$ J (dLbiz+dllaiJfo ( i )  lo'  ( i )  J X ( i ,  i ) a ~ a j ~ a ( i )  d ( j )  (13) 

The flexocoefficients el and e l l  are thus determined by the 
quantity J(i, j), which depends on the attraction energy V (i, j) 
and on the shapes of the interacting molecules. 

The polar asymmetry of the molecule shape can be de- 
scribed by the values of the steric dipoleI2 in the directions of 
the long and short axes. For molecules in the form of a bent 
rod and a truncated cone, shown in the figure, the steric 
dipole is proportional to the angles E, and respectively. 
At small angles E( 1 the function lU an be expanded in pow- 
ers of E: 
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gu=fi?+elEl(i, j )  +EIIEII (i, j) +. . . (15) can expect that A%kT. The interaction energies of typical 

where6 is the minimum distance between the mass centers 
of the cylindrically symmetric molecules i and j (i.e., as 
E~ = SO). The interaction energy U,,(i, j) can then be ap- 
proximately represented in the form 

U,,, (i, j )  ~8 (rij-fij") [V (i, j) -kT] +6 (rij-g,0) 

X [ e ~ & ( i ,  ~ ) + E I I ~ I I  (i, j)l [V(i, j) -kTl. (16) 
We note that the expansion (16) is meaningful only after the 
integration with respect to rv with a certain function V(rv). 
In the present paper we consider only the FE connected with 
the symmetry of the molecule shape, and we therefore as- 
sume2' that the attraction energy V (i, j) is even in ai , a, , bi , 
and b,. In this case the first term of (16) makes no contribu- 
tion toe, and el, . Substituting now the second term of (16) in 
(6), we obtain a final expression for J(i, j): 

E E (i, j) S E ~ ~ E ~ ~  (i, j )  I [ V(EijO) -kTluij duij. ~ ( i , j ) = J  (Et?)3[ 1 L 

(17) 

We note that the main contribution to the flexocoefficients is 
made by the molecule attraction energy V(i, j), and particu- 
larly by its isotropic part, since generally speaking, 
V(g:)>kT at 6: - R  , where R is the average distance 
between the molecules of the liquid crystal (this question will 
be discussed in greater detail in Sec. 3). This statement agrees 
with the conclusion of Gelbrat and of others9," that the pre- 
dominant role in the formation of the orientational order in 
liquid crystals is played by the isotropic attraction modulat- 
ed by the anisotropic molecule shape. In this case the purely 
steric molecule interaction considered by Straley5 makes in 
the case of thermotropic liquid crystals a negligible contri- 
bution that can be separated by putting V(i, j) = 0 in (17). 

3. The general expressions (13), (14), and (17) for the 
flexocoefficients depend on 6, , which is a complicated func- 
tion of the relative orientation of the molecules i and j and 
cannot be written in analytic form even for uniaxial mole- 
cules of simple shape.9 The calculation of the function J(i, j) 
n (17) entails therefore very great difficulties, taking into ac- 
count also that the explicit form of the attraction energy 
V(6 :)is also unknown. Let us attempt, however, to estimate 
the flexocoefficients el and el, by simplifying (17). Indeed, 
we take outside the integral sign in (17) the average attrac- 
tion energy 

1 v (i, j) = J V (Si:) duij- 

This can be done if the isotropic part of the interaction ener- 
gy V(i, j) is much larger than the anisotropic part that de- 
pends on the molecule orientation. The averaged interaction 
energy V(i, j) depends only on the product ai .aj and can be 
expanded in Legendre polynomials of even index: 

V (i, j) =A +BP, (aiaj) +. . . . (18) 

It is easy to show that the accuracy of this approximation is 
determined by the parameter B/A. The quantity B is the 
characteristic energy of the orientational interaction of the 
molecules, therefore B- kT. At the same time, the quantity 
A is the isotropic part of the attraction energy V(i, j), and one 

mesogenic molecules were calculated directly in Refs. 13 
and 14. Using these results, we obtain the estimate A z 5 k T  
(Ref. 13) or A =: 10 k T  (Ref. 14). We note that the foregoing 
approximation allows us to disregard the actual form of the 
energy V (i, j) and to use only the two parametersA and B that 
can be easily calculated if the form of V (i, j) is known. 

