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We obtain a nonlinear dynamic equation for the amplitude of the potential p of self-consistent 
perturbations up to and including terms in p3; it takes into account the finite displacements of 
particles in a sinusoidal pump wave field (kf, - I,{, -eE,/mw;). Using it we construct a gener- 
alized weak turbulence theory for parametric kinetic type instabilities caused by the build-up of 
resonant particle oscillations; it takes into account the finite displacements of particles in the 
pump wave field. The quasilinear theory equations obtained are valid for k6, - 1. Using the 
equations obtained we study the nonlinear stage and determine the saturation level of the ion 
cyclotron kinetic instability in the case when the relative velocity of the ions and electrons is less 
than or of the order of the ion thermal velocity. We estimate the turbulent heating rate of the 
plasma components. 

1. INTRODUCTION 

Kinetic parametric instabilities of a plasma in the elec- 
tric field of a pump wave 

Eo ( t )  =E, sin o 0 t  (1.1) 
are caused by the interaction of resonant electrons or ions 
with the beats formed by the pump wave and the unstable 
electrostatic oscillations (see, e.g., Refs. 1 to 4). Such instabi- 
lities arise in the high-frequency heating of a plasma by fast 
magneto-sonic waves with frequencies of the order of the 
lower hybrid frequency,' the ion cyclotron freq~ency,~ or 
the electron cyclotron frequency.4 The growth rate of such 
oscillations is a maximum when the displacement of a parti- 
cle in the field of the pump wave f E  -eEJmwi is of the 
order of the wavelength of the unstable oscillations kf, - 1. 
For a study of the nonlinear stage of these instabilities and of 
the parametric turbulence which then arises it is necessary to 
generalize the well known equations of the nonlinear plasma 
theory to the case of finite displacements f E  . In the present 
paper we obtain nonlinear equations for the Fourier trans- 
form of the potential of the oscillations p(r, t ) up to and in- 
cluding terms cubic in the amplitude of amplitude of the 
oscillations and we determine, using them, an equation for 
the intensity I (k) of the oscillations in the case when the un- 
stable waves form a wavepacket with random phases. We 
obtain also a generalization of the quasilinear equations for 
averaged distribution functions of the plasma particles for 
the case of finite lE.  

In deriving the equations for the nonlinear wave inter- 
action and the quasi-linear equations we have used a Fourier 
transformation in the frame of reference frame moving with 
the electron (ion) velocity in the field of the pump wave (1.1) 
(and in a constant magnetic field B, if present) which made it 
possible appreciably to simplify the derivation procedure 
and the form of the equations obtained when using the fact 
that the growth rate is small compared with the frequency. 

We show in section 2 that the application of such a 
Fourier transformation to the linear material equation al- 
lows us at once to obtain a chain of difference equations for 
the Fourier components of the potential when there is a 
pump wave present and, using this chain, to obtain the linear 

dispersion equation and the energy balance equation. The 
application of the Fourier transformation in moving refer- 
ence frames to the nonlinear material equation (section 3) 
leads to a nonlinear equation for the amplitudes of the Four- 
ier transformation of the potential. Using this equation we 
give in section 4 a derivation of a kinetic equation for waves 
with random phases. Section 5 is devoted to the derivation of 
the equations of the quasilinear approximation. We give in 
section 6 a discussion of the results obtained and consider the 
application of the theory developed here to the study of ion 
and electron cyclotron parametric turbulence. 

2. LINEAR APPROXIMATION 

We obtain the equations which describe the linear stage 
of parametric potential instabilities of a plasma in the field 
(1.1) of a pump wave from the material equation for a homo- 
geneous plasma 

i 

D ( r ,  t ) = ~ ( r ,  t ) + x  J d t l  5 drfe , (r-r ' ;  t ,  t f ) E ( r ' , t ' )  (2.1) 
a 0 

and the Poisson equation 

div D ( r ,  t )  =O 

(normally these equations are obtained (see, e.g., Refs. 1, 2) 
from the Poisson equation for the electric field strength E of 
the self-consistent potential perturbations of the plasma in 
which the perturbations of the charge density are found from 
the solution of the linearized Vlasov equations for each kind 
of particle). 

The external pumping field (1.1) leads to the kernel E, 

being nonstationary in time, but in a system of coordinates 
moving with the velocity u, (t ) with which the charge of spe- 
cies a moves in the field E,(t ) of the pump wave, the nonsta- 
tionarity of the kernel disappears. We use this fact to obtain 
the Fourier transformation of Eq. (2.1). 

