
Neutron diffraction by incommensurate magnetic structures 
Yu. A. lzyumov and V. M. Laptev 

Institute of Metal Physics, Urals ScientiJc Center, USSR Academy of Sciences 
(Submitted 12 May 1983) 
Zh. Eksp. Teor. Fiz. 85,2185-2199 (December 1983) 

We investigate the picture of diffraction scattering by an incommensurate structure during a 
temperature-induced or a magnetic-field-induced phase transition into a commensurate phase. 
We show that when the field is increased or when the temperature is lowered satellites of higher 
order are produced in addition to the pair of principal magnetic satellites, and a central peak 
appears. Subsequently the intensities of all the satellites decrease, while the central peak increases 
and at the point of transition into the commensurate phase it is transformed into the principal 
reflection of this phase. In the case ofjoint action of a magnetic field and of the natural crystalline 
anisotropy, the nonlinear equation for the distribution of the order parameter can be solved 
exactly only for second-order anisotropy. At arbitrary anisotropy, asymptotic solutions are ob- 
tained near the NCel point and near the phase transition into a commensurate phase, where the 
soliton-lattice approximation is valid. From the observed diffraction effects one can assess the 
validity of the soliton picture of the phase transition and of the principal approximation of the 
theory, viz., that the absolute value of the order parameter is constant. 

PACS numbers: 75.30.Kz, 75.25. + z, 75.35.G~ 

1. INTRODUCTION must be obtained from the minimum of the system energy 

~h~~~ are many known substances with helical magnet- after substituting the solution (1.3) in @. The energy is ex- 

ic structures and with wave vector- that change continuous- pressed in terms the first- and second-Order complete el- 

ly when the temperature is lowered. In some cases this liptic integrals K and E (Ref. 2): 

change halts on reaching the nearest symmetric point of the cD nu" v x2-2 4 E 
Brillouin zone, corresponding to the onset of a commensur- - - 2 - 2  +--). x r  

p2 nr. K 
(1.4) 

ate structure, either ferromagnetic or antiferromagnetic (see 
~ ~ f .  1). The physical picture ofsuch a phase transition from Minimization of this expression with respect to x leads to an 

an incommensurate to a commensurate phase was first es- equation for the determination of x: 

tablished by Dzyaloshinski12 on the basis of a free-energy E n23tzo2 
functional of the following form: x (1.5) 

which includes the exchange energy, the anisotropic interac- 
tion described by the Lifshitz invariant, and the energy of the 
n-th order crystallographic anisotropy. Herep and p are the 
modulus and phase of the order parameter (DP), and it is 
assumed that the modulus is independent of the coordinates. 
The parameter y > 0, while a can have any sign; we assume 
for the sake of argument a < 0. 

In the absence of anisotropy, a structure modulated 
along the z axis is produced, having a temperature-indepen- 
dent wave vector k, = lal/y. In the general case the spatial 
distribution of the DP phase satisfies the mathematical-pen- 
dulum equation 

the solution of which is expressed in terms of elliptic func- 
tions' 

nrp/2=am(qz, x) , q = v " l ~ ,  (1.3) 

where x is the modulus of the elliptic  function^.^ The param- 
eter corresponds to the integration constant of Eq. (1.2) and 

Analyzing (1.3), Dzyaloshinskii arrived at the following 
structure of the inhomogeneous state that corresponds to the 
functional (1.1). A periodic structure with period L = 4xK / 
u l i 2 ,  is produced and evolves with change of the parameter u 
in the following manner. At small u the phase p(z) differs 
little from k g  and corresponds to a helical structure. With 
increasing v ,  the phase is almost constant over a length L of 
the period, but changes abruptly by 2r/n at the end points of 
L. As u +u, the relative fraction of the constant-phase sec- 
tion increases. The system can be represented as a periodic 
structure of domains of a commensurate phase with constant 
values of p that are multiples of 2r/n and are separated by 
domain walls (solitons). This soliton picture can be easily 
discerned from the solution (1.3) by using the asymptotic 
forms of the elliptic integrals 3: 
1) x-0 

2) x-+l (or x'+l - ~ ' ) ' / ~ 4 ) :  

The parameter u varies with temperature because of the tem- 
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perature dependence of the DO (at n)4). In the case of uni- 
axial anisotropy (n = 2), v is independent of temperature (if, 
as usual, all the parameters of the functional (1.1) are as- 
sumed constant). 

