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A one-dimensional discrete model applicable for the description of the polymer polyphenylene is 
investigated. Its complete integrability in the class of finite-band potentials is proved. The defor- 
mation and the spectrum are obtained for an arbitrary occupation numberp per molecule. It is 
shown that the Peierls effect leads to self-trapping of the electrons and to formation of polarons. 

I. INTRODUCTION 

Theoretical investigations of conducting polymers14 
show that the Peierls effect exerts a strong influence on their 
specific properties. A distinction is made between systems 
with pure and combined Peirels states. In a system with a 
pure Peierls state the gap in the electron spectrum is the 
result of spontaneous symmetry breaking in the system. An 
example of such a polymer is trans-(CH), . In systems with 
combined Peierls states the electron spectrum has, indepen- 
dently of the Peierls effect, a gap due to the polymer struc- 
ture. An example of such a polymer is cis-(CH), . Previously 
proposed theoretical models are suitable for the description 
of the simplest polymers, such as polyacetylene, in which the 
band gap is small compared with the total bandwidth. The 
present paper is devoted to a model that describes the one- 
dimensional ( ID ) polymer polyphenylene, which has in its 
spectrum a large band gap E, z 3.5 eV.5 The continual ap- 
proximation cannot be used in this case, and the discrete 
model is therefore considered. This polymer is of interest 
because experiments indicate that undoped samples are not 

It will be shown that polyphenylene is a 
dielectric of the combined type. We expect the Peierls effect 
to lead to self-trapping of the electrons and to formation of 
polarons. 

The investigation reported here is based on the math- 
ematical formalism described in the paper of Brazovskii, 
Dzyaloshinskii, and Krichever.' 

II. FORMULATION OF MODEL. DETERMINATION OF GROUND 
STATE 

1. The polymer polyphenylene consists of interconnect- 
ed benzene molecules, as shown in Fig. 1. Each carbon atom 
has four valence electrons, three of which are on hybridized 
orbitals, make up a bonds, and form low-lying filled bands. 
The remaining valence electrons (one per carbon atom) form 
T bonds, and the directions of their electron clouds are per- 
pendicular to the molecule plane. 

FIG. 1 

The Peierls effect is the result of an investigation 
between the electrons and the lattice deformations. It was 
shown by Brazov~kiretal.~ that in the tight-binding approxi- 
mation the electrons do not interact with the intramolecular 
oscillations, so that in this system the Peierls effect can occur 
via interaction with the intermolecular oscillations, i.e., via 
modulation of the hopping integrals t, between the rings. 
Inside the benzene molecule, the hopping integral between 
neighboring sites has therefore a constant value T. It is as- 
sumed that T is of the same order as in polyacetylene, i.e., 
Tz2 .5  eV.3 The value oft, can change either as a result of 
the bond length or as a result of rotation of the benzene ring 
through a certain angle about the longitudinal axis of the 
chain.  experiment^'^." show that the lengths of the bonds 
between the molecules are approximately the same as in the 
molecules, and that neighboring molecules are rotated rela- 
tive to one another through certain angles on the order of 10- 
30". We assume therefore that the hopping integrals t, will 
be modulated predominantly via rotation of the molecules 
or, in other words, that the Peierls effect is brought about by 
interaction of the electrons with rotational oscillations of the 
lattice (librons). When neighboring benzene molecules are 
rotated relative to one another the hopping integral between 
them decreases, in view of the decreased area of the overlap 
of the T-electron clouds; we shall therefore assume hereafter 
that t, < T, 

In the tight-binding approximation, with account taken 
of only the interaction between the nearest neighbors, the 
system Hamiltonian is 

where 

+E,-3-'" sin (x1/3) +F, . 3-Ih sin (2x1/3), (1) 

n is the number of the benzene molecule and 1 is the number 
of the molecule site (see Fig. 1). The wave function $n(l) is 
made up as a linear combination of plane waves-the eigen- 
functions of one benzene ring. For one benzene molecule, the 
electron spectrum and the wave functions are given by 
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E=-2T, cp-2 ( 1 )  =6-'", 

E=-T ,  c p - I  ( 1 )  =3-'" cos (n1 /3 ) ,  @-' ( 1 )  =3-'" sin (n1 /3 ) ,  

E = T ,  c p t  ( 1 )  =3-'" cos (2n1/3) ,  q' ( 1 )  =3-'" sin (2n1/3) ,  

E=2T, cp2(l) =(-1) ' .6- '".  