We write, as usual, the Fourier-Laplace transform of 
Eq. (2.1) in the form 

D ( k ,  o )  =E ( k ,  o )  
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xexp[io( t - t ' )  -ik(r-r') ] E ( r l ,  t r ) e x p [ i o t ' - i k ~  r '] .  (2.3) 

We perform the Fourier transformation of the kernel E, in a 
system of coordinates moving with the velocity u, ( t  ) which 
satisfies the equation 

We change in Eq. (2.3) from the variables (r - r',rf,t ',t ) 
to the variables (r,  - r: ,rl,t ',t ), where 

and we obtain 

[ 
i 

x exp io (t-t') -ik J ( r ) d r ] ~  (k,  t )sxp (iot ') .  
1' 

For the sinusoidal field ( 1 . 1 )  of the pump wave 
t - 

xexp[i  (n-p) (S,+ootT) ] ~ ~ ~ [ i n o ~ ( t - t ' )  1, (2.6) 

where the argument a, of the Bessel functions J ,  (a,) is 
equal to2 

e,Bo 
O c a = -  

m,c 

Substituting (2.6) into (2.7) and using the Poisson equa- 
tion kD(k,  w)  = 0, we obtain the following equation describ- 
ing the linear stage of the parametric plasma instabilities: 

X,E, ( k ,  o+noo) cp ( k ,  o+poo) =01 

where 

E (k, o)  =-ikrp ( k ,  o )  , 

in which the contributions E, from particles of the kind a to 
the longitudinal permittivity are given by the usual expres- 
sions. 

In a number of cases it turns out to be expedient to 
perform the Fourier-Laplace transformation in the moving 
system of coordinates not only for the kernels E, of the mate- 
rial equation, but also for the fields E and D. We denote by 
+ --+ 
$(k,w) and g ( k , w )  the Fourier-Laplace transforms of, re- 
spectively, the quantities E and D obtained in the (r,  ,t ) sys- 
tem of coordinates: 

+ 1 {b ( k ,  W )  ; CT (k, 0 )  ) = -7 J dt J dr, erp (iot-ikr,) 
(an)  

where 

We then get instead of Eq. (2.5) 

1 

[ 1 -. 
x exp iiw (t-t') -ik J (q-u,) d r  &a  ( k ,  t - t 1 ) 8  ( k ,  t ' )  

t '  

exp (iwt'). (2.10) 

To fix the ideas we shall assume that g(k,,w) and &(k,w) 
are the Fourier transforms of the quantities E and D evaluat- 
ed in thesystem ofcoordinates moving with the velocity ui ( t  ) 
of the motion of the ions of mass mi  and charge ei in the 
fields E,(t ) and B,. For the sinusoidal pump w a 5  field (1.1) 
we then get the following connection between a ( k , w )  and -+ 
Z?(k,w) in a plasma consisting of electrons and one kind of 
ions: 

$ ( k ,  o )  = [ I + & ,  ( k ,  w)  ]g ( k ,  o )  

where the quantities a and S are given by the relations2 

We introduce the variable f (k,w)-the Fourier trans- 
form of the potential p(r,t ) evaluated in the system of coordi- 
n$es moving with the velocity u i ( t )  satisfying (2.4) 
($(k ,w)  = - i k f  (k,w)). We then get from (2.11) and the 
Poisson equation k B ( k , w )  = 0 

[ i+&i(k ,  a )  IE(k, (fi) - 
+ J.(a) J.+.(a) eiUa&. ( k ,  w-voo) ( k ,  w+uoo) =O (2.13) 

",I'=-m 

which, like (2.8) describes the linear stage of the parametric 
instabilities. 

Between the Fourier transform R (k,w) of some quantity 
R (r,t ) evaluated in the laboratory system of coordinates and 
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the Fourier transform 9 ( k , w )  of the same quantity evaluated 
in the system of coordinates moving with the velocity ui ( t  ) 
there exist the connections 

0 

R(L,  o )  = C ~ , ( g , ) e ~ ~ ~ ~ ~ ( k ,  o + m w o ) ,  
m=-" 

(2.14) 

9 (k ,  o )  = 2 J ,  (ai)  P - ~ P * ~ R  (k ,  @ - p a o ) ,  
p=-m 

which are obtained by replacing in the Fourier integrals 
which determine R (k,w) the variable r by ri where r = ri 
+ Stui (r )dr ,  or by replacing ri by r in the Fourier integrals 

determining 9 ( k , o ) .  Using (2.14) for the variables p(k,w) 
and 5 (k,w) we can transform Eqs. (2.8) and (2.13) into one 
another. 