The predicted structure of the incommensurate phase 
can be verified in experiment by using the neutron scattering 
method. The aim of the present paper is to investigate the 
diffraction picture of elastic magnetic scattering by a soliton 
lattice. Within the framework of one and the same math- 
ematical model we succeed in considering also the question 
of neutron diffraction by a helical structure placed in a mag- 
netic field, since the field can be regarded formally as first- 
order anisotropy (n = 1). Finally, we solve the problem of 
the joint action of anisotropy and of an external magnetic 
field and establish the diffraction picture of the scattering 
also in this important case. 

The cross section for elastic magnetic scattering is given 
by the relations4 

do/dQ - YK,,. (651-eaeT) ( ~ B T ' - ~ B ~ T ' ) ~ ~ ' ( Q ) F ~ ( Q ) ,  (1.8) - 
1 

F~ (Q) = - J dr .-"'Ma (r) , v (1.9) 

Here Q is the scattering vector, e is the scattering unit vector, 
Ma (r) is the magnetic-moment density in the crystal, and a, 
are Pauli matrices (the neutron spin). The superior bar in 
(1.10) denotes averaging over the polarizations of the neu- 
trons in the incident beam, p0 is the vector of the initial polar- 
ization of the beam, and E ~ ,  is a unit antisymmetric tensor. 
The main problem reduces thus to finding the Fourier trans- 
form of the spin-density function defined by the DP phase 
(1.3). We consider next several typical physical situations. 

2. SIMPLE HELIX IN AN EXTERNAL FIELD 

A phase transition into a simple helical structure with 
small wave vector along the z axis can be described on the 
basis of the functionals 

At large f i>  0 the spins lie in the (x, y) plane. They will re- 
main there if the external field H lies in the same plane. In- 
troducing for the magnetization vector the polar coordinates 

Mx=M cos rp, iM,-M sin rp, M,=O, (2.2) 

we reduce the expression (2.1) to (1.1), where 

n=1, v=h/2y, h = H / M ,  (2.3) 

(for the sake of argument, the field was chosen along the - x 
direction). 

Substituting the solution (1.3) with n = 1 in (2.2), we 
easily obtain the relations 

cos rp=2 en2 qz-I, sin q=2 M qz sn  qz, (2.4) 

which show that a field perpendicular to the wave vector of 
the helix leads to deformation of the initial structure, where- 
by the spins rotate non-uniformly as they move along the z 
axis, being more frequently oriented along the applied field.6 
The modulus of the elliptic functions depends on the field via 
the relations 

We find the expansion of the function (2.4) in Fourier series 
by a method described in Ref. 3. We obain 

where K '  is a complete elliptic integral of the first kind for 
the modulus x'. We now calculate from (16) the cross section 
for elastic scattering 

where k is the wave vector of the structure: 

b is an arbitrary vector of the crystal reciprocal lattice. Be- 
sides the fundamental, we obtain thus multiple harmonics 
with intensities given by the following quantities: 

In weak fields we have x( 1, and known the asymptotic 
relations (1.6) and (1.7) we get 

with x2 = h 2y/d.  It is seen from this that in a zero field 
there is only a pair of magnetic reflections with Q = b + k 
and with intensities - [ 1 + e: 2(p.e)eZ ] (Ref. 7). In a field, 
a new reflection Q = b with intensity - h appears, as well as 
harmonics with intensities - h 2P - ; the intensity of the fun- 
damental reflections with p = 1 decreases with increasing 
field. 