Since a neutral benzene ring contains six .n electrons, in 
the ground state the levels E = - 2T are doubly occupied, 
E = - T quadruply, and the levels E = T and E = 2T are 
free. When account is taken of the interaction between the 
rings, the discrete levels spread into bands. It can be seen 
from the structure of the Hamiltonian (1) that the term with 
the interaction does not contain the wave-function compo- 
nentsE, -3-'I2 sin (?rl/3) andF, .3-lt2 x sin (2~1/3);  there- 
fore the levels corresponding to these functions remain dis- 
crete. Thus, the spectrum of the system has two discrete 
levels, E = _f T, the level E = - 2T being 2N-fold filled 
and the level E = T empty. We discard hereafter in the wave 
function (1) the last two terms corresponding to the consid- 
ered discrete levels. 

We express the Schrodinger equation in terms of the 
variables 

an*=2-'"(Dn*An), j3,*=2-'h(Gn&Bn). 

It takes the form 

where the column $, has the components $, = (a,+, a;, 
p ,,? , P ,- ). With the aid of (2) we can express the quantities 
a,+ in terms o f p  : 

Introducing the variables 

We obtain from (2) with the aid of Eqs. (3) the following 
equivalent equation: 

Z T S ~ ,  (3T2 - E2) Et ,  
(EZ  - T2) (Ea - 47%) (E2-  T e )  (Ea- 4T2) 

(3T2 - E2) Et, (3T2 - E2)% E2 tn - (EZ - 
- ( ~ 2 -  T2) (E2- 47'2) 2T3 (E2 - T 2 )  ( E 2  - 4T2) + - 

where det S, = 1. For the components q,,t and q, ,, we easily 
obtain from Eq. (4) 

By specifying q,$ and q,; with the aid of (4), we can deter- 
mine all the remaining p,,? and pn- for arbitrary values 
E '# T2, E '#4T2. One can specify q, $ and q,,+ and deter- 
mine from (5) also q, ,+ and q, ;. In analogy with Ref. 8, we 
shall solve Eqs. (4) and (5) with periodic coefficients 
t ,  + , = t, , with an aim at subsequently taking the limit as 
N+w. Using (41, we get 

( p n + ~ = S ~ + n - l S ~ + n - z .  . . Sn(pn= Tqn. (6)  

We seek the solution of Eq. (4) in the form of a Bloch wave, so 
that p, +, = Ap,, where the eigenvalues A of the mono- 

dromy matrix Tare determined from the equation 

A L 2 Q  (E)A+1=0 ,  Q ( E )  ='I2 Sp P. (7) 

The polynomial Q (E  ) is of degree 4N, and its leading terms 
are 

Q ( E )  = [E'N+E'N-' ( -~T'N-E t:) + . . .] 
(8) 

2 ( 2 T 3 )  Ntn-i . . . to. 

As shown in Ref. 8, the end points of the spectrum are 
simple roots ofthe equation Q '(E ) = 1. IfE, < E2 < ... E,, + , 
satisfy the equations Q 2(Ei) = 1, the spectrum of the system 
contains q forbidden bands E,, < E < E,, + , and q + 1 al- 
lowed bands E,, - , < E < E,,. In the forbidden bands we 
have I Q (E ) / < 1 andA (E ) = exp (ipN ), wherep(E )is the mo- 
mentum corresponding to an eigenstate with energy E. In 
the forbidden bands we have / Q (E ) I  > 1. We are interested in 
the case of finite q in the limit as N-W. In this limit the 
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levels E fill densely the allowed bands, and we can transform 
from summation over the states to integration with respect 

E- m 
to E: Eq.1 

Account is taken here of the energy degeneracy in momen- 
tump-t - p  and in spin. From (7) and from the definition of 
the momentum it followss that 

where P (E  ) is a polynomial of degreeq. The sign ofthe square 
root in (10) is chosen such that dp > 0. It follows from the fact 
that in our case the polynomial contains only even powers of 
E that the spectrum is symmetric about the level E = 0. 
Therefore R (E ) and P (E  ) are given by 