The Fourier transform $(k,w) of the potential evaluated 
in the system of coordinates moving with the velocity u, ( t  ) is 
connected with 5 (k,w) through the relations 

$ (k ,  W )  = 2 Jn (a )  eim'E (k ,  o + m o o ) ,  
m=-m 

- (2.15) 

(k ,  0 )  = l . (a)  e-ip8$(k. o - P ~ o ) ,  

and with p(k,w) through the relations 

In the variables $(k,w) we get instead of (2.13) 

[I+ce(k,  a )  I $ & ,  (0)  

Equations (2.8), (2.13), and (2.17), and also Eqs. (2.14) 
and (2.16) were obtained in Ref. 2; the discussion given here 
indicates the connection of them with the Fourier transfor- 
mation in the moving system of coordinates. 

Equation (2.3) (or (2.17)) is particularly convenient in 
the cases when the main terms occurring in 1 + ei in (2.13) 
(or 1 + E ,  in (2.17)) are appreciably larger than the terms 
a E, (or a E ~ ) .  We consider, for instance, Eq. (2.13) when 

This condition holds, for example, for the ion cyclotron in- 
stability of a plasma with hot electrons and cold ions 
(T,  ) T i )  or for the short-wavelength ion cyclotron instabil- 
ity with k ~ , / w , , , l . ~  In the zeroth approximation in the 
small parameter y/Re w(k),  where y(k) is the growth rate of 
the oscillations, Eq. (2.13) becomes 

[1+Re ci ( k ,  o ) ]  E ( k ,  o )  =0, (2.19) 

whence it follows that 

E (k ,  a )  = E  ( k )  6 (o-o ( k )  ), (2.20) 

where w(k)  is a solution of the equation 

1+Re ~ ( k ,  o ( k )  ) =O. (2.21) 

Taking the neglected terms into accountze can obtain 
from Eq. (2.1 1 )  the followin&relation between 9 (k,t )and the 
slowly varying amplitude d ( k , t  ) of the oscillations of the 
self-consistent electric field strength 

4 

8 (k ,  t )  =G ( k ,  t )  exp (-io ( k ) t )  

in the form 

+ a (k, t )  =e-iu(k)f 
8 2  (k ,  t )  d Re E ,  (k ,  o ( k )  ) I i  dt ( k )  

(ID 

+ k ( k ,  t )  [ i  Im ei (k ,  o ( k )  )+ I: ( a )  ee&, w  ( k )  -voo) 1)- 
"=-OD 

(2.22) 

Using (2.22) and the relations 

E (k ,  t )  =8 ( k ,  t )  exp [iai sin ( 0 l ~ t + 6 ~ ) ] ,  

D ( k ,  t )  =a (k, t )  exp [iu, sin (w , t+6 , ) ] ,  

obtained from t>e inverse Fourier transform of tke relations 
(2.14) between g(k ,w)  and E(k,w), and between g ( k , w )  and 
D(k,o) ,  we obtain the energy balance equzion f o ~ t h e  para- 
metric kineticinstabilities. In thevariables $(k,t  ), g ( k , t  ) the 
energy conservation law for electrostatic perturbations 
( 4 ~ ) - ' E . d  D/dt  = 0 has the form 

* 

sa (k ,  t )  
d  t (2.24) 

-ia,o, w s  (oot+6i)  1% ( k ,  t)%* (k ,  t )  -2" (k ,  t )$  (k ,  t )  I }  =o. 

Substituting (2.22) into (2.24) and averaging the equation ob- 
tained over a time interval y-')At>w(k )-' we get the ener- 
gy conservation equation 

in which Wis the spectral density of the energy of the oscilla- 
tions determined, taking into account the relation 

in the form 

o ( k )  d  Re ci (k ,  o ( k )  ) 
W ( k ) = -  

8n IE(k, t )  1 2 ,  (2.26) 
( k )  

while y(k) is the growth rate of the kinetic parametric insta- 
bility which equals 

w - 
y ( k )  =- [ I I ~  e i (k ,  o ( k ) )  f C J.'(a)Im ~ ~ ( k ,  o (k) - v o O ) ]  
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3. NONLINEAR EQUATION FOR THE OSCILLATION 
POTENTIAL 

As in the linear material equation, the motion of the =kikj(,)kj(z)kj(s)k-2~ijiY;j(z)j(z)j(3) 

particles in the external field of the pump wave leads to the ~ ( k ,  o+noo I k-kt, o-oi - - . . 
appearance of nonstationarity in the nonlinear material + (n-p)  oo 1 k-kl-k3, ~ - - o I - o ~ +  (n-p-pl) 4. 
equation. The nonlinear material equation has in this case 
the form5 The matrix elements V, and W, in Eq. (3.2) are given 

i by the usual expressions well known from weak turbulence 
i t )  i t )  + J 1 J I -  t I ( 1  1 )  theory when there is no pump wave.6 Taking the external 

a o field ( 1 . 1 )  into account leads to the appearance of factors 

In the system of coordinates moving with a velocity 
U ,  (t ), where r = r, St u, ( T ) ~ T  the nonstationarity of the ker- 
nels of the material Eq. (3.1) vanishes. Performing in Eq. 
(3.1) a Fourier-Laplace transformation of the quantities E, 
and Di in the laboratory system of coordinates and of the 
kernels E(") in the system of coordinates moving with the 
velocity u, (t ), and using the Poisson equation k.D(k,w) = 0, 
we get the following equation for the Fourier transform of 
the potential q(k,w): 