In the second limiting case x+l (i.e., h-+h, ) the asymp- 
totic form (1.7) shows that the wave vector k tends logarith- 
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FIG. 1. Dependence of the scattering amplitudes [Eqs. (2.9) and (2.10)] 
and of the helix wave vector k (2.8) on the parameter x2.  

mically to zero and all the reflections approach a central 
peak whose intensity JG2(x)+1. It is possible to change in 
(2.7) from summation to integration, and as a result the scat- 
tering cross section is described by 

(2.12) 
where A = (2/.rr)(h /2y)'I2. Against a background of a diffuse 
peak of width - A  (in the direction of the z axis) there ap- 
pears an intense central component, into which all the scat- 
tering from the diffuse peak is pumped over at h = h,. A 
phase transition takes place at that instant from the incom- 
mensurate into the commensurate (ferromagnetic) structure. 
The evolution of the scattering picture in the entire field 
interval O<h<h, is illustrated by Figs. 1 and 2. 

The central peak is due to the appearance of magnetiza- 
tion in an external field. Its value is given by 

dr cos cp=MJ,"(x), (2.13) v 
whose asymptotic forms have already been established. 

FIG. 2. Dependence of the parameter x Z  on the magnetic field (tempera- 
ture). 

3. SIMPLE HELIX IN AN EXTERNAL FIELD IN THE PRESENCE 
OF NATURAL FIRST-ORDER ANISOTROPY 

We turn now to the simple helix described by the func- 
tional (2.1) and take into account the n-th order magnetic 
anisotropy in the basal plane of the crystal, a plane in which 
the magnetic field is located. Assuming, as before, that the 
modulus M of the order parameter does not change in space, 
we transform to a free-energy functional of the form 

d~ + 20M2 - + M H  cos cp+ wMn cos ncp 
dz 

(3.1) 
(the field is directed along the - x axis). 

The distribution of the phase is subject to the nonlinear 
differential equation 

d2cp H - Mn-'w 
+-sincp+- n sin ncp=O, 

dz2 27M 27 
exact solutions of which can be obtained only for n = 2 
(Refs. 8, 9). We investigate thus uniaxial anisotropy. The 
case w > 0 corresponds to a field applied in the hard direc- 
tion, and w < 0 to a field applied along the easy axis. 

A solution of (3.2) at n = 2 can be obtained by setting up 
the first integral of motion and integratng both halves of the 
equation with respect to p, after which the variables in the 
equation separate. It is necessary then to substitute cow = t 
in the resultant equation and introduce a linear-fractional 
substitution for t. Solutions of this type were in fact obtained 
in Ref. 8 in connection with a solution of another physical 
problem, and we shall make use of them. 

At w > 0 there are two solutions corresponding to two 
incommensurate phases 1s and 2s: 

Is: 

cn qz-t  dn qz 
cos cp = 

dn qz-E cn qz ' 

cn qz-E 
cos cp = , q =  -- 

I -E  cn qz (3.4) 

X 2  = E (a-E) 1 
0 4 E ~ n i n  (a, --) 1-E" 

Here a = 4wM /H, 6 is a parameter that stems from the 
integration constant when the integral of motion is set up, 
and must be obtained by minimizing the energy (in a manner 
similar to that used to obtain x in Sec. 2); x is the modulus of 
the elliptic functions and is expressed in terms of and a. 
These intervals of the variation of 6 ensure a change of the 
modulus x within the required limits from 0 to 1. 

At w < 0 (i.e., a < 0) there is only one solution Is, for 
which 

The solutions 1s and 2s describe infiite lattices of solitons of 
one and two types, respectively.' 
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To find the Fourier components of the functions (3.3) 
and (3.4) we must find the poles of these functions in the 
periodicity parallelogram and use the residue theorem. 

