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The dependence of the impedance of a metal on the amplitudeflof an incident radio wave under 
conditions of the anomalous skin effect is investigated theoretically. The analysis is carried out in 
a broad range of values of the quant i tyz .  It is shown that the impedance varies appreciably a s p  
increases even when the intensity of the external signal is relatively low. The conductivity of the 
metal is higher, while the skin thickness and the impedance are smaller, in the case of a well- 
developed nonlinearity than in the linear approximation. The mechanism underlying the nonlin- 
earity is connected with the existence of a group of electrons localized in the region where the 
magnetic component of the electromagnetic wave changes sign. 

PACS numbers: 73.25. + i, 78.70.Gq 

1. INTRODUCTION 

Metals are characterized by the fact that they possess a 
high electrical conductivity, i.e., a low surface impedance. 
Consequently, an electromagnetic wave of frequency w inci- 
dent on a metal is reflected primarily at the same frequency. 
All the multiple harmonics are weak, to the extent that the 
impedance is small. But this does not mean that only the first 
harmonic exists in the interior of the metallic sample. Under 
conditions of strong nonlinearity all the harmonics of the 
electromagnetic field can be of the same order of intensity 
inside the metal. In this case the surface impedance Z should 
depend on the amplitude R of the incident wave. 

Experimentally, the dependence of Z on R in the pres- 
ence of the anomalous skin effect has been investigated by a 
number of researchers.'-' The present work is the first at- 
tempt at the construction of a theory of the nonlinear anom- 
alous skin effect in metals. 

Because of the high conductivity, the magnetic compo- 
nent of an electromagnetic wave in a metal is always much 
stronger than the electric component. This is the essence of 
the nonlinearity in a metal: the trajectory of the electrons is 
established by the magnetic field of the wave, the influence of 
the electric field being negligible. This modification of the 
electron motion by a variable and inhomogeneous magnetic 
field is the primary cause of a number of nonlinear effects in 
pure metals at low temperatures (see, for example, Ref. 8). 

Owing to the skin effect, a variable magnetic field in a 
metal oscillates and attenuates rapidly over a distance of the 
order of the skin thickness S. In the case of the anomalous 
skin effect, only the effective electrons, i.e., those which get 
into the skin layer and interact with the electromagnetic 
wave, participate in the conduction. For the indicated non- 
linearity mechanism to exist, it is necessary that the trajec- 
tory of an effective electron in the inhomogeneous magnetic 
field in the skin layer have a length 

L- (4cpF6/e%) 

that is much shorter than the effective mean free path 1 = v/ 
1v - io) (see Fig. I), i.e., that 

The inequality (I. 1) implies that the characteristic mag- 
netic field value 2 R i n  the skin layer should be higher than 
the field value h at whichL = I. In other words, the degree of 
nonlinearity of the anomalous skin effect is determined by 
the parameter b = L /I, or 

b= (h/2%)Ih, h=8cp,6/e12. (1.2) 
Here c is the velocity of light, e is the absolute value of the 
 charge,^, and u are the Fermi momentum and velocity, and 
Y is the electron relaxation rate. Let us estimate the quantity 
h. For typical pure metals at low temperatures, S- 

cm and I -  lo-' cm, and we find that h -0.5-5 Oe. In 
experiments the electromagnetic-wave amplitude R attains 
values of several tens of oersteds, and, thus, both the case of 
weak nonlinearity (large b ) and the case of strong nonlinear- 
ity (b( 1) are experimentally realizable. 

1. In the case of weak nonlinearity, when the parameter 
b is large compared to unity, i.e., when 

b4>1, (1.3) 

the trajectories of the effective electrons in the skin layer are 
almost straight lines, being only slightly curved by the 
wave's magnetic field. Therefore, in the leading approxima- 
tion in b -4, the skin effect is described by a linear theory, and 
the surface impedance Z does not depend on the amplitude 
R. The dependence of Z on Z appears only in the next 
terms of the expansion of the impedance in powers of the 
parameter b -4: 

[Z (2%') -2 ( 0 )  1 /Z ( 0 )  - b - ' ~ % ~ .  (1.4) 

FIG. 1.  Trajectories of the effective electrons in the magnetic field of an 
electromagnetic wave: transient ( I ) ,  trapped (2), and gliding (3) electrons. 
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The series expansion is carried out in the parameter b -4, 

since the impedance of the metal is an analytic function of 
the magnetic field. 