Expression (1 7) can therefore be very approximately re- 
written in the form 

(19) 
where we have used also expression (15). As already noted, 
the function lo cannot be determined in explicit form even 
for molecules of simple shape, although the integral 

I 7 )  = gij"uij hi,= rile (rij-Eij) drij c(-7 - J J (20) 

in (19) can be calculated for molecules having the shape of a 
bent rod and a truncated cone (see the figure). The result is 
given in Straley's paper.' For truncated cones 

C, (i, j) ='16~llDL3 (ai-aj) I [a,.,] 1, (21) 
where D and L is the diameter and length of the molecule. 
For bent rods 

-I- ( I [aiixaj~] I - I r a , , ~  ajtl I )), (22) 
where = E~ bi f ai,  = E, b, + a,, 

Expanding the quantities 1 ai X a, I and 1 ai x a, I - ' in (2 1) and 
(23) in Legendre polynomials and substituting the expression 

in (19), and then (19) in (1 3) and (14), we obtain the estimates 

eL=p2pDLSS[ (dil~,lh,+d,~,?cl)S+ dllellXz+~,~l?c21, (25) 

e,l-pZpDL3S [ (dli~llhi-dl~I%3) S + d i l ~ 1 1 X 2 + ~ I ~ ~ ~ Z ]  , (26) 

where S is the nematic-order parameter, 

I",= [3/2B+'/2(rl--kT)] . lo-', h2= [2B+A-kT] .10-', 

xi=  [2(A-kT)+B] . lo-', xz= [A-kT+'/zB] -10-', (27) 

x3= [A-kT+B] . lo-*. 

We have taken it into account in (24)-(26) that the molecule 
can have both a longitudinal and a transverse steric dipole. 

It must be noted that the approximation made in the 
present section does not make it possible to construct in the 
general case a quantitative theory of the dipole FE. At the 
same time it permits a transition from the general integral 
expressions ( 13), ( 14), and (6), which contain unknown func- 
tions, to the rather simple formulas (25) and (26), which de- 
pend explicitly on the characteristic parameters of the mole- 
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cules. This approximation is accurate in the a model in 
which the liquid crystal consists of asymmetric molecules 
that interact via forces of isotropic attraction modulated by 
short-range repulsion. As already noted, this interaction 
predominates in nematic liquid crystals9 and the corre- 
sponding model is actively used in contemporary molecular 
the~ry.~."  

In the case of the dipole FE, expressions for the flexo- 
coefficients el and ell were obtained also by Petrov and 
Derzhanskii3 and Hel f r i~h .~  An opinion was adopted in the 
literature (see, e.g., Ref. 10) that the flexocoefficients calcu- 
lated by Straley5 and in Refs. 3 and 4 correspond to two 
different mechanisms of the dipole FE, and that the mecha- 
nism considered by Straley leads to neglect of small values of 
ell and el (Ref. 10). It follows from our present results that 
this general conclusion is unfounded. Indeed, (25)-(27) lead 
to an estimate for the flexocoefficients 

e-lO-'P (A+B-lcT) p2DL3Sde. . . 

Putting p = lo2' cmP3, D = 5.10-8 cm, L = 3.10-' cm, 
S= 1/2,andd = 1 d ~ ,  weobtaine-5.10-~P(~ + B + kT)  
cgs. Since A>kT, the flexocoefficients turn out to be close to 
the experimental values e- loP4 ~ g s , ~  albeit somewhat un- 
dervalued. Actually, the estimate at A- 10 k T  corresponds 
to the estimate given in Ref. 6 for the dipole contribution to 
the flexocoefficients, e-7X loPs cgs, based on an analysis 
of the FE mechanism considered by Petrov, Derzhanskii, 
and Helfrich. The purely steric interaction considered by 
Straley5 actually yields a small contribution, e-5 X loP6 
cgs. 

The substantial difference between the microscopic ap- 
proach proposed by Straley and elaborated upon in the pres- 
ent paper, and the approach of Petrov, Derzhanskii, and 
He l ' f r i~h~ .~  is that the latter consider the energy of an asym- 
metric molecule in a field of macroscopic elastic forces. The 
flexocoefficients are therefore expressed in Refs. 3 and 4 in 
terms of elastic constants. This approach is quite approxi- 
mate, for actually a molecule of microscopic size is acted 
upon by microscopic "elastic" forces that are connected 
with the derivatives of the direction n(r) via the gradient of 
the distribution function [see Eqs. (5) and (6)]. Thus, our 
microscopic theory actually considers the same FE mecha- 
nism as in the semiphenomenological theory of Petrov et 
~ 1 . ~ 9 ~  