P (E) =Eq+AEq-2+BEq-k+ . . . . (11) 

Since there are no eigenvalues of the operator H inside the 
forbidden bands, we have 

The system (12) enables us to find, in quadratures, the coeffi- 
cients of the polynomial P (E  ). The integrals with respect to 
the allowed bands are of the form 

where mj is the number of levels in the jth band. 
It follows from (10) that the differentialp is single-val- 

ued on the Riemann surface r of the function R ' I2(E ). We 
shall represent such a surface as glued together of two E- 
plane sheets with cuts along the allowed bands. We assume 
that in the vicinity of E-+w we have on the upper sheet 
R l I 2 ( ~ )  = ~ q + l  + O(E q -  '),justasinRef. 8. Thendp > Oon 
the upper edges of the cuts on the lower sheet. The integra- 
tion in the formulas that follow are along cycles that lie on 
the lower sheet of T and close the allowed bands. 

From (7) and (8) and from the definition of the momen- 
tump it follows that as E-+ w we have on the upper sheet the 
expansion 

ip=N-' In A=4 In E-Zo-Z,E-2-I,E-~ . . .. , (14) 

where 

Comparing (14) with the expansion (lo), we obtain expres- 
sions for the I, in terms of the coefficients of the polynomial 

P ( E )  

where 

2. To continue, we need certain analytic properties of 
the Bloch functions p ,+ and p ; . To each pair (A, E ) satisfy- 
ing Eq. (7) there corresponds a unique sol>tion of Eq. (4), 
which is an eigensolution for the operator T: p, + , = Tp, , 
and is normalized by the condition p $ = 1. This is called a 
Bloch solution. We then have for p, 

where po is an eigenvector of the matrix 

f =  (::: ) , det T-1, 

so that p0 = (A - Tll)/T,,. At each value of the energy E 
there are two functions p, corresponding to two different 
solutions of (7). The Bloch function is single-valued on the 
Riemann surfacer of the function (Q - 1)lJ2. As E-+ w the 
function p, has two asymptotic values, corresponding to 
two values of A ,  on the two r sheets: 

Away from infinity, p, is analytic everywhere except at the 
points y at which T12(E) = 0, where p, has poles. Since det 
T =  1=Tl ,T ,2a tE=y ,wehaveQ(y)=(T l ,+  T2,)/2>1 
and the poles y of the function p, lie in forbidden bands. p, 
has in this case poles on only one sheet above the point y, 
inasmuch as at T12 = 0 one of the roots is A, = TI, and 
p0 = (A - Tl1)/Tl2 has no pole. 

The matrix S, has singularities at E = T and + 2T, 
therefore the components p ,+ and p ; of the wave function 
should be linearly dependent. It can be easily seen from (4) 
that 

E=+T, cp,+=Tcp,-; E=*2T, cp,+=+cp,-. (18) 

From (5a) and (5b) we obtain 
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It follows from (19) that at E = T we have for even N 
At= ( -1 )  N ' 2 t ~ - l t ~ - 3  . . . t l / t ~ - z t ~ - b  . . . to, A2=Ai-i, (2 la) 

and for odd N 

A,=i, cpo+=l, c p l + = i ( - I )  (N+1)'2t,t3 .,. . tN-2/t2tC . . . tN-t ,  

We shall be interested in the case when the levels E = + T, 
+ 2T lie in allowed bands. We therefore find from (21a) that 

at even N the following condition must be satisfied: 

tlt3 . . . tN-l=t2ti . . . t ~ .  P I  
We consider for simplicity the case of odd N, so that the 
condition (22) is of no use to us. 

We note next that at E = 0, + 3 ' l 2 ~  the matrix S,, 
meaning also T, is diagonal. Let, e.g., E = 0. Then 

At=ll (ti/2T), A2=Ai-'. 