2. In the strong nonlinearity regime the inequality (1.1) 
is satisfied, i.e., 

bK1.  (1.5) 

Since the spatial distribution of the magnetic field H (x, t ) is 
sign-variable, a group of "trapped" electrons occurs in the 
metal. These electrons move along the sample surface in tra- 
jectories that wind about the plane x =xo(t)  in which 
H (x,,t ) = 0 (see Fig. 1). In the direction perpendicular to the 
boundary (i.e., along the x axis) they execute periodic mo- 
tion. It must be emphasized thatxo(t )is always of the order of 
S. Consequently, the electrons trapped by the Lorentz force 
conduct all the time in the skin layer, and therefore interact 
most effectively with the electromagnetic wave. Thus, under 
the conditions (1.5) of strong nonlinearity, the skin effect is 
determined by the winding electrons. The relative number of 
such electrons is of the order of S /L, and, according to (1.5), 
is significantly higher than the relative number S / I  of the 
effective electrons in the linear theory. For this reason, the 
metal possesses a significantly higher conductivity, and, 
hence, a smaller skin thickness S and a lower surface imped- 
ance in the well-developed non-linearity regime (1.5). 

The dependence of 6 and Z on the amplitude X is easily 
derived with the aid of Pippard's ineffectiveness concept. In 
this model the conductivity of the trapped electrons has the 
form 

where N and m are respectively the electron density and 
mass. From the Maxwell equations we find that the relation 

i between the skin thickness and the effective conductivity a is 
given by the approximate formula 

Substituting (1.6) into (1.7), and solving the resulting equa- 
tion for S, we obtain 

Thus, under the conditions (1.5) of strong nonlinearity the 
surface impedance of the metal depends on the incident- 
wave amplitude even in the leading approximation. Further- 
more, it follows from (1.8) and (1.4) that the effect of the 
quantity 2Y on the surface impedance becomes noticeable 
even earlier: in the transition region where the parameter b is 
of the order of unity and the intensity of the external signal is 
relatively low. 

The result (1.8) was obtained by us with the aid of the 
ineffectiveness concept, which, in the linear approximation, 
yields for the impedance an answer that is correct up to a real 
constant (see, for example, Ref. 9). But because of the depen- 
dence of the conductivity on the time, the ineffectiveness 
concept does not allow the determination of the true relation 
between the real and imaginary parts of the impedance (see 
Sec. 4) in the non-linear case. 

2. FORMULATION OF THE PROBLEM. THE CURRENT 
DENSITY 

Let us consider a metallic half-space on whose surface is 
incident a plane monochromatic wave of frequency w and 
amplitude F. Let us orient the x axis along the normal into 
the interior of the metal (x = 0 at the boundary) and they 
and z axes parallel to the electric and magnetic components 
of the electromagnetic field: 

Let us, in accordance with the definition, write the sur- 
face impedance in the form of a ratio of the first harmonics of 
the electric and magnetic fields at the boundary of the metal: 

zn/w 
4n E,(O) o 

Z(%)=-- E,  ( x )  = - j dt E ( x ,  t )  erp ( i o t )  . 
c a '  2n 0 

Here we have taken into account the fact that, up to terms of 
the order ofwS /c( 1, the magnetic field H (0,t ) on the surface 
is equal to 2 Z  cos(wt ). 

To find E (x, t ) and H (x, t ) in their explicit forms, we 
must solve the Maxwell equations 

dH(x ,  t )  4x --=-- 
d x  c 

i ( x ,  t )  , 

(z ,  t )  1  dH(x , t )  
(2.3) 

- --- 
ax c at 

The current density j(x, t ) is given by the solution to the 
kinetic equation linearized in the electric field E (x, t ). The 
nonlinearity is connected with the magnetic field H (x, t ), and 
is contained in the Lorentz force, which determines the elec- 
tron trajectory. Therefore, the kernel of the integral conduc- 
tivity operator does not depend on E (x, t ), and is a complicat- 
ed functional of the magnetic-field distribution H (x, t ). 
From this it is clear that, to find the conductivity operator, 
we must investigate the dynamics of the electron motion in 
the magnetic field of the wave. 

1. Below we shall limit ourselves to the consideration of 
the quasistatic situation ~ ( v .  In this case the motion occurs 
in an inhomogeneous, but constant magnetic field H (x, t ), 
since the phase of the wave remains constant during the en- 
tire mean free time. In other words, the "electromagnetic 
time" t in the equations of motion does not vary, and plays 
the role of an external parameter. 