+ 2 I,,, (a,) I.-. (aa) eiP'ra ( k ,  @+moo) p ( k ,  ~ + P @ o )  

+ J dk, do ,  dk3 do3 a 4  d d m ( a a )  

a m,p,q,r--OD 

e t n , b o ~  ( a  ) e - l ( m - ~ j 6 a r ]  (aa3) e-t(p-g)6231q-1 (aa4) e-'(q-r12m 
m-p a1 P-9 

x w a ( k ,  o f m o o ]  k,, oif ( m - ~ ) o o  Ik,, as 
+ (p-q) oo) .6 (k-ki-ks-kd 

in which 

ca(k ,  o+moo) =~C~k~(,)k-~rI:l) ( k ,  o+noo) 7 

va ( k ,  o+noo 1 k1, o~+P@o)  

=ikikj(,jkj(z)k-Z~i~("r~j(2~ ( k ,  o f  I k-ki, o-mi+ (n-p)  ~ o ) ,  

(3.3) 

with products of a few Bessel functions>, (aai ) with appro- 
priate phase factors and to shifts in the frequencies w and wi 
(i = 1 ,  2, 3, 4) by amounts which are multiples of the pump 
wave field frequency. The quantities a,  and S, are given by 
Eqs. (2.7) and the quantities aaj and Saj are obtained from 
(2.7) by the substitutions k+kj ( j  = 1 ,  2, 3, 4).  

If, however, the Fourier transformation of the quanti- 
ties E;. and Di in Eq. (3 .1)  is performed in the system of 
coordinates moving with the velocity ui (t ), and that of the 
kernels E, in a system of coordinates moving with the veloc- 
ity+ u, (t ) (a = i, e )  we get from the Poisson equation 
k a ( k , w )  = 0 the following equation for the quantity 6 (k,w): 

+ f, J a, d o ,  dk,do,~.(k,  o-voolki, 

V,P.~--= Xe-lva]p (a,) eipdl 

+ Jdk ,  d o ,  dk3 do,  dk4 do4 We&,  U - V ~  1 t i ,  I k3. ~ 3 )  

Xl,(a) ecidJP (a,) e'PSIJq (a,) e'gb"b, (a&)  eir666 (k-kl-k,-k4) 6 

x E (k, ,  wl+poo) E ( k s r  o:+qoo) E ( k l ,  or- (u - r )  oo) r (3.4) 

in which the quantities a and S are determined by (2.12) and 
the quantities ai and Sj are obtained from (2.12) by the sub- 
stitutions k+kj ( j  = 1 ,  2, 3, 4). 

Equation (3.4) shows that the use of the variable 6 (k,w) 
leads to the elimination of the frequency shifts and of the 
Bessel function products in the ionic terms and they take the 
same form as when there is no pump wave. Similarly, in the 
nonlinear equation for the quantity $(k,w) the effect of the 
pump field is eliminated in all electron terms. One can obtain 
this equation from (3.4) by the substitution of the indexes 
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ie and taking the summation indexes, apart from the in- 
dexes of the Bessel functions, with the opposite sign. 

4. NONLINEAR EQUATION FOR THE INTENSITY OF THE 
OSCILLATIONS 

Using Eq. (3.4) we get in the case (2.18), in the random 
phase approximation, a nonlinear equation for the intensity 
I ( k )  of the oscillations in which, in contrast to the kinetic 
equation for the waves in the usual weak turbulence theory 
the finite displacements of the particles in the pump wave 
field (1.1) are taken into account. 

Assuming the quantity Ic (k)12 = I (k) a y/w(k) to be a 
small parameter we find from (3.4) to a first approximation 
inthisparameterthatc 'O'(k,w) = 6 (k)S (w - o(k)), wherew(k) 
is the solution of Eq. (2.2 I), and to the next approximation 

m 

- 

m--m 

where 
l e i  Arr,P,g=lv ( a )  e-iV'Jp ( a i )  eipblJq (a2)  eiqal, ~ J f ~ , ~ = 6 ~ ~ 6 ~ ~ 6 ~ ~ .  (4.2) 

We multiply (3.4) by 6 *(k',wl) and average the equation 
thus obtained over the random phases. Using (4.1) we can 
express the triple correlation functions in terms of the four- 
fold ones which, in their turn, are in the form of a sum of 
products of the two-fold correlation functions. Defining the 
intensity I (k) of the oscillations by the relation . 