As indicated above, we are interested in the case ti < T. 
Therefore /A ,,, / + 1 and theievel E = 0 is always in the for- 
bidden band. For the matrix Tat E = 0 we obtain the expres- 
sion 

h 

The eigenfunctions q,, of the matrix Tare 

It is clear therefore that at E = 0 the wave function q,;  
always has a pole on one sheet and a zero on the other. From 
the form of the matrixs, it follows that the function q, ,f has 
no singularities at E = 0. In addition, recognizing that 
A = exp(ipN), and taking (14) into account we obtain on the 
lower sheet 

Similar reasoning holds also for E = 3 l I 2 ~ .  In this case 

Ai=-II (tiIT), A2=At-' 

and on the lower sheet 
ip (E2=3) =Io-ln 2+in. 

3. We obtain now, in analogy with Ref. 8, an expression 
for the variation Sp of the momentum when tn is changed. 
We note that Eq. (2) is of the form 

where $, is a four-component column, Vn = const, and C 
is the transpose of a 4 X 4 matrix. Let $A be the solution of the 
equation 

Multiplying the first equation by $A and the second by $, , 
we subtract and sum over n. Accurate to first-order terms, 
$A is the solution of the equation H$A = E$A. We choose for 
$A the value of $, on the second sheet of the r surface. In 
allowed bands $A = $:. We obtain the equation 

l-A-' (A') -lo-i6pN. 

Expressing the components $, in terms of p,f and q, ; we 
obtain ultimately 

Using (17), we readily see that the right-hand side is a ration- 
al function of E, in the form 

where P, + , (E ) is a polynomial of degree q + 5, and the left- 
hand side is 

We verify with the aid of (18) that 
P,(E) = (E - T2)(E - 4T2). The right-hand side of (25) 
also vanishes at E = + T, f 2T. Substituting the resultant 
expressions in (25) we get iSp = Pq + , (E )/R ' 1 2 ( ~  ), where 
Pq + , (E ) is a polynomial of degree q + 1. From the fact that 
a t E 2 = T 2 w e h a v e A 2 =  - 1 a n d p = r / 2 N + 2 r m / N i t  
follows that iSp(E2 = T2)  = 0. Therefore, ultimately, 

i6p= (B2-T2) Pq-< ( E )  lRlh ( E )  , (26) 

where the polynomial Pq - , (E ) of degree q - 1 is linear in 
the variations St,. 

That the statement iSp(E = T2)  = 0 is correct can also 
be verified in the following manner. We note for this purpose 
that an equation similar to (25) can be obtained if (5a) is re- 
written in the form 

C n ~ ~ t + ~ n - i ~ ~ - i + ~ n q n = E q n ,  

After transformations similar to those used to derive (25) we 
get 
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Substituting at E = + T the solution in the form (21b) 
and (19) we find that the right-hand side of the expression 
vanishes but the coefficient of Sp in the left-hand side does 
not, hence iSp a (E - T '). 

From (25) at E = 0 or E = 3T2 it follows that on the 
lower sheet 

i6p  (E=O) = i 6 p  (EZ=3T2)  =610. (27) 

The same equations can be obtained by varying (23) and (24). 
The polynomial P, - , (E ) in (26) is given by 

9 -1 

P,, ( E )  = C z~E'-'-', j - are even. (28) 

Expanding (26) as E+ a, on the upper sheet and comparing 
with (14) we obtain the connection between the coefficients li 
and the variations SIi: 

li = a i j 8 1 j ,  i ,  j - are even. a.. - - 1 
11 - ' (29) 

We write down the first few coefficients: 

(here and below T = 1). It follows from (14) and (29) that not 
more than (q + 1)/2 of the differentials SI, are linearly inde- 
pendent. In fact, since the SI, are linear combinations of the 
li, which in turn are linear combinations of Si,, OG<q - 1, it 
follows that SI, are also linear in 61j. It turns out that not all 
of these (q + 1)/2 differentials are linearly independent, in 
contrast to the case of Ref. 8. Substituting Eqs. (27)-(29) in 
(26), we obtain two linear equations that relate (q + 1)/2 dif- 
ferentials SI, . Consequently, not more than (q - 3)/2 differ- 
entials SI, are independent. 