Let us represent the vector potential A(x) of the wave's 
magnetic field in the form 

A(x)={O,A(x ) ,O) ,  A ( x ) = J d x r ~ ( x f , t ) - ~ ( ~ , t ) a ( r ) .  
0 

(2.4) 

In the chosen gauge we have as the integrals of the electron 
motion the total energy, which is equal to the Fermi energy 
E ~ ,  and the generalized momenta p, =mu, and 
p,, = - eH (0, t ) X / c .  We have, for convenience of exposi- 
tion, introduced the function a(x) and the conserved quantity 
X (if the magnetic field is equal to H (0,t ) everywhere in the 
space, then X has the meaning of the x coordinate of the 
center of electron rotation). 
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The electron motion in the plane perpendicular to the 
vector H(x, t ) is described by the velocities v, (x) and v, (x). 
For a spherical Fermi surface 

u, ( x )  =-Q [X-a(x)]  sign H (0, t )  . 
(2.5 

I vx ( x )  I =Q {R12- [X-a ( x )  ] Z } ' l z .  

Here 

sign x =  lforx>O,sign x =  - lforx<O,andsign x = O  
forx = 0. The possible regions of motion along thex axis can 
be found from the inequalities 

X-R,<a ( x )  <X+R,, (2.7) 

which guarantee the positiveness of the radicand in the for- 
mula (2.5) for Iv, (x) I. The boundaries of the regions (2.7) for 
given values of R, and X furnish the turning points. 

The distinctive features of the electron motion in the 
field H (x, t ) are determined by the character of the depen- 
dence a(x). The electromagnetic field in the metal oscillates 
and attenuates over a distance of the order of the skin thick- 
ness 6. At any moment of time t the spatial distribution of 
H (x, t ) changes sign an infinite number of times. But because 
of the rapid decrease, only the H (x, t ) zero at the point 
x = xo(t ) closest to the sample boundary turns out to be im- 
portant. All the remaining points at which the distribution 
changes sign need not be considered. Indeed, starting from 
the second point, the magnetic field in the metal is numeri- 
cally so small that it can simply be considered to be equal to 
zero. Therefore, we assume that the function a(x) z x  in the 
region x(6, attains its maximum value a(xo) at the point 
x = x,(t ), and tends to a constant value a(W) in the region 
xs6 .  The value a( w ) can be either positive or negative (de- 
pending on the moment of time t ). Furthermore, it follows 
from the anomaly of the skin effect that a(xo)-6(R, and 
a ( ~ ) - 6 < R , .  

Figure 2 shows the region of possible values of the elec- 
tron coordinate x and the integral X of the motion for 
a( w ) > 0 (Fig. 2a) and a( w ) < 0 (Fig. 2b). In accordance with 
the inequalities (2.7), this region is bounded from below by 
the curve X = - R, + a(x) and from above by the curve 
X = R, + a(x). It can be seen from Fig. 2 that, depending on 
the value of X, the electrons, by the nature of their motion, 
split up into four groups. 

1) "Surface transient" electrons: 

-R,+a(x,) <X<R, for a(m)  >O, 

They execute infinite motion, can reach the surface of the 
metal, and have only one turning point x = 0. 

2) "Volume transient" electrons: 
-R,+a ( m )  <X<-R,+a(xo) and R,<X<R,+a ( m )  

for a(m)>O, 
-R,+a ( m )  <X<-R,+a(xo) for a ( m )  <O, (2.9) 

FIG. 2. Plots of the functions X = + R, + a(x)  and the existence domains 
of the electron groups that establish the conductivity of the metal (see the 
text): I )  surface transient electrons; 2) volume transient electrons; 3) whirl- 
ing (trapped) electrons; and 4) surface electrons. 

In contrast to the case (2.8), the volume transient electrons 
do not get to the sample boundary, but turn around in the 
magnetic field H (x, t ). For the region - R, + a(w)<X 
< - R, + a(xo) the turning point x,  (x, >xo) is the larger of 
the two solutions to the equation 

a (x) =X+R,. (2.10) 

For a(m) >0 and R, <X<R, + a(oo), the point X I  (XI <XO) 
can be found from the equation 

a ( x )  =X-R,. (2.11) 

3) "Trapped" or "whirling" electrons: 

R,+a ( m )  <X<R,+~ (x,) for a(m)  >O, 
(2.12) 

R,<X<R,+a (x,) for a ( m )  cO, 

Drifting along the y axis, such electrons execute periodic 
motion along thex axis about the point x = x,(t ). The period 
of the oscillations of the trapped electrons is equal to 2T,, 
where 

S1 

T u  = (dz/ luz(x)1) .  (2.13) 
5 ,  

The turning points x, and x, (x, < x, < x,) can be determined 
from Eq. (2.11). 