For the state 1s (w > 0) we have 

cos cp=Jo" ( E )  - 
I-Ea '12 sh[ (pn/2K)  (K'-x,) 1 aq 

+ r< (T ) sh[pnKr /2K]  
c o s p z ;  

2 K 
p=1 

sinp is given by an analogous expression, in which there is no 
free term, the cosine is replaced by a sine, and the denomina- 
tor contains the hyperbolic cosine rather than the sine. The 
scattering cross section is determined by the previous 
expression (2.7) in which, however, J ;  are functions of f :  

and J ;  (f ) is obtained from J %  ) by replacing the hyperbolic 
sine in the denominator by the hyperbolic cosine. 

In (3.7), 17 (f 2, is a complete elliptic integral of the third 
kind, and x, is determined from the equation 

dn (xo ,  x') =E,  (3.9) 
which is connected with the procedure of finding the pole of 
the function (3.3). The wave vector (0, 0, k ) of the structure is 
given by 

k=qn/2K, (3.10) 

[q is defined in (3.3)]. The expression for the cross section, of 
the form (2.7), and expression (3.10) for the wave vector re- 
mains the same as for the other states. 

For the 1s state (w < 0) we have in place of (3.7)-(3.9) 

sn (xo, x )  = ' / x .  (3.13) 

We present, finally the results for the 2s state: 

n 1-5' 'h chi (pn/2K)  (K'-xo) 
Jp"(E)= -- - 

2K ( Ea ) ch[pnK1/2K]  9 P -  odd, 

n I-E"' sh [ (pn/'aK) (K'-x,) 1 (3.15) 
J , X ( E )  = Zg (T) , p - even, 

a sh [pnK1/2K] 

The quantity J ;  (f ) is obtained from J :  (f ) by interchanging 
the denominators. The different forms of the reflection in- 
tensities of even and odd order are due to the presence of two 
types of solitons in the 2s state. 

To investigate the formulas obtained for the intensities 
of the reflections as functions of the field and of the tempera- 
ture, it is necessary to calculate the energy of each state and 

minimize it with respect to f and M. We obtain for the 1s 
phase: 

E+x" (II-K) = n (3.17) 

H 
2 (r-w) M+4uM3 - -[ Kg (1-L2) II+E('-a) Kl=O, (3.18) 

and for the 2s phase: 

HA!! 
(D2,=rM2+uM + -[2rj+ 2(1-g2)E - ( ~ - E ~ - E " ) K ]  

2KE 

n + (I-'" (E-K)  = n , (3.20) 

We note that the expressions for the energies @ ,, and 
@ 2s, as well as Eqs. (3.17) and (3.20) for the minimzation with 
respect to f ,  agree fully with the corresponding equations of 
Ref. 8 (after correcting some misprints). The equations (3.18) 
and (3.2 1) for the minimization with respect to M differ from 
the corresponding equations of Ref. 8, inasmuch an anisot- 
ropy of higher order was considered in the latter. It is also 
easy to verify that all the results of the present section go 
over into known limiting cases. Thus, the solution (3.4) goes 
over as H 4  into cos p = cn qz (Ref. 10) (there is no solution 
(3.3) under these conditions). As w-0 there is no solution 
(3.4), and (3.3) is Laplace-transformed" into 
cos p = 2 cn2(@z, 2)  - 1, i.e., into solution (2.4) with differ- 
ently defined q and x .  

We obtain now the boundary between phases 1s and 2s. 
It corresponds to x = 0, since reversal of the sign of x2 con- 
tinuously transforms one solution into the other. If we take 
solution Is, then x = 0 corresponds to f = a. In this case 

n ( ~ 2 )  ( 1 - ~ ~ ) ' ~ ,  

and Eqs. (3.17) and (3.18) yield, after eliminating M, the con- 
nection between r, w, and H: 

The same result is arrived at from the side of the 2s phase. 
The basic equation (3.2) has at n = 2 two homogeneous 

solutions that corresponds to two commensurate phases 1 
and 2: 

1 )  cos cp=-I; (3.23) 

2)cos cp=-H/4~M=-l/ t i .  (3.24) 

The energies of these phases are respectively 
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jr-w) V 
@,=rM2+uM+wM2-MH, cD,  = - - - - 