( E  ( k ,  o )  E* ( k t ,  a ' )  ) = I ( k ) 6  (a-o ( k )  ) 6  ( k - k f ) 6  (o-a') ,  
(4.3) 

we get after a number of manipulations the following equa- 
tion for I (k): 

-- a'(k7 ' )  -y ( k )  ~ ( k ,  t )  + ~ ' ( k )  I ( k ,  t )  -xc z z' ~ e j  &I 

i) t 

x V ,  ( k ,  Q  ( k )  1 k, ,  5 2 1  (k1) ) up (kz, 8 2 '  (k2) I k ,  Q' ( k )  ) 

x [, 8 Re ei  ( k ,  ( k )  ) 8 Re ~i (kz, o, (kz) ) -' 
d o  ( k )  (kz) I 

(2 ' denotes summation over v , p ,  q, u,, p , ,  q, from - w to 
+ cc with the condition that v - p  - q = v, - p ,  - 9,). 

In Eq. (4.4) y(k) is the linear growth rate (2.27), 

x W ,  ( k ,  Q  ( k )  I k , ,  Qi ( k i )  I k, ( k )  

s v g ( k z ,  Q' ( k )  -91' (k i )  I k ,  Q ' (k )  )I(k1)  

(Z " denotes summation over u, p, q, r from - w to + oc 
with the condition u + r = p + q). We have in (4.4) and (4.5) 
introduced the following notation: 

v , (k ,  Q ( k )  Iki, Q t ( k i ) ) = V a ( k ,  Q ( k )  [ k , ,  Q i ( k i ) ) + V = ( k ,  

Q ( k )  Ik-ki, Q ( k )  -QI ( k i )  ) 

w, ( k ,  52 ( k )  Ik,, 9, ( k i )  lk, Q  ( k )  + ( v -4 )  a,)  =wa ( k ,  Q ( k )  Ikl- 

8 ,  ( k , )  Ik, C2 ( k )  + ( v - q )  a,)  + W ,  ( k ,  Q ( k )  Ik,, Qi ( k i )  I -kt. 

Qi ( - k l ) - ( v - q )  ao) 

Q  ( k )  ( k )  - v w ~ ,  Qi ( k , )  =mi ( k 1 ) - p ~ o ,  

a ,  ( k , )  =o2 (kz)  -qoo, 

Q' ( k )  =o ( k )  -viao, Q iJ (k t )  =ai ( k , )  - ~ i @ o ,  

~ ~ : i l ~ , ~ = ~ ~  ( a )  e-iw'Jp (a , )  e"'pblJq ( a )  eigbJ, ( a , )  ec i r6~,  
~ , ' , ~ ~ , ~ , , = 6 , ~ 6 ~ ~ 6 ~ ~ 6 ~ .  

Equation (4.4) differs from the equation for the intensity 
I (k) in the usual weak turbulence theory (see, e.g., Ref. 6) by 
the factors A(') and B(') and the presence of shifts in the 
frequencies o ,  w,, and w, by amounts which are multiples of 
the pump wave field frequency. Pursuing the analogy with 
the usual kinetic equation for waves we shall say that the 
third and fourth terms on the right-hand side of Eq. (4.4) 
describe decay processes involving the waves (k, L? (k)), 
(k,,L?,(k,)), (k2,L?,(k2)). The nonlinear growth rate r (k) de- 
scribes induced scattering processes of waves by free parti- 
cles (the first term in (4.5)) and by the polarization clouds of 
virtualwaves(k,,L? (k) - 0 ,(k,) + qwo) (secondtermin (4.5)). 

One should note that it follows from (2.23) that the in- 
tensity I (k) of the oscillations given by Eq. (4.3) is equal to the 
intensity of the oscillations in the laboratory system of co- 
ordinates: 

Z(k, t )= lE(k ,  t )  l2=Iq)(k, t )  1 2 .  
In the case when 

arising, for instance, when we study the electron cyclotron 
parametric kinetic instability of a plasma with hot ions and 
cold electrons (Ti > T, ),4 one must for the construction of an 
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equation for the intensity I ( k )  of the oscillations start from 
the nonlinear equation for $(k,w). We define in that case the 
intensity of the oscillations in the form 
<~l, (k ,  a )  $ ' (kf ,  a')  >=I ( k )  6 (a-o  ( k )  ) 6 ( a - o f )  6 (k-k'), 

(4.8) 

where w(k)  is the solution of the equation 
1 + Re E, (k,w) = 0. The equation for I ( k )  as defined by (4.8) 
can be obtained from (4.4), (4.5) by substituting everywhere 
the indexes i* and taking the summation indexes, apart 
from the indexes of the Bessel functions, with the opposite 
sign. 