4) "Surface" electrons: 
-R,<X<-R,+a (2,) for a(..) >O, 

(2.14) 
-RI<X< -Rl+a (x,) and R,+a ( m )  <X<R, 

for ~ ( 0 0 )  ( 0 ,  
o<x<xz. 
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The surface electrons oscillate between the metal boundary 
x = 0 and the point x, with period 2Ts, where 

z, 

0 

In the interval - R, <X< - R, + a(xo) the turning point x, 
(x ,  <xo) is the smaller of the two solutions to Eq. (2.10). For 
a ( ~ )  <OandR, + a(W)(X<R,, the value ofx, (x, >x,) can 
be found solving (2.1 1). 

Each of the described electron groups makes its own 
contribution to the electrical conductivity of the metal. 

2. To compute the current density j(x, t ), we must solve 
the kinetic equation. The solution should be sought for each 
group separately. Finally, for the spatial Fourier cosine 
transform 

m 

j ( k )  =2 dx cos ( k x )  j ( x ,  t )  (2.16) 
0 

we obtain the following result: 
. m 4 

Here g ( k )  is the spatial Fourier transform of the electric 
fieldE (x, t ).The kernelu,(k, k ') ofthe conductivity operator 
for the surface transient electrons is given by the formula 

300 " du, dX - u!, ( x )  
0, ( k ,  k ' )  = - J -- - J dx  cos ( k x )  -- 

n l o u  R I T I ~ ( ~ )  I 

v ,  (x ' )  
x dX1 cos ( k r x ' )  -- {exp [ -v l T ( x ,  x ' )  I I 

l u, ( x ' )  l 
0 

+ p e x p [ - v ( ~ ( O , x ) + ~ ( 0 , ~ ' ) )  I ) .  (2.18) 

For the conductivity of the volume transient electrons we 
have 

30, "duZ dX OD (5 )  
0, ( k ,  k ' )  = -5 -1 -I dx cos ( k x )  

n l o u  R 
X, 

I u,(x) I 

x f dxr cos ( k f x ' )  L- { C X P  [ -v 1 T ( x ,  x ' )  I ]  
XI 

I u, ( 5 ' )  I 

+exp[-v ( T ( x , ,  x )  +T ( x i , x l )  I ) .  (2.19) 

The contribution of the trapped electrons to the current den- 
sity is given by the term 

30, " du, dX  
04(h ,k1)=-I - -J - -  l e x p ( v T ,  ) -peap ( - vT ,  ) I - '  

n l o u  R 

UY ( x ' )  
V u  ( x )  Jdx' G U S  ( k J x ' )  -- x J d x ~ o s ( k x j  -- 

lu,(x)I lu,(x') l 
0 

{ e x p [ v ( T .  - I ~ ( x , x ' ) I ) l +  p e x p [ - v ( T .  - l t ( x , x ' ) I ) ]  

+ exp[v  ( T  , -T (x ,  x,) -T (x ' ,  5 2 )  ] 

+ p  exp[-v(T  , -a ( x ,  x , ) - % ( s f ,  x,) I ) .  (2.21) 

In the formulas (2.18)-(2.21) we have introduced the nota- 
tion: uo is the static conductivity of the metal, Iis the electron 
mean free path (I = u/v), R = v/a, and ~ ( x ,  xi) is the time an 
electron takes to move from the point x to the point x' in the 
magnetic field H (x, t ): 

X '  

r ( x ,  x ' )  = J (dxU/l u, ( x u )  I ) . (2.22) 

The interaction of the electrons with the sample surface is 
characterized by the parameterp: the probability for specu- 
lar reflection from the boundary (O(p< 1). The limits of the 
integration over X in (2.18)-(2.21) are chosen in accordance 
with the existence domain of the group of electrons in ques- 
tion (see (2.8)-(2.14)). 