4u 8 w  ' 

from which it follows that phase 2 is energywise expedient 
only at w > 0, i. e., when the field is applied along the hard 
axis. The two commensurate phases obviously border on the 
surface 

r=w-uH2/8w2. (3.26) 

Let us determine the boundaries between commensur- 
ate and incommensurate phases. This calls for an astute use 
of the asymptotic forms of analytic integrals of the third kind 
(see Ref. 11). It appears that authors of Ref. 8 faced the same 
problem. Unable to track the laborious mathematical mani- 
pulations, we present the final results for boundaries of in- 
commensurate phases corresponding to the limit x-1. The 
results agree in spirit with Ref. 8, although the equations 
differ somewhat in form because of the lower order of the 
anisotropy in our case (n = 2). 

The surface that separates the phases 2s and 2 is given 
by the parametric equations 

u H 
r=w - HZ, cos E = - 

8w2 cos' E 4wM' 

From a comparison ofthe last equation in (3.27) with (3.24) it 
can be seen that E is in fact the angle p in the commensurate 
phase 2 (more accurately, p = n- - E, since the field is direct- 
ed along the - x axis). The limits of the interval O(~<n-/2 
define two lines that bound this surface: 

and 

The surface that separates phases 1s and 1 consists of 
two sections. For w > 0 it is specified by the equations 

and is bounded by the lines (3.28) and 

n2 o2 ,.---=--- 128 y2 H,, W=O. (3.31) 
16 y n4 o' 

For w < 0 the surface is determined by equations of another 
type (hyperbolic asymptotic form of n-): 

2 E  (J2 '12 -- 1 + ---- - th E  (--) , 
s h 2 ~  2 21wly (3.32) 

u 41wlM 
r-2Iwl~th~~=w----H~sh~&, shZe=-  

8wZ H '  

and is bounded by the lines (3.31) and 
n2 o2 H=O WE----. (3.33) 
8 Y 

FIG. 3. Phase diagram at constant temperature (r = const < 0 ) .  The phase 
boundaries are defined by the relations: a-(3.26), b-(3.22), c-(3.27), 
d-(3.30), d '-(3.32). ThepointsA, B, C, andD lie respectively on thelines 
(3.28), (3.29), (3.31), and (3.33). 

A typical planar section r = const of the phase diagram 
is shown in Fig. 3. On the line that separates the phases 2s 
and 1s the states go over continuously into one another, and 
in Ref. 8 are presented arguments that such a boundary is not 
a phase-transition line at all. As for transitions from incom- 
mensurate to commensurate phases, it is known that they are 
of first order." Our calculations show thus that near the line 
that separates phases 1s and 1 the quantities M, x, and 6, 
which are defined by Eqs. (3.17) and (3. la), are non-single- 
valued functions of the magnetic field. This leads to the ap- 
pearance of jumps of these quantities when H is varied (this 
problem is discussed in the most general form in Ref. 13). 
The size of the jump decreases rapidly with decreasing tem- 
perature. 

The relation between the phases is illustrated also by 
Fig. 4. In the commensurate phase 1 all the magnetic mo- 
ments are oriented along the field. In phase 1s they rotate 
around the z axis, but are more frequently in the vicinity of 
the shaded vector. In phase 2 there are two energywise equi- 
valent orientations of the magnetic moments (two domains). 
In phase 2s they also rotate arund the z axis, but are more 
frequently in the vicinity of each of the shaded sectors. There 
are thus two domain walls (two solitons) with phase shifts p 
smaller than and larger than n-. 

We proceed now to analyze the scattering in the differ- 
ent limiting cases. 