5. THE EQUATIONS OF THE QUASILINEAR APPROXIMATION 

In the present section we consider the equations of the 
quasilinear approximation when there are parametric insta- 
bilities presence in a uniform plasma both in the presence 
and in the absence of an external magnetic field. 

The equations of the quasilinear theory for the averaged 
distribution function Fa of particles of the species a when 
there is a pump wave present were considered in Ref. 1 in the 
variables F and which are the expansion coefficients of 
expansions of the form - 

of the function Fa and the potential p(r,t ) of the oscillations. 
The use of the Fourier transformation in the moving system 
of coordinates in the cases (2.18) and (4.7) significantly sim- 
plifies the derivation and the final form of the kinetic equa- 
tion for Fa. We obtain the equation for the particle distribu- 
tion function, averaged over the initial phases of the 
oscillations, of a uniform plasma when there is no external 
magnetic field by averaging the Vlasov equation: 

In a system of coordinates moving with the velocity 

in which v = va + ua ( t  ) (5.1) takes the form 

We denote the Fourier transform of the function 
fa (v,r,t ) (a = i,e) obtained in the moving system of coordi- 
nates, by ga (v,  ,k,w); it is connected with the Fourier trans- 
form of fa (v,r,t ) in the laboratory system of coordinates, 
fa (v,k,w), through Eq. (2.14). From the Fourier transform of 
the linearized equation for the perturbation fa (v,  r, t ): 

it follows that 
ei dFi(vi) , (5.3) 

(vi. k ,  o )  = - - E (k ,  a )  (o-kvi)-'k----- 
mi d vi 

e a F e ( v e ) .  (5.4) 
g.(v,, k ,  o )  = - $ ( k ,  a) (a-he)- 'k-----  

me dv. 

We now restrict our considerations to the case (2.18) in 
which the quantity 6 (k,w) is determined by Eq. (2.20). Using 
(5.3), (2.20) in Eq. (5.2) we get the following equation for Fi : 

This equation is the same in form as the quasilinear kinetic 
equation when there is no pump wave. The difference is con- 
nected with the fact that in (5.5) the velocity v ,  = v - ui ( t  ) is 
used instead of the velocity v. 

Using the relation (2.15) between 6 (k,w) and $(k,w) we 
get in the case (2.18) also the following equation for Fe : 

in which the principal value of the integral vanishes because 
the integrand is odd in k .  

We easily get in the usual way6 from (5.5) the H- 
theorem and the H-like theorem. We can also prove these 
theorems for Eq. (5.6) in the asymptotic limit w,t)l. We 
integrate Eq. (5.6) over the time: 

e2 
F, (v,, t )  =F,(v,, 0 )  +n 

me 

XZ I,' ( a )  6 ( o  ( k )  -ma,-kv.) 

t 

~6 (o ( k )  -moo-kv,) dr cos[ (m-n) (ood-6)  l I (k .  7 )  

Substituting Fe in the form 
F,= P,+P,, 

where pe is the part of the distribution function F, oscillat- 
ing with a frequency which is a multiple of w, and F, its 
nonoscillating part, we find from (5.7) that 

t aFeo (v,, T )  

X6 ( a  ( k )  -moo-kv.) j d r ~ ( k ,  r )  ( k  
v, n 

It follows from (5.9) that pd satisfies the equation 

97 SOV. Phys. JETP 60 (I), July 1984 V. S. Mikhallenko and K. N. Stepanov 97 



dFeo eZ cies of the eigenoscillations, -- a 
-n jdk (kz ; - )  jm2(a)  (kd$) [(k, L) 

dt me I d f a  ea dFa 
m = - m  E ~ ( ~ ) + ~ [ v x B ~ ] ) ~ - - v ~ - = o ,  

l)t dr ma v ma av 
6 ( a  ( k )  -moo-kv,). (5.10) 

we can get the following expression for ga (v ,  ,k,w): 
We multiply (5.6) by Fe ,  integrate over velocity space 

and time and, using (5.9), we get ga (va, k, a )  
=a - exp[ iy ,  sin(x,-8) -in(xa-0) 1 

J nez = - ~ ~ ( l i , o ) c  
o= F.'(v., t)dv.= J P ~ z ( v . ,  0)dv.- - J d v . J d k C  J$(a) ma n - - m  ( ~ - n ~ ~ ~ - k ~ ~ u ~ ~ J  

ma2 

All terms in (5.11) are positive; hence it follows that a 
decreases with time. However, the fact u is positive requires 
that as wet+ w 

Condition (5.12) is the analog of the well known condition of 
quasilinear rela~at ion.~ We note that one can obtain the re- 
sult (5.12) in the usual way (see, e.g., Ref. 6) if one starts from 
Eq. (5.10). 