Under the conditions (841 and S(R ) of the anomalous 
skin effect, the expressions (2.18)-(2.21) for the conductiv- 
ities can be simplified by replacing them with their asympto- 
tic forms. In this case the dominant contributions to the X, x, 
and x' integrals are made by the neighborhoods of those 
points where the velocity Iv, (x)i is equal to zero. These 
points are: in the x and x' integrals the turning points; in the 
X integral, the end points of the integration interval, i.e., the 
boundaries of the existence domain of each electron group. 
The conductivity has markedly different asymptotic forms 
in the cases of small (bB1) and large (641) external-wave 
amplitudes. Therefore, below we shall consider these two 
cases separately. 

3. WEAK NONLINEARITY (SMALL AMPLITUDES 

Under the conditions (1.3) of weak nonlinearity, the 
asymptotic form of the current density (2.17) can be written 
in the form of a sum of two terms: 

j ( k )  = j o  ( k )  +Aj ( I < ) ,  (3.1) 

where jo(k ) is the usual linear anomalous-skin-effect current 
in zero magnetic field (see, for example, Ref. 10): 

30, " du, dX z2 

U I  (11 
0 

0 3 ( k , k 1 ) = - - 1 - 5 - - s h - ' ( v T , )  x l o u  R Jdxcos(kx) - -  
lu,(x) I (3.2) 

2, It is determined by the surface transient electrons (2.8), 
whose trajectories in the skin layer are almost straight lines, 

V u  (x ' )  x 1 dx' cos ( k f x ' )  -- {ch [ v  ( T ,  - 1 ( x ,  x l )  1 ) 1 slightly curved by the wave's magnetic field. 
Xi 

l u X ( x f )  1 The nonlinear correction Aj(k ) is small in comparison 
with j,(k ) (Aj(k )/jo(k )<b -4< 1). It is made up of contribu- 

+ch[v (T ,  - ' t(x, X Z )  - - ~ ( x ' ,  4 )  I ) .  (2.20) tions, which are of the same order of magnitude, from all the 
electron groups. It turns out that the terms of the expansions 

Finally, the surface electrons give rise to the conductivity of the conductivities (2.18)-(2.21) completely cancel each 
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other out in the b -I, b -', and b - 3  approximations. As a 
result, we obtain 

n=1 

It can be seen that the current Aj(k ) does not depend on k, 
and that it is due to the electric field E (0, t ) at the boundary of 
the metal. This means that the correction Aj(x) to the current 
has a surface character: Aj(x) K S(x). Indeed, we should, in 
computing the asymptotic form (3.3), set cos(kx) and 
cos(k 'x') equal to unity in the formulas (2.18)-(2.21), since 
the characteristic domain of the integration over x and x' is 
of the order of I 2/R(k -I, k ' - I .  Therefore, the additional 
nonlinear corrent Aj(x) is concentrated near the metal 
boundary in a thin layer of thickness I 2/R - b -'S(S. It is 
worth noting that the asymptotic expression (3.1)-(3.3) for 
the current density exactly coincides in form with the one 
that obtains in the case of a weak constant magnetic 
field.",'2 

The Maxwell equations (2.3) with the current density 
(3.1)-(3.3) are solved by the method of successive approxima- 
tions. In the zeroth-in the parameter b -4-approximation 
the surface impedance does not depend on the amplitude Z, 
and is the impedance produced in zero magnetic field by the 
anomalous skin effect": 

Here cos(n-z,) = p  and S is the skin thickness in the linear 
theory: 

It follows from (2.2) and (2.3) that the nonlinear correc- 
tion to the impedance (3.4) can be computed from the for- 
mula 

Hence we find 

It turns out that, in the approximation b - 4  a P, the 
correction (3.7) is purely imaginary. It is not possible to com- 
pute the function Re z ( m ,  which appears in the terms of 
higher order in smallness. But we can conclude from the 
analyticity condition for Z (W that 

Thus, the real and imaginary parts of the impedance behave 
quite differently in the region (1.3) of weak nonlinearity 
when 2? is varied. 

4. STRONG NONLINEARITY (LARGE AMPLITUDES 

1. The electron dynamics in the inhomogeneous mag- 
netic field of a wave are fundamentally distinguished by the 
fact that some of the electrons are trapped by this field, and 

are localized near the sign-reversal plane for H (x, t ). The 
group of winding electrons thus produced plays the most 
important role in the strong-nonlinearity case (I. 1). There- 
fore, to obtain the asymptotic form of the current density 
j(k ), we must first of all compute the conductivity a,(k, k '). 