In the 2s phase as H-0 (a+ co ) we have 6-0, therefore 
x,+K '. In first order in l /a  we obtain from (3.14) and (3.15) 
(x2 = ga) 

1 K-E 
J,"= 

a K 

PIG. 4. Structures of commensurate and incommensurate phases with 
solitons of one and two types. 
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n 1 pnx (3.34) 
J~==--- / s h ( p s ) ,  p-odd; 

2Kx a 2K 

Jg is obtained by interchanging the hyperbolic sine and co- 
sine. This phase is realized at w > 0, i.e., when the field is 
oriented along the hard axis. If the field is oriented along the 
easy axis (w < O), the 1s phase is realized at small H, and Eqs. 
(3.11)-(3.13) yield (x2 = 6 la/):  

n 
J " - - -  

P - l / s h  p- 2 K x  
( ;z ) +O ($1 . P- even, (3.35) 

x----- 

- 2Kx la1 2Kxt2 
, p-odd; 

J i  is obtained by replacing the hyperbolic sine with the co- 
sine. In weak fields there are thus two systems of satellites in 
both cases, and for even orders their intensity is low and 
- H  ', just as for the central peak. The satellites of odd order 
depend on temperature like M ', and those of even order like 
M. In the limit H-0 the central components given by (3.34) 
and (3.35) vanish for arbitrary x. At the same time on going 
the limit K-1 we should obtain commensurate phases for 
which the entire scattering intensity goes into just the central 
peak. The paradox is resolved if the exact equations (3.11) 
and (3.14) are used for the central components and the limit 
as x-1 is taken first (this corresponds to the thermodynam- 
ic limit), and only then letting H - - 4 .  In this case, for exam- 
ple, (3.14) yields Jlj (6 ) = 1, which corresponds to one do- 
main of the commensurate phase. 

On the boundary of the phases 1s and 2, the equations 
(3.14) and (3.15) reduce to the following (it is recognized that 
on this boundary x, satisfies the equation l/cosh x, = a ) :  

We note that Eqs. (3.7) and (3.8) for the 1s phase lead on this 
boundary to the same equations. Thus, on this boundary the 
two systems of satellites (of even and odd order) of the phase 
2s are transformed into a single system of satellites of the 
phase 1s. From this change of the diffractive picture of the 
scattering we can determine the boundary of two incommen- 
surate phases. On this boundary, the intensities of all the 
satellites are determined by one angle factor 
1 + e: + 2(p-e)e,, the same as for a pure helix stemming 
from the paramagnetic phase. 

Near the boundaries of the transition to the commen- 
surate phase 1 or 2, the asymptotic values of Jlj and J y  lead 
as x-1 to a picture of satellites that come closer together, 
accompanied by an abrupt increase of the central peak, as 
considered in Sec. 2. 

4. ROLE OF n-TH ORDER ANISOTROPY 

Although we cannot find the exact solution of the basic 
equation (3.2) for arbitrary n, we obtain the physical picture 
by considering the limiting cases of small and large w and H. 

We rewrite (3.2) in the form 

(pN+vl sin q+v, sin nrp=O, (4.1) 
where v, = H /2yM, v, = nwW - /2y. At small v, and u, 
we can find asymptotic expansions of the solution by the 
method of Ref. 14. Accurate to terms quadratic in the field 
and in the anisotropy, we obtain after excluding the secular 
terms14: 

ui v ,  vil  
rp=kz+-sinkzf - sin nkz t - sin 2kz 

k2  ( n k )  ' 8k4 
nu," +- &sin 2nkz  
8 ( n k )  

viun n 3 t 1  + --- 
2n2k' { (a+ I)'  

sin [ (n+ I )  k z ]  

Here k is an integration constant and should be obtained by 
minimizing the energy 

The equation aQi/ak = 0 is solved for k by iteration, and 
yields the following expression for the wave vector (with the 
same accuracy in v, and v, ) 

It is easy to obtain with the aid of the series (4.1) an expansion 
for cosq, and sinp into harmonics and calculate the scatter- 
ing cross section from Eq . (1.10). The result takes as before 
the form (2.7), where the amplitudes of the satellites that 
appear in the first two orders in the field and in the anisotro- 
py are given by 

1 3U12 ui Gn- 
l ox=-  -. J," = - - ---- - 

2k2 ' 2 32B S (nk ) ' .  ' (4.5) 