4. We turn now to Eq. (5a). The Wronskian of this equa- 
tion is 

wn= ( v n + i $ n - ~ p n $ n + ~ )  Itn, (31) 

where p, and $, are two solutions of (5a). It is easily seen 
that W, does not depend on n. We use here the basis c, (E ), 
s, (E  ), where 

We normalize the Bloch function $+ to the condition 
$,, = 1. Following the procedure of Ref. 12, we introduce the 
following notation: 

n-i 

qn*=eXp An, x n  ( E )  = ~ X P  An. (33) 
0 

From (5a) we get the equation 

exp (-An-1) Itn-l+exp(An) / tn  

In the allowed bands we obtain from (34) 

X = X + = ~ - * ,  An=Re An+ i Im An, 

exp ( 2  Re An) =t,+$ Im ~ , l t ,  Im ~ n + i -  (35) 

From (35) it follows that (in allowed bands) 
n-i t Imx 

qn*= (=) to Im ~n 'hexp ( i  1m A. ) . 
0 

From the definition (3 1) of the Wronskian it follows that 

W ($+, $-) =2ito-' Im x ( n o ,  E ) ,  $*=c+x (no ,  E )  s .  (37) 

The functionx (n, E ) is expressed in terms of the translation- 
matrix coefficients: 

From (34) we readily obtain the asymptotic form o f x  * and 
Was E+ co on the two sheets of the Riemann surface r: 

X n + + ~ 4 t n / 2 t k l ,  xn-+2tn/E6, ~ + ~ ' / 2 t ; - , .  (39) 

From (39) we easily obtain 

In the allowed bands it follows from (37) and (40) that 

Comparing with Eqs. (35), which are valid inside the allowed 
bands, we obtain the formula 

x* ( n ,  E )  =t,[R1"+ ( ~ + 1 6 ~ ~ n [ , + , t ~ - ~ ) ' ~ ~ ] / 4 t ~ - ~ ~ , ,  

(9 -5 ) /2  (42) 
nn= [ E z - y i ( n )  I .  

i- t 

Using (42), we obtain from (36) for the function $ * 
'1s n-i 

$.*= * t ~ - i  (g ) exP (iz 1m A.) . 
0 

From the fact that the quantity x * from (42) is algebraic on 
the r surface, it follows that the sum in the radicand should 
be a perfect square of some polynomial of degree q + 1: 

From (44) follows a complete set of relations of the form 

From (34) we get the asymptotic form of x,+ as E+w: 

Comparing (46) with the (42), we can obtain the expressions 
usually called the trace identities: 

1053 Sov. Phys. JETP 59 (5), May 1984 S. I. Matveenko 1053 



5. We apply now the foregoing mathematical results to 
the problem of determining the ground state of the model. 
The system-energy functional is 

where W,, is the lattice deformation energy and ,u is the 
chemical potential ofthe electrons. It is easily seen that apart 
from a constant the deformation energy can be represented 
in the form W,, = x12N. We consider first the case of homo- 
geneous deformation ti = t = const. Solving Eq. (2), we ob- 
tain the spectrum of the system 

E2 ( p )  ='/Z (5+t2) f [ (t2+3) '+16t cos p] I". (51) 

From (5 1) we obtain expressions for the variation of the mo- 
mentum and its derivative 

i6p= (E2-1) (E2-4+t2) R-lh ( E )  f i s t ,  (52) 

idp/dE=4 [E3-'1, (5+t2) El R-lh ( E )  . (53) 

Varying the functional (50) with respect to t ,  we obtain with 
the aid of (52) the self-consistency condition 

i 
x = - 5 (E2-1) (E2-4+t2) R-" ( E )  t-' dE. 

X 
(54) 

E<# 

In the ground state (Fig. 2), the spectrum has three for- 
bidden and four allowed bands. The two lower allowed 
bands are completely occupied, and the two upper ones are 
empty, so that the number of electrons per benzene molecule 
isp = 6. Theendpoints f E,, f E,, fE, ,  f ED ofthe 
spectrum are determined from (5 1) a tp = 0 and n-. The occu- 
pation numberp can be varied by Let us find the 
ground state for arbitraryp. We seek the solution in the form 

FIG. 2 

of a finite-band potential that contains q forbidden bands of 
finite size in the spectrum. As already seen, the bands will be 
symmetric about the level E = 0. We note that since the level 
E = 0 is always in the forbidden band, q is odd. The extre- 
mum condition for the functional is 

For the variation Sp we obtain, substituting (28) in (26) and 
using (27), 

iSp= (E2- I )  R-" ( E )  [ l o  (Eq-' 

- (3'q-3"2+'13Ro+'16R3) E2+Ro) 
( 9 - 5 ) / 2  

+ x- ~,(~q-i-zk-3(q-3-2W/zE2) 
A= 1 

1 
(56) 

Ro=RX" (0 )  , R3=R'" (3'") .  