Let us set v, (x)u, (x') = u, in the expression (2.20), and 
expand Ivx I in the neighborhood of X = R,, using the fact 
that a(x) is small compared to R, . Going over to the integra- 
tion variable X = X - R, , we obtain 

dx  cos ( k x )  f dx' cos (k 'r ' )  
(4.1) 

wheree(x) = 1forx>Oand8(x)  =Oforx<O.ThejZ,x,and 
x' integrals can be evaluated with the use of the quadratic 
expansion of the "vector potential" a(x) about the point 
x = xo(t ). As a result, the asymptotic expression for the con- 
ductivity u,(k, k ') of the trapped electrons assumes the form 

6noo f v L v r z  
I s 3  ( k ,  k') = 7 cth ( v T )  cos (kx , )  cos ( k 1 x 0 )  

0 

Here Jo(x) and J,(x) are the Bessel functions of zeroth and 
first order; 2Tis the limiting period of the winding electrons 
with velocity vx and turning-point separation x, - x,  equal 
to zero, i.e., 

T=n (rncleu,] H'(xo,  t )  I ) I h ,  (4.3) 
where the prime denotes differention with respect to x. The 
quantity 7co(O<xo<xo) is determined from the equation 

and is the maximum distance from the point x, to the turning 
point closest to the metal surface. For a(co)<O the quantity 
7co = X'. 

The structure of the asymptotic expression (4.2) indi- 
cates that the first of the Maxwell equations (2.3) with cur- 
rent density (2.17) is an integrodifferential equation with a 
kernel that is a functional of the sought function H (x, t ). It is 
not possible to solve such an equation analytically. There- 
fore, we are forced to carry out further simplifications of the 
current density, retaining the main characteristics of the 
mechanism underlying the nonlinearity. 

It is not difficult to understand that the main source of 
the nonlinearity is the dependence of the period (4.3) of the 
trapped-electron motion on the magnetic field H (x, t ). It is 
precisely because of this dependence that the conductivity of 
the metal is a function of the amplitude 2? of the incident 
wave. Therefore, let us write the current density associated 
with the trapped electrons in the form 

In this model expression we have retained all the major char- 
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acteristics of the conductivity: we have in the denominator 
the wave number k, which is characteristic of current gener- 
ated under the conditions of the anomalous skin effect, and 
there is the function cot(vT), which is responsible for the 
nonlinear dependence oftheconductivity on the field H (x,  t ). 
The current density (4.5) differs from the true asymptotic 
expression, given by the formulas (2.17) and (4.2), by only a 
real function equal in order of magnitude to unity. Conse- 
quently, the replacement of the current (2.17), (4.2) by (4.5) 
can only lead to the appearance of an additional numerical 
real factor in the impedance. With the same degree of accu- 
racy, the current density associated with all the electron 
groups in the case of diffuse scattering from the metal 
boundary is 

2. The Maxwell equations (2.3) with the current density 
written in the model (4.6) can be solved exactly. The distribu- 
tion of the electromagnetic field can be represented in the 
form 

m 

Here 

ino6 ,  En - =-  
2  " qdq cos(qx/b,) 

( 7 H n ( 0 )  n q 3 - i n / ~ n ~  

The function 6 ( p )  is given by the formulas 

Since < (p + 2 ~ )  = 6 ( p )  + 2 ~ ,  the solutions (4.7) are periodic 
in time, with period equal to that, 2&, of the incident 
wave. The penetration depth S, of the n component of the 
field is 

6,=6 1 n  1 -'", 63=~21p/3n2000.  (4.10) 

It must be emphasized that the period 2 T  ( p  ) of the motion of 
the trapped electrons and, consequently, 5 ( p )  andp depend 
on the quantity 6. This means that the last relation in (4.10) 
should be regarded as an equation for the determination of 8. 

The coefficients H, (0)  in (4.8) are determined from the 
boundary condition imposed on the metal surface: 

H  (0, t)  =2% cos ( a t ) ,  

which yields 

Using the results (4.7)-(4.1 I ) ,  we can represent the sur- 
face impedance (2.2) of the metal in the following form: 

1 -  2  " dq cos cp c/  = (2n+1)'13 Inj p d ( c p )  e x p [ i ( 2 n + l ) ~ ( c p )  I 1 2 ,  
n=o (4.12) 

In the expression (4.12) the main dependence on the 
incident-wave amplitude X is contained in S. The ratio f "/ 
f ' of the imaginary part of the impedance to the real part is 
not equal to 0 ,  as in the linear anomalous skin effect, but, 
generally speaking, depends on X.  The deviation of the 
quantity-Im Z /Re Z from 0 c a n  be used in experiment as 
a criterion for nonlinearity of the skin effect. 