We define the entropy density s in the form 

where the brackets ( . . . ),, indicate averaging over a time 
interval At)w,  ' and we get 

ds n e 2  
-- 

1 aPe0 
--2jdkJdv.r k-- 

dt me F,o ( BV. 

i.e., an increase in the entropy density of the resonance elec- 
trons over time intervals larger than the period of the pump 
wave as a result of the quasilinear relaxation. If we define the 
entropy density s' in the form 

one can, starting from Eq. (5.  lo) ,  obtain an expression for the 
rate of change of the entropy dsl/dt which will differ from 
(5.14) by terms of order 0 (y /wo,  (mot )-I .  

When there is a constant uniform magnetic field present 
in the system of coordinates moving with the velocity ua ( t  ) 
the equation 

for the averaged part Fa of the distribution function of the 
plasma particles takes the form (5.2). We assume that Fa (v, ) 
is independent of the azimuthal anglex, in the space of the 
velocities v, = v - u, ( t  ). 

From the linearized Vlasov equation for that part of the 
distribution function fa which oscillates with the frequen- 

in which 5 (k,w)=6 (k,w) for a = i and 5 (k,w)=$(k,w) for 
a = e, 

va= ( V a l r  Xa, vall) k= ( k ~ ,  8, klr) va~il\kal\Bo, 

~a=~aLkJjmca. 
We restrict our considerations to the case (2.18); in that 

case, using (5.15), (2.20), (4.3) in Eq. (5.2) we get a quasilinear 
equation for Fi in the form 

x  pi) I ( k )  6 ( o  ( k )  -n~ci-klluill), (5.16) 

which, like (5.5) differs from the quasilinear equation when 
there is no pump wave through the use of the variables vi 
= v - ui ( t  ) instead of v.  

Using the relation (2.15) between 6 (k,w) and $(k,w) we 
get in the case (2.18) also the following equation for the func- 
tion F, (v,  ,t ): 

dF, (v,, t) 

X ( O  ( k )  - m o o - n a , , - k , l ~ ~ e ~ ~ ) .  

(5.17) 

We integrate Eq. (5.17) over the time. Writing F, (v, ,t ) as the 
sum (5.8) we find that 

F.(v,, t )  =Pea ( v , ,  t )  ( l+O(yloo,  (oo t ) - ' ) l ,  

P, (ve, t )  -P.o (v,, t )  0 ( ~ 1 0 0 ,  (mot) -') 1 

while 
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X 6  (a  ( k )  - m o o - n o c e - k , l ~ e ~ l )  d ~ .  

We multiply (5.17) by F, and integrate over the velocity 
space and the time. Using (5.8) and (5.18) we find that 

f 

x J d T ~ ( k , r )  (-- 
U e l  duel 

0 
(5.19) 

whence follows the quasilinear relaxation condition 

as mot-+ co . 
One can obtain this condition also in the usual way6 

starting from the equation for the function Fd (v, ,t ) which, 
as follows from (5.8), has the form 

no, ,  dPeo ape0 
x (-- u,, d u e l  +kll du.u) I @ ,  t )  J n 2 ( p e ) 6  

~ ( o  ( k )  - m o o - n o , e - k l l ~ ~ e ~ ~ )  . 
(5.21) 

In concluding this section we note that the quasilinear 
relaxation process leads to an increase in the entropy den- 
sity, given by Eq. (5.13). For time intervals At)w, ' we find 
that 

no, ,  dPeo dF,o 
x c  ~ r n ' ( a ) ~ n ' ( ~ e )  (Tz + k l l d  

X I ( k ,  t )  6  ( o  ( k )  - r n o ~ - n o , , - k ~ ~ v , ~ , )  +O ( y l o o , ( o o t )  -') >O. 

(5.22) 
One can also reach the same conclusion starting from Eq. 
(5.21) and defining the entropy density s' in the form (5.13'). 

In the usual way we can for Eq. (5.16) obtain a H- 
theorem and an H-like theorem which in form are the same 
as the corresponding theorems when there is no pump wave. 

6. CONCLUSION 

Above we showed that for kinetic type parametric in- 
stabilities caused by the build-up of oscillations by resonance 
particles one can when there is a small parameter 1 y(k)/w(k)I 
construct a generalized weak turbulence theory for the gen- 
eral case of finite displacements of particles in the pump 

wave field. In the limiting case of small displacements 
kc, (1 the expressions obtained go over into well known 
expressions. 