1 5vi2 L?,' u 
J," - --- 33,' 

j X s U  = ]A,u = . 
2 32k4 8 ( n k j 4  ' ' 4h-2 ' :;2k" 

Note that in the absence of anisotropy these expressions 
coincide with the corresponding asymptotic forms (2.11) of 
the exact solution of the problem of a helix in a magnetic 
field. At n = 2 the expressions obtained coincide with' the 
asymptotic forms (3.34) and (3.35) of the exact solution of the 
problem of a helix in a field with second-order anisotropy. In 
the case of arbitrary n for weak fields and weak anisotropy 
(i.e., in the vicinity of the phase-transition temperature 
where the helical structure just now sets in) Eqs. (4.5) and 
(4.6) describe the following diffraction picture. 

Around the principle pair of reflections with p = 1 
there are higher-order satellites due to the external field. The 
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distance between the nearest satellites is k. The anisotropy 
gives rise to a pair of satellites about the vectors nk, 2nk, etc. 
kbout each of these satellites appear weaker ones, due to the 
superposition of the field arid the anisotropy. The distance 
between the nearest satellites is again k. Superposition of two 
satellites systems with periodicities k and nk thus sets in. In 
the particular case n = 2 the periodicities k and 2k corre- 
spond to different behaviors of the even and odd satellites, as 
we have seen from the exact solution of the problem. 

In the vicinity of the transition to the commensurate 
phase, the solution of Eq. (4.1) can be represented in the form 
of a lattice of solitons (see Ref. 1). We obtain a single-soliton 
solution of (4.1) for low anisotropy using theory 
in the parameters v, /v, ( 1. This solution is provided by the 
asymptotic form c o y  = - 1 as z--+ + oo (then 
cosp = ( - 1)" ). We write the first integral of the equation in 
the form 

Hence, e.g., for the case n = 4 we obtain in first order in v, / 
v, the solution 

where A = ~ i ' ~ ( 1  - 2ul/vn) determines the reciprocal width 
of the soliton localized at the point z, = 0. For a soliton lat- 
tice with period L we can write: 

1 
- 

1 
sin - qp, (z) = sin cp (z-ZL) . 

2 (4.9) 

With aid of (1.9) and (1.10) we arrive at the following 
expression for the cross section near T, 

where F, (t ) and F, (t ) are the soliton form factors: 

(4.11) 
4t2 

F, ( t )  = - 
ch t 

and P, and Py are cubic polynomials: 

tering asymmetry in the x and y directions and to a larger 
width of the diffuse scattering near the central peak. The 
results (4.10) and (4.11) pertain to the case n = 4. They re- 
main valid also for arbitrary n; all that changes is the form of 
the polynomials P, and Py of degree n - 1. 

5. "ANTIFERROMAGNETIC" HELIX IN AN EXTERNAL FIELD 

So far we have considered helical structures with near- 
zero wave vectors (the corresponding commensurate phase 
was ferromagnetic). In this section we consider a two-sublat- 
tice antiferromagnetic structure with the spins located in the 
(x, y) plane and with helical modulation in the direction of 
the z axis. The action of the magnetic field on a helical anti- 
ferromagnetic structure was first investigated by Dzyalo- 
shinskii2 on the basis of an invariant of the form (I.H)2, 
where 1 is the antiferromagnetism vector. It was shown that 
the problem reduces to Eq. (1.2) with second-order effective 
anisotropy. In contrast to Ref. 2, where high temperatures 
(the vicinity of the phase transition) were considered, we in- 
vestigate another case, that of low temperatures, when ac- 
count must be taken of the constancy of the modulus of the 
magnetic moment at each point. It is convenient to specify 
the magnetic-moment density by the relation 

M (r) =M (m+leiqlr) , (5.1) 
where q, is the antiferromagnetism wave vector and is equal 
to half of some reciprocal-lattice vector of the crystal. The 
vectors m and 1 satisfy the conditions 

mZ+12=1, (ml) =0, (5.2) 

which ensure constancy of the modulus of the magnetic mo- , 

ment at each point. 
The energy of such a structure is described by the func- 

tional 

where r < 0 in a magnetically ordered phase. 
At positive and large anisotropy constantsp andp  ' the 

spins lie in the basal plane; this plane contains also a field 
directed along the - x axis (h = H /M ). Under these condi- 
tions we shall specify the vectors 1 and m by the relations 

&=m cos cp, m,=m sin cp; L,=Z sin cp, I,=-1 cos cp, 
(5.4) 

with m, = I, = 0. If, as in the preceding section, we assume 
the moduli m and I to be constant, the problem of a phase 
transition in a field reduces to an analysis of the functional 

dcp +20L2 - + mh cos cp 
dz 

(5.5) 
- .  

Variation with respect to the phase p leads to Eq. (1.2), 
In the absence of anisotropy Eq. (4.10) goes over into where 

(2.12) if account is taken of the expression for L = (4/ 
TA ) ln(4/x1). Fourth-order anisotropy leads to a larger scat- n=l,  v=mh/2yZ2. (5.6) 
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Variation with respect to 1 and m yields two addtional equa- 
tions 

There are four solutions of these equations: 

1) cp=k,~ , 1=1, m=O (h th , ) ;  

2) cos q=-1, 1=[1- (h/2r)2]'", m=-h/2r (h,<h<h,); 

3) cos q=-I, 1=0, m=-1 (h>h,); 

4) q=2 am (v1"z/?c, ?c) . 
The parentheses contain the stability limits of the solutions: 

The fourth solution has no stability region. For the remain- 
ing solutions the stability regions can overlap, and this leads 
to first-order phase transitions. Comparison of the free ener- 
gies of the phases shows that at T >  T * ( T  * is determined 
from the condition Irl = 2 /y ) ,  with increasing field, a first- 
order transition takes place from a simple helix (solution 1) 
to a ferromagnetic structure (solution 3). The transition 
takes place in a field h = Irl + d / y .  At T < T*, with increas- 
ing field, a first-order transition takes place from a simple 
helix to a spin-flop phase (solution 2) at h = 2(lr\~?/y)"~, 
and then a second-order transition at h = h, into a ferromag- 
netic state. 

If there is no field, it can be easily seen on the basis of the 
first section of the article that the natural anisotropy leads to 
a distortion of the helical structure in accord with expression 
(1.3)-(1.5). Thus, the neutron-diffraction pattern will reveal 
the satellite system described in Sec. 2, clustered around the 
"antiferromagnetic" site b + q, of the reciprocal lattice. 

6. CONCLUSION 

The analyzed physical situations are perfectly sufficient 
to set up a complete picture of neutron diffraction by incom- 
mensurate structures and its evolution with change of field 
and temperature. This will permit an analysis of numerous 
experimental data when neutron-diffraction investigations 
of magnetic structures reveal higher-order satellites and 
their variation on approaching the point of transition to a 
commensurate phase (see, e.g., Refs. 1 and 15). Direct appli- 

cation of our results to a quantitative comparison with ex- 
periment is not quite feasible, since we have restricted our- 
selves in the first three sections of the article to simplest 
cases, when the crystal has no inversion center, although in a 
real situation this is most frequently not the case. Moreover, 
incommensurate magnetic structures are usually described 
by four-component OP (see Ref. 4), whereas here we confine 
ourselves to a two-component OP. For a detailed compari- 
son of the theory with experiment the calculation must be for 
a concrete magnetic structure in accordance with the 
schemes developed here. Such an analysis is most timely, 
since it will permit a verification of the phase-transition soli- 
ton picture itself and a check on the validity of one of the 
principal approximations of the theory-the constancy of 
the OP modulus (see Ref. 12). On the other hand, a correct 
understanding of the nature of satellite reflections is quite 
essential for neutron-diffraction interpretation of noncom- 
mensurate structures. A detailed analysis of the experiment 
will be presented elsewhere. 
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