3. To analyze the dependence of the penetration depth S 
and the impedance Z on the amplitude A?, let us explicitly 
separate out in the expression 2vT ( p  ) the nonlinearity pa- 
rameter 6: 

The function a ( p ) ,  being periodic with period T ,  attains a 
maximum value a,,, in the interval ( 0 , ~ ) .  In the case of 
extremely strong nonlinearity, when 

ba,,<l, (4.14) 

the trapped electrons play the major role in the conductivity, 
and 

- 
241'231 

a (cp) = 7 b-la-' ( c p )  sr ( / I )  

Accordingly, the quantity p entering into the equation (4.10) 
for S is: 

It should be noted that in the case (4.14) the function 
a ( p )  does not contain any parameters, and, in particular, 
does not depend on S and R. This holds true for the product 
p 5 ( p )  and the function 6 ( p ) .  We can easily verify this by 
normalizing the field H (x,  t ) and the variable x to the ampli- 
tude A? and the quantity S respectively. As a result, the for- 
mulas (4.7)-(4.11) and (4.13) will furnish a closed system of 
universal equations for the determination of a ( p ) .  Thus, f ' 
and f " in (4.12), a,,, in (4.14), and & in (4.16) are numbers 
(5 --a,,, - 50), and the entire dependence of p on S is con- 
centrated in the parameter 6. Substituting (4.16) and (1.2) 
into (4. lo) ,  we obtain 

The expressions (4.12) and (4.17) determine the depen- 
dence of the impedance of the metal on the amplitude X ,  the 
frequency w ,  and the mean free path I. Simple estimates show 
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that the numerical ratio < " / < I  is of the order of 1.2, and 
differs from 0. 

Let us recall that, in the linear anomalous skin effect, 
the absorption of the electromagnetic energy by the metal is 
due to the collisionless Landau damping, and that the sur- 
face impedance does not depend on the collision rate v. Un- 
der the condition (1. I), because of the strong nonlinearity, 
the mechanism underlying the absorption changes. It can be 
seen from (4.17) that the Landau damping disappears, and 
the absorption has a collisional character. 

The formulas (4.6)-(4.17) pertain to the case of diffuse 
electron reflection from the metal surface @ = 0). In the case 
of specular reflection @ = 1) the function Z ( X )  will not 
change, since the whirling electrons, which determine the 
characteristics of the nonlinear skin effect, do not interact 
with the sample boundary at all. Unimportant differences 
will be connected with the appearance of a group of gliding 
electrons (Fig. 1) whose contribution to the conductivity in 
the specular case is of the same order of magnitude as the 
contribution of the trapped electrons. 

In conclusion, let us compare the nonlinear skin effect 
with another well-known phenomenon: the nonlinear Lan- 
dau damping,I3-l5 which occurs during the propagation of 
natural electromagnetic waves in a metal. Common to the 
mechanisms underlying these effects is the phenomenon of 
electron capture by the field of the electromagnetic wave, a 
phenomenon which sets in at the same A? values satisfying 
the inequality (1.1). But it turns out that this phenomenon 
plays different roles in these effects. In the case of the nonlin- 
ear Landau damping the electromagnetic properties of the 
medium (the conductivity) and the wave dispersion are de- 
termined by the transient electrons, while a relatively small 
number of "resonance" electrons moving in phase with the 
wave are responsible for the wave absorption. The capture 
leads to the decrease of the number of resonance electrons, as 
a result of which the absorption also decreases. The dynam- 
ics of the captured particle does not then play any role. The 

nonlinear skin effect considered here, like the "current 
states" in  metal^,^'^^-'^ is a case of strong nonlinearity, when 
the electromagnetic properties of the medium are deter- 
mined precisely by the dynamics of the captured electrons. 
The effect of the wave field on the conductivity turns out to 
be so strong that there occurs a qualitative change in the 
picture of the skin effect. 

The authors thank E. A. Kaner for interest in the work 
and for useful discussions. 
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