We examine now expressions (25) and (27) in greater 
detail. It must be noted first of all that the flexocoefficients 
el and ell contain terms proportional both to S and S '. In 
Refs. 6 and 10 was proposed a method of separating the di- 
pole and quadrupole contributions to the flexoelectric coeffi- 
cients on the premise that the quadrupole contribution is 
proportional to S (Ref. 6) and the dipole contribution to S 
(Refs. 3 and 4). From our results, however it can be conclud- 
ed that the relation e a SZ is the result of shortcomings of the 
semiphenomenological a p p r ~ a c h . ~ . ~  The results cast doubt 
on the quantitative estimate of the ratio of the dipole and 
quadrupole contributions as obtained from the ratio of el 
and ez in the expression e = elS + e2S (Ref. 10). At the same 
time, the absence of a term Ae a S in the experimental e(S) 
dependences of a number of  substance^^.'^ points as before to 

a predominant role of the quadrupole mechanism of the FE 
in these cases. 

It is natural to assume that typical molecules of liquid 
crystals have E, - E ~ ~  . It follows then from (25)-(27) that the 
molecule longitudinal dipole d l l  makes a considerably 
smaller contribution to the coefficients el and ell than the 
transverse dipole dl,  since A / x  - 10- '. Thus, the dipole FE 
should be substantial only for molecules with large trans- 
verse dipoles. We note that a significant dipole contribution 
to the flexocoefficients was actually observed in Ref. 10 for 
liquid crystals whose molecules have large transverse di- 
poles. At the same time, in the case of cyanobiphenyl, which 
has a large longitudinal dipole, Marcerou and Prostlo did 
not observe a dipole FE; this can be attributed not only to a 
tendency to formation of pairs with antiparallel dipoles, but 
also to a small value of the dipole contributions themselves 
to the flexocoefficients. It would therefore be of interest to 
investigate experimentally the intermediate case, when 
dl = 0 and d l l  differs from zero but is insufficient for pair 
formation. 

Of greatest interest, however, is apparently the flexo- 
coefficient difference el - ell . In the case of the quadrupole 
FE this difference is connected with the anisotropy of the 
Lorentz tensor, and el - ell a S 2, while e, - el, is small be- 
cause the relation e aS is well satisfied for liquid crystals 
consisting of nonpolar molecules.'o At the same time the 
difference el - el, is generally speaking not small. Actually 
el -ell  z 1.7.10P4 cgs in the liquid crystal BMAOB (n- 
buyl-n"-methoxyazoxybenzene),15~16 and 
e, - ell z l.0.10-4 cgs in MBBA (n-methoxybenzylidene-n- 
butylaniline)." The observed flexocoefficient difference 
el - ell should therefore be explained by the dipole mecha- 
nism of the FE. It follows from (25)-(27) that 

T h ~ s , ~ '  e, - ell -el + ell . It must be noted here that the dif- 
ference el - ell is determined only by the transverse dipole 
and by the transverse asymmetry (by the steric dipole) of the 
molecule. For molecules with dl = 0 the difference of the 
flexocoefficients should be small, as can be verified in experi- 
ment. Unfortunately, the available experimental data are too 
scanty for a comparison with (28). The sign of the difference 
e, - ell is determined in (28) by the sign of the steric dipole 
el. Indeed, the direction of the polarization of the medium 
corresponds to the direction of the average dipole moment, 
therefore dl is considered everywhere to be positive. At the 
same time, the sign is determined by the direction of the 
transverse steric dipole relative to the transverse electric di- 
pole. 

We examine, finally, the dependence of the flexocoeffi- 
cients on the molecule length. The density of the liquid crys- 
tal should correspond in order of magnitude to close packing 
of the molecules, thereforepD 'L - 1, whence it follows that 
e a L. The linear dependence of the flexocoefficients on the 
length of the molecule might be verified experimentally for a 
suitable homologic sequence. Then, however, we must con- 
fine ourselves to relatively short tail chains, whose flexibility 
can be disregarded. 
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In conclusion, the author thanks S. A. Pikin for numer- 
ous opinions and discussions. 

"The Straley theory is generalized to include smectic-C liquid crystals in 
Refs. 7 and 8. 
2'In the general case the quantity V ( i ,  j) includes, naturally, polar terms 
that are odd in a, ,  a,, b i ,  b,, and contribute to the flexocoefficients e, and 
e l  . It can be shown, however, that the corresponding contribution (deter- 
mined by the asymmetric part of the dispersion and multipole interaction) 
is a small correction to the values of e, and e l  and depend on the asymme- 
try of the molecule shape. 
"We note that the relation e, - ell a SZ is obtained in all the existing FE 
theories, including the present paper. 
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