With the aid of the equations in (30) we obtain expressions 
for SI, in terms of I, and I,: 

Substituting (56) and (57) in (55) and equating to zero the 
coefficients of the independent variations of I,, we obtain the 
following self-consistency conditions: 

It can be shown in analogy with Ref. 8 that Eqs. (48) have no 
solutions at q > 1 1. 

The algebraic equations (58)-(60) are valid at q > 3. For 
the case q = 3 the conditions (27) give two equations for the 
two unknowns I, and I,. The condition for their compatibi- 
lity is 

6+R3+2Ro=0. (61) 

The self-consistency condition for q = 3 is 

Equations (13) take for the case q = 3 the form 

From (23), (24) and (61)-(63) we determine uniquely the spec- 
trum of the system. It is easy to verify that all these equations 
are satisfied by the solution (5 1) that corresponds to the ho- 
mogeneous state ti = t = const. For p f 6 we seek the solu- 
tion of the system (58)-(60). From (47)-(49) we can find that 
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at q = 5,7, and 9 there is no solution ti # const, consequently 
the only possibility is the case q = 11. Equations (58)-(60) 
take at q = 11 the form 

where 

R ( E )  = n (E2-E:) . 

The derivative dp/dE is obtained from the system (12). To 
determine the 12 values of E, we need 12 self-consistency 
conditions. Four of them are Eqs. (64)-(66). The remaining 
conditions are: 

where a is the period of the chain of benzene rings. Equation 
(68) is similar to (63) for the case q = 3. It follows from the 
fact that Sp = 0 at E = T that P ( f ) is a constant inde- 
pendent of t i .  Since in the homogeneous case when ti is con- 
stant it follows from (51) that p( + 1) = ~ / 2 ,  we can state 
that the following equality always holds (on the lower sheet) 

p (E2=I) =n/2. (69) 

We have thus obtained 12 equations for the determina- 
tion of the end points of the spectra, see Eqs. (64)-(69), (23), 
and (24). Plots of E (p) are shown in Fig. 3. The bands occu- 
pied in the ground states are those with energy E<E, a tp  > 6 
and E <  - E, at p < 6. It is impossible to obtain an explicit 
expression for the quantities E,(x, p )  in the general case, ex- 
cept at p = 6. Assuming T = 2.5 eV and 2EA,z3.5 eV (the 
optical gap observed in polyphenylene), we find that x z 0 . 4  
and t = 0.5T. When an even number of electrons or holes is 
added to a system with p = 6, self-trapped states are pro- 

$:z Elf 

FIG. 3 

duced, containing six particles (electrons or holes) each lo- 
cated at three different levels: E, < JE I < E,, E3 < IE 1 < E,, 
E s < l E /  <E,. 

Assuming that the produced self-trapped state is not 
deep and that the local electron levels are not very distant 
from the forbidden bands, we shall attempt to find the posi- 
tion of the local level E and the energy for a bipolaron, by 
linearizing Eq. (5a). We express (5a) as 

~ , $ n - i + ~ , + i $ n + i f  '-'n$a=O, 

- 1 

(70) 

c,=t,-1, vn='/2 (E2-1) [I- (E2-4) cn21. 

We rewrite c, , u, , and $, in the form 

Substituting the equations of (7 1) in (70) we get the equation 

The energy of the system takes in the same approximation 
the form 

where 

From the condition S W/S(Sc, ) = 0 and (72), (73) we obtain a 
nonlinear Schrodinger equation 

from which it follows that the energy of the localized level 
S E z  1, i.e., our assumption that the local level is shallow 
turned out to be incorrect. We must thus expect in this case 
strong self-trapping of the electron and appearance of sym- 
metrically arranged levels in the interior of the forbidden 
band ( - EA < E < E A ) .  

6.  We obtain now an explicit expression for the wave- 
function component p,t and for the deformation t,. The 
component p ; is easily expressed in terms of p 2 with the 
aid of Eq. (4): 
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At E = 0, f 31t2 the function q,; has poles, but q,,+ does 
not. In addition, it was found in Sec. 4 that the function q, ,t 
has poles in q - 3 forbidden bands, one in each band, and 
zeros in the same bands. In the forbidden bands that contain 
the points E = 0, f 31t2 the function q,,+ has neither zeros 
nor poles. It can be assumed that in these bands the zeros and 
the poles of the function q, ,+ coincide. The fact that the 
functions q,,f have no singularities in certain bands imposes 
restrictions on the form of the spectrum [see Eqs. (23)  and 
(24)l.  At infinity, the function takes the form (17) .  Thus, the 
Bloch function q, ,+ ( P )  is a meromorphic function of the 
point P on the surface T. A general expression for the func- 
tion of the Baker-Akhiezer type was obtained in Ref. 13 and 
elsewhere. 

We shall use below the results of Ref. 14. For conve- 
nience, we renumber here the energy levels as follows: 
- E q + ,  = e l ,  - E, = e,, ..., Eq+ , - - e,, + , . Let the func- 

tion q, ,t have poles at the points y,, y,, ..., y,; with y,, + ,,,, 
= 0 ,  yi = - y, + , -, , y,o = 3'l2 for a certain number i,. 

Let 0, be holomorphic differentials on T: 

j-0 

such that 
%+i 

The matrix B is defined by the equality 

1 e2i  
B,, = - 1 ~ ~ .  

2 - 
e l  

It is known that it is symmetric and has a positive-definite 
imaginary part. Using Ref. 14, we obtain an expression for 
the wave function 

P 

qn+ ( P )  =r, orp (ni J d p )  
0 ( A  ( P )  +4nU-z) 

0 ( A  ( P )  -z) 
, (76)  

e,  

where r, is a constant, 

)=I  e2, 

1 
~ ~ = - j d ~ ,  O < . . k + I c l .  

4n 
e, 

The theta-function in (76)  is defined, as in Ref. 14, by 

0 ( U I ,  . . . , u,) = exp {ni (Bk,  k )  + 2 ( k ,  u ) ) .  
k € Z Q  

( k ,  u )  =kiui+ . . . +k,u,. 
In the vicinity of an infinitely remote point on the upper 
sheet of r we have 

Comparing the expansion of q,,t in transforms of infinitely 
remote points f z, 

with the expansion (13) ,  we get 
e z I o n  

- - 8 (zo+4nU-z) 8 (-2,-z) 
8 2% 2 

_i 

(2T ) tn-,. . . to2 ( t ~ - , ) '  0 (-zo+4nU-2) e (2,-Z) ' 

We ultimately have for t, 

It follows from the Riemann bilinear relations13 that 

CONCLUSION 

We have investigated here a realistic discrete model 
proposed for the description of the conducting polymer po- 
lyphenylene. It was shown that this model admits of an exact 
solution that yields the distribution of the deformation, the 
wave functions, and the spectrum of the electron state at an 
arbitrary electron densityp per molecule. In the case of neu- 
tral occupation @ = 6 )  we obtained the explicit expression 
(5.1)  for the dependence of the energy on the momentum. 
The spectrum of the system has four allowed and three for- 
bidden bands. Corresponding to this case is a homogeneous 
deformation t,  = const. At an arbitrary occupation number 
p # 6 ,  which corresponds to the doped state, we have shown 
that the system energy functional has a minimum in the class 
of finite-band potentials. The self-consistency conditions 
that determine the spectrum were written out and a general 
expression (77)  was obtained for the deformation t,. The 
spectrum of the electron states contains 12 allowed and 1 1  
forbidden bands; the band edges are determined by the con- 
ditions (23) ,  (24) ,  and (64)-(69). At low density of the addi- 
tional particles, p - 6 4  1 ,  the system is a periodic series of 
self-trapped electron states, each of which contains six elec- 
trons or holes that occupy three different levels located in the 
interior of the central forbidden band. 

The author is deeply grateful to S. A. Brazovskii for 
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