As an example we apply the results obtained above to a 
study of the nonlinear stage of the ion cyclotron parametric 
kinetic instability. Such instabilities are excited in the hf 
heating of a plasma using fast magneto-sonic or ion cyclo- 
tron (Alfvtn) waves with a frequency wo-wci (see Ref. 7). 
The appearance of the instability may be caused either by the 
oscillations of the electrons relative to the ions under the 
action of the electric field of these waves or by the oscilla- 
tions of the ions of different kinds relative to one another.' 
These instabilities can particularly easily be excited at the 
periphery of a plasma filament where the plasma tempera- 
ture is low and the amplitudes of the hf fields used to heat the 
plasma are large so that the relative velocity of the oscilla- 
tions may exceed the thermal ion velocity. 

The development of parametric turbulence will lead to 
an undesirable heating of the periphery of the plasma and, 
possibly, to the bombardment of the walls by fast ions and 
the entry of impurities into the discharge. In small devices 
one often uses for plasma heating a large amplitude hf field. 
In that case ion cyclotron parametric instabilities are excited 
also inside the plasma filament leading to a fast turbulent 
plasma heating. In experiments9 one has observed an anom- 
alously fast heating of the hydrogen in the plasma of the 
stellarator "Uragan-2" after a time appreciably shorter (by a 
factor 10 to lo3) than the time for the exchange of energy 
between the hydrogen and deuterium ions during cyclotron 
resonance for a small group ( 5 10%) of deuterium ions. The 
study of ion cyclotron parametric turbulence is thus of great 
interest for the problem of hf plasma heating. 

The frequency and growth rate of the instability for the 
case when the relative velocity of the electrons and ions u in 
the pump wave field is less than or of the order of the ion 
thermal velocity v, and the pump wave frequency wo-oci 
are given by the estimates3 

which are the same as the estimates for the frequency and the 
growth rate for the short-wavelength beam ion cyclotron 
instability for a plasma with a transverse current.'' 

As in the weak turbulence theory obtained in the pres- 
ent paper the expressions for the matrix elements Va and 
Wa differ from the corresponding matrix elements of the 
usual kinetic equation for the waves only through the shifts 
in the frequencies w, w,, and w, by amounts which are multi- 
ples of w, and the quantity a -  1 for the estimates (6. l), it 
turns out to be possible to use the results of the analysis of the 
nonlinear stage of the short-wavelength beam instability of a 
plasma with a transverse current given in Ref. 10. From this 
analysis it follows that also for the parametric instability 
considered, as for the beam instability, the nonlinear stage 
will be determined by the induced scattering of ion cyclotron 
waves by free ions and that the level Wof the energy density 
of the oscillations in the saturation state when the nonlinear 
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damping rate becomes, as to order of magnitude, equal to the 
quantity (6. I), will be equal to 

When one takes this process into account there occurs then 
at the same time a nonlinear amplification of unstable ion 
cyclotron waves (ICW) with the smallest allowable frequen- 
cy (6.1) w(k )=:nu,, =: mw,. The restriction of the growth of 
these oscillations can occur as the result of the nonlinear 
broadening of the cyclotron resonance at the levello W -  (u/  
v, )4n, T, exceeding (6.2). In that case the nonlinear damping 
r a t e r  (k) of the oscillations with higher frequencies becomes 
larger than the linear growth rate which leads to the nonlin- 
ear suppression of these oscillations. The same effect of the 
suppression of the high-frequency part of the spectrum of 
the unstable ICW must also occur for a beam instability., 

On the basis of the quasilinear Eq. (5.17) for Fe one can 
see that Cherenkov absorption and emission of ion cyclotron 
oscillations by resonance electrons leads to the heating of the 
electron component with a rate 

n,dT,,,/dt- y W. (6.3) 

With the same speed the increase of the transverse ion tem- 
perature due to stochastic shocks from turbulent pulsations 
of the electric field of the ICW will take place. 

The estimates given on the basis of the equation for the 
intensity I (k), (4.8), under the condition (4.7), similar to (4.4), 
show that for electron cyclotron turbulence4 the presence of 
energy transfer along the spectrum, caused by the induced 
scattering of electron cyclotron waves by free electrons, is 
also characteristic. As for the ion cyclotron instability, this 

leads to the suppression of the high-frequency part of the 
spectrum of the electron cyclotron oscillations; the unstable 
oscillations with the smallest frequency are amplified as a 
result of this process and their saturation occurs due to the 
effect of the broadening of the cyclotron resonances at a level 
W -  ( u / v , ) ~ ~ ~  Te . The same effect is also characteristic for 
electron cyclotron turbulence of a plasma with a transverse 
current. 
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