
Stochastic motion of magnetization vector of superfluid 3He 
A. I. Ugulava 

Tbilisi State University 
(Submitted 3 April 1983; resubmitted 19 September 1983) 
Zh. Eksp. Teor. Fiz. 86,497-501 (February 1984) 

The superfluid-He3 magnetization motion induced by a periodic sequence of rf pulses is investi- 
gated. It is shown that under certain conditions the magnetization motion is stochastic. To de- 
scribe the stochastic motion of the magnetization, a kinetic equation is derived for the distribution 
function of points in phase space, and is solved for a stationary case. The obtained distribution 
function is used to calculate the stationary magnetization produced by the action of a periodic 
sequence of rf pulses. 

1. The spin-system dynamics of superfluid 3He is de- 
scribed by the system of Leggett's  equation^.'.^ Fomin3 used 
them to show that the NMR frequency of superfluid 3He is 
subject to a shift that depends on the angle of inclination of 
the magnetization field. If the alternating field is at reso- 
nance at the initial instant with the NMR frequency, the 
magnetization starts to deviate from the equilibrium posi- 
tion. Deviation of the magnetization, however, is accompa- 
nied by a change of the resonance frequency. This in turn 
upsets the resonance condition and as a result, in sufficiently 
weak alternating fields in which the condition yh(w, is sat- 
isfied (here 2h is the alternating-field amplitude, y is the 
gyromagnetic ratio, and w, characterizes the frequency 
shift), the magnetization inclination angle can be only small, 
of the order of yh /w, . Large inclinations can be obtained, 
naturally, with high-power pulses with amplitudes h)w, / y ,  
at which the dynamic character of the shift becomes of little 
significance. It is difficult, however, to produce such pulses 
in practice. Osheroff and Corrucinis achieved a considerable 
inclination of the magnetization with pulses satisfying the 
conditions yh ko ,  and y h s  1 / ~  (r is the pulse duration). 
The maximum inclination obtained in these experiments 
agrees with the result of Ref. 6, based on Leggett's equations. 
Leggett's equations can be solved for arbitrary ratio of yh 
and o, only by numerical  method^.^ 

In this paper is proposed a method of obtaining large 
inclinations of the magnetization of superfluid 3He by a peri- 
odic sequence of relatively weak (yh 5 a,, yh( l / ~ )  rf pulses. 

2. Fomin3 obtained on the basis of Leggett's equations, 
in the limit of strong magnetic fields H0)OA,  /y, (aA,  are 
the longitudinal-oscillation frequencies of the A and B 
phases, respectively), for the nonresonant case realized when 
the dc field is changed jumpwise by an amount AH of the 
order of H itself, the following equations of motion for the 
magnetization " 

where 
01 ( 0 )  =~o+o ,^ '"  ( € I ) ,  V ( r p ,  t )  =yh ( t )  sin cp :  

8 and q, are the polar and azimuthal angles of the magnetiza- 
tion vector, thez axis is directed along the constant magnetic 
field, while w and 2h ( t  ) are the frequency and slowly varying 
amplitude of the alternating field applied along the x axis. 
The system (1) was written in a coordinate frame rotating 
with frequency w around the z axis. 

Assume that the alternating field is a sequence of &like 
pulses: 

w 
t  

h ( t ) = h ,  h ( -  n ) ,  
T  

n=-m 

where Tis the interval between the pulses. We note that such 
a representation of the alternating field is valid if the pulse 
duration T satisfies the conditions 

A," o , o o > l / ~ > A o ,  yh, op  , (3) 

and h, is connected with the ac field amplitude at the pulse 
peak by the relation h =,h,(T/r). 

It follows from Eqs. ( I ) ,  in the weak-pulse approxima- 
tion yhr( 1, that the jumplike changes of the angles 8 and q, 
assume after the action of the nth pulse the form 

AO,=U~T sin O n ,  Arp,-Aan+K' cos cpn, (4) 

where 
Afn=fn+i-fn, f n = e n ,  CPn, a n ,  

ban-@ (0,)  T-K,  sin qn, oi=yhi, (5) 

~ , = o , o ; ' ~  T p  sin en, Knr=oiT ctg 

8, and q,, are the values of the polar and azimuthal angles at 
the instant of application of the nth pulse. 

A variation of the angle similar to that given by (5) for 
a, was considered in Refs. 7 and 8 in connection with an 
investigation of the motion of a nonlinear oscillator acted 
upon by repeated 8-like jolts. It was shown in these refer- 
ences, in particular, that the values ofao,al,  ... at K) 1, where 
K is the mean value of KO, K,, ... , are statistically indepen- 
dent. The correlation becomes uncoupled after a time 
tOz2T/ln K shorter than the interval between the pulses. 
Since the rate of change of the polar angle depends, accord- 
ing to (1) and (4), on the angle a, the change of 8 will also be 
random. The system considered here is therefore, at K, 1, 
one example of a manifestation of stochasticity in nonlinear 
systems with a small number of freedom, which are inten- 
sively investigated of late.'-" 
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3. Following Refs. 7 and 8, we set up a statistical ensem- 
ble of the quantities (80,po;81,pl;... J and write down the 
Liouville equation for the distribution function p(8,p;t ) of 
these points in phase space: 

We exvand D and V in Fourier series 

Substituting (7) in (6) and taking the equations of motion (1) 
into account we obtain forp, the equation 

+ 2 B n . V n  ( t )  p.-n, (0 ,  t )  =O, 
n=-m 

where 

Bnn,=d/dO- [l+n'(n-n')]  ctg 0. (9) 

Changing in (8) to the interaction representation with 
the aid of the transformation 

pn (0, t )  +pn (0,  t )  exp (10) 

we obtain 

where 

a a ( t ) = a ( t ) - ~ ~ ( o )  = j ( e )d t ,  pn (0 ,  t  t  (12) 
0 

and V,, a coefficient of the expansion 

- 
k=-l1  

Since 8 varies slowly with time at w,Tg 1, we can put 

Aa ( t )  xo  ( 0 )  t. (14) 

It is now convenient to change to the Laplace transfor- 
mation for p, (t ), using 

and to reduce (1 I), with allowance for (14), to the form 

We shall be interested hereafter to the asymptotic behavior 
as t+ co , which in turn is equivalent to the limit s-0. Taking 
this into account, we iterate Eq. (1) up to second order in the 
interaction and retain only the resonant terms. This yields 

Po ( 0 )  go ( s )  = --- - - v, .on( 
Vn -kp-m ( 0 )  

s s - i [no  ( 0 )  -kQ] + c.c.} 
n>O k>O +'c y ,.on 

1 v n , - k I B n n I  Vn,-kl 
s s2+[no ( 0 )  - k 0 l 2  PO (01, 

n > o  k > o  (17) 

or, returning to the t - representkn as s 4 ,  

+ 2n B ~ . I V ~ , - ~ I ~  ( n o  (0) -kQ)  B..I ~ ~ , - ~ l p ~ ( O ) .  
n>o k > O  

(18) 

The terms of first order in the interaction in (18) contain 
products of oscillating functions and the initial conditions 
p, (0). It will be shown below that owing to the nonlinear 
character of the motion of the magnetization, the contribu- 
tion from the first-order terms, and hence from the initial 
conditions, becomes negligible in the change of the distribu- 
tion function. We note that if the magnetization motion were 
linear, the difference nw(8) - kf2 could be made small 
enough. It would then be impossible to get rid of the first- 
order terms of (18) by averaging over a specified finite time 
interval. 

If ( 18) is averaged over the initial value of the azimuthal 
angle p,, the first-order terms of (1 8) become proportional to 
the correlation function 

R ( t )  =B, = -Lj drpo exp i  (ar-ao) . 
2n 0 

(19) 

For long times t -- NT, where N )  1, we have introduced here 
a discrete time scale (with time interval T ) :  a(t)-a,, 
a(O)=a,. The dependence of a, on po is obtained from (5). 
The correlation function (19) was considered in Refs. 7 and 
8, where it is shown that 

R,aexp{- (N i2 ) ln  K ) ,  KB1 .  

For times t)to, neglecting the first-order terms, we can 
therefore obtain from (18) for the distribution function 

at K )  1 the kinetic equation 

Taking (9) and (13) into account, assuming that resonance 
obtains at the overtone Aw = kf2, where k is an integer, we 
get from (2 1) 

A general analysis of (22) is difficult. We analyze therefore a 
stationary case. Equating the right-hand side of (22) to zero, 
we get the equation 
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whose solution normalized to unity is 

(po).t='/2 sin 0. (24) 

With the aid of the distribution function (24) we can calcu- 
late the average stationary value of the transverse magneti- 
zation produced by a periodic sequence of rf pulses: 

- 
M,=M, sin 0=t/knMo=0.78Mo, (25) 

where 

G= 1 dB sin B(po).,, 
0 

Mo is the value of the equilibrium magnetization. 
It is known5 that the magnetization relaxation time of 

superfluid 'He is of the order of 0.1 sec. This permits N z  50 
pulses at intervals T- sec and duration T- sec to 
be applied before a substantial manifestation of relaxation 
processes. At a Larmor frequency w 0 z  lo6 sec-I, a longitu- 
dinal-oscillation frequency in the B phase (Ref. 12) 
a, z 2  x lo5 sec-', andAH/Ho = 3/2 we obtain for the fre- 
quency shift wfz4 .  lo4 sec- '. The stochasticity condition a 
Kzo,wfT2> 1 and the weak-interaction condition wlTN 1 
are then satisfied at wlz200 sec-', corresponding to a 
pulse-peak amplitude h z 1 Oe. 

Thus, a periodic sequence of rf pulses can induce sto- 

chastic motion of the magnetization of superfluid 'He, and 
the transverse magnetization attainable thereby is given by 
expression (25). 

The author thanks L. L. Buishvili for interest in the 
work, and I. A. Fomin and G. E. Gurgenishhvili for a helpful 
discussion and valuable remarks